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Two papers recently published in 
Nature deal with exceptional points1,2. 
Whereas this concept may not be 

familiar to all physicists, eigenvalues or 
eigenmodes certainly are. The former 
comes up in quantum mechanics, whereas 
the latter is usually used with the same 
meaning in classical systems. Think of 
a string of a violin or piano. If struck it 
produces a specific tone: the vibrational 
eigenfrequency characterized by the 
length, the tension and further mechanical 
properties of the string. The string does 
not vibrate forever as there is damping. 
A simple way of describing such a wave 
pattern is given by the differential equation 
solutions of the form exp(−λt ± iωt), 
where λ is the friction coefficient and 
ω = (f 2 − λ2)1/2 with f being the frequency 
without damping and ω the actual 
frequency modified by the damping.

The eigenmodes of the underlying 
differential equation are actually the 
complex numbers iλ ± (f 2 − λ2)1/2. The real 
(or imaginary) part of the solution describes 
a damped oscillation as long as λ < | f |. 
However, if the damping is too strong, that 
is if λ > | f |, there is no oscillation. A critical 
point occurs at λ = | f | where we encounter 
the simplest form of an exceptional 
point: two independent eigensolutions 
coalesce. Coalescence is different from the 
well-known degeneracy in that not only 
the eigenvalues are equal, but even the 

eigenfunctions become aligned — linearly 
dependent. The parameter λ plays a crucial 
role: the eigenmodes are complex because λ 
is nonzero. For a given f the frequency ω has 
a square root singularity in the parameter 
λ. This simple example illustrates two basic 
properties of an exceptional point: two 
eigenvalues coalesce at some parameter 

value and the eigenvalues have a square root 
singularity at this critical point.

 The two different effects obtained by 
encircling exceptional points — adiabatic 
versus non-adiabatic — are best illustrated 
graphically by two Riemann sheets 
connected at the square root branch point 
(Fig. 1). In an actual experiment the complex 
parameter is replaced by two real parameters 
and the two sheets represent two eigenvalues 
with complex values. A suitable parameter 
change results in encircling the exceptional 
point. Starting on the upper sheet one ends 
up on the lower sheet after one round (the 
line where the sheets penetrate each other 
is not a discontinuity: the values move 
smoothly from one sheet to the other). 
Encircling twice brings one back to the 
initial point. This smooth switch with no 
sudden jump is called adiabatic transport, 
as illustrated on the left-hand side in Fig. 1a 
and on the right-hand side in Fig. 1b.

It has been argued theoretically3 that 
for systems driven by loss and gain there is 
necessarily a jump: a sudden non-adiabatic 
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Circling exceptional points
Going around an exceptional point in a full circle can be a non-adiabatic, asymmetric process. This surprising 
prediction is now confirmed by two separate experiments.
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Figure 2 | The transfer efficiency as a function of loop time. a,b, The measured transfer efficiency of 
the two different states (labelled red and blue) ends at different values depending on the direction 
the exceptional point is encircled. For the anticlockwise direction it is the red state (a) and for the 
clockwise direction it is the blue state (b) that is driven and attains maximal efficiency after sufficient 
loop time while the efficiency of the partner state vanishes. The solid lines represent numerical results. 
Reproduced from ref. 2, NPG.

Figure 1 | Dynamically encircling an exceptional point is a non-adiabatic process. a,b, Anticlockwise 
(a) and clockwise (b) trajectories can start on the red (gain) or blue (loss) Riemann sheets for the 
two states. The end points depend only on the direction of the encircling and not on the starting 
point. A non-adiabatic jump is clearly discernible on the right-hand side of a and on the left-hand 
side of b. The state is attracted by and jumps to the red sheet. g and δ are the coupling and detuning 
parameters, respectively. Reproduced from ref. 1, NPG.
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switch depending on the direction and 
on the initial values of the trajectory. 
This implies an asymmetry between 
clockwise and anticlockwise transport 
around an exceptional point (Fig. 2). Or, 
in other words, the non-adiabatic terms 
lead to chiral behaviour. Jörg Doppler 
and colleagues confirm this using two 
coupled waveguides1. And Haitan Xu and 
co-workers report the same finding in an 
optomechanical system2.

Such experiments are extremely 
challenging. Firstly, as the system is open 
it interacts with the environment. There is 
loss (by absorptive material or radiation) 
and gain (by laser pumping), which must 
be delicately balanced. Only then will the 

position of the exceptional point remain 
stationary in the parameter space. And 
most importantly, only then will non-
adiabatic effects appear (Fig. 1). Secondly, 
the encircling must be done dynamically, 
thus requiring a continuous time-dependent 
change of the parameters. Moreover, 
the speed of the encircling must also be 
controlled. This is actually implemented 
by imposing an appropriate slow change 
of the boundary parameters along the 
propagation direction.

The reports of Doppler et al. and Xu et al. 
confirm the non-adiabatic and asymmetric 
nature of encircling exceptional points. These 
experimental approaches are not limited to 
electromagnetic waves, but are also applicable 

to acoustic and other matter waves. The 
results could be used for quantum control 
and switching protocols and further studies 
could explore the behaviour of thermal and 
quantum fluctuations in the vicinity of an 
exceptional point, thus opening intriguing 
directions for further research. ❐
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