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Persistent Currents in Normal
Metal Rings
A. C. Bleszynski-Jayich,1 W. E. Shanks,1 B. Peaudecerf,1 E. Ginossar,1 F. von Oppen,2
L. Glazman,1,3 J. G. E. Harris1,3

Quantum mechanics predicts that the equilibrium state of a resistive metal ring will contain a
dissipationless current. This persistent current has been the focus of considerable theoretical and
experimental work, but its basic properties remain a topic of controversy. The main experimental
challenges in studying persistent currents have been the small signals they produce and their
exceptional sensitivity to their environment. We have developed a technique for detecting
persistent currents that allows us to measure the persistent current in metal rings over a wide range
of temperatures, ring sizes, and magnetic fields. Measurements of both a single ring and arrays of
rings agree well with calculations based on a model of non-interacting electrons.

Anelectrical current induced in a resistive
circuit will rapidly decay in the absence
of an applied voltage. This decay re-

flects the tendency of the circuit’s electrons to
dissipate energy and relax to their ground state.
However, quantum mechanics predicts that the
electrons’ many-body ground state (and, at finite
temperature, their thermal equilibrium state) may
contain a persistent current (PC), which flows
through the resistive circuit without dissipating
energy or decaying. A dissipationless equilibrium
current flowing through a resistive circuit is
counterintuitive, but it has a familiar analog in
atomic physics: Some atomic species’ electronic
ground states possess nonzero orbital angular mo-
mentum, which is equivalent to a current circulat-
ing around the atom.

One of the major insights of mesoscopic
condensed-matter physics is that this analogy
remains valid evenwhen the electrons experience
a static disorder potential, as in a resistive metal
(1). Theoretical treatments of PCs in resistive
metal rings have been developed over a number
of decades [see (1, 2) and references therein].
Calculations that take into account the electrons’
inevitable coupling to the static disorder potential
and a fluctuating thermal bath predict several
general features. Amicrometer-diameter ringwill
support a PC of I ~ 1 nA at temperatures T ≲ 1 K.
A magnetic flux F threading the ring will break
time-reversal symmetry, allowing the PC to flow in
a particular direction around the ring. Furthermore,
the Aharonov-Bohm effect will require I to be pe-

riodic in F with period F0 = h/e, thereby provid-
ing a clear-cut experimental signature of the PC.

These predictions have attracted considerable
interest, but measuring the PC is challenging for a
number of reasons. For example, the PC flows
only within the ring and so cannot be measured
with a conventional ammeter. Experiments to date
(2, 3) have mostly used superconducting quan-
tum interference devices (SQUIDs) to infer the
PC from the magnetic field it produces. Interpre-
tation of these measurements has been compli-
cated by the SQUID’s low signal-to-noise ratio
(SNR) and the uncontrolled back action of the
SQUID’s ac Josephson oscillations, which may
drive nonequilibrium currents in the rings. In addi-
tion, SQUIDs perform optimally in low magnetic
fields; this limits the maximum F that can be ap-
plied to the rings, allowing observation of only a
few oscillations of I(F) and complicating the sub-
traction of background signals unrelated to the PC.

Experiments to date have produced a number
of confusing results in apparent contradiction with
theory and even among the experiments themselves
(2, 3). These conflicts have remainedwithout a clear
resolution for nearly 20 years, suggesting that our
understanding of how to measure and/or calculate
the ground-state properties of as simple a system
as an isolated metal ring may be incomplete.

More recent theoretical work has predicted
that the PC is highly sensitive to a variety of
subtle effects, including electron-electron inter-
actions (4–7), the ring’s coupling to its electro-
magnetic environment (8), and trace magnetic
impurities within the ring (9). These theories
have not explained all of the experimental results
to date, but they do indicate that accurate mea-
surements of the PC would be able to address a
number of interesting questions in many-body

condensed-matter physics (in addition to resolving
the long-standing controversy described above).

We measured the PC in resistive metal rings
using a micromechanical detector with orders
of magnitude greater sensitivity and lower back-
action than SQUID-based detectors. Our ap-
proach allows us to measure the PC in a single
ring and arrays of rings as a function of ring
size, temperature, and the magnitude and orien-
tation of the magnetic field over a much broader
range than has been possible previously. Quan-
titative agreement is found between these mea-
surements and calculations based on a model of
diffusive, non-interacting electrons. This agree-
ment is supported by independent measurements
of the rings’ electrical properties.

Figure 1, A to C, shows single-crystal Si
cantilevers with integrated Al rings [their fab-
rication is described elsewhere (10)]. All the PC
measurements were made in magnetic fields
well above the critical field of Al, ensuring that
the rings were in their normal (rather than su-
perconducting) state. The parameters of the four
ring samples measured are given in Table 1.

In the presence of a magnetic field B
⇀
, each

ring’s current I produces a torque on the canti-
lever t⇀ ¼ m⇀ � B

⇀
as well as a shift dn in the canti-

lever’s resonant frequency n. Here m→ ¼ pr2In% is
the magnetic moment of the PC, r is the ring
radius, and n% is the unit vector normal to the ring.
We infer I(B) from measurements of dnðBÞ; the
conversion between dnðBÞ and I(B) is described
in the supporting online material (SOM) text.

To monitor n, we drive the cantilever in a
phase-locked loop. The cantilever is driven via a
piezoelectric element, and the cantilever’s displace-
ment is monitored by a fiber-optic interferometer
(11). The cantilever’s thermally limited force
sensitivity is ~2.9 aN/Hz1/2 at T = 300 mK,
corresponding to a magnetic moment sensitivity
of ~11 mB/Hz

1/2 and a current sensitivity of ~20
pA/Hz1/2 for a ring with r = 400 nm at B = 8 T.
By comparison, SQUIDmagnetometers achieve a
current sensitivity ≳5 nA/Hz1/2 for a similar ring
(12–14). The noise temperature of the cantilever
and the electron temperature of a metal sample at
the end of a cantilever both equilibrate with the
fridge temperature for the conditions we used (11).

The frequency shift of a cantilever containing
an array of N = 1680 lithographically identical
rings with r = 308 nm at T = 323 mK is shown
(Fig. 1D) as a function of B. Oscillations with a
period ≈20 mT, corresponding to a flux h/e through
each ring, are visible in the raw data. Depending
on r and q (the angle between

⇀
B and the plane of

1Department of Physics, Yale University, New Haven, CT 06520,
USA. 2Institut für Theoretische Physik, Freie Universität Berlin,
Fachbereich Physik, 14195 Berlin, Germany. 3Department of
Applied Physics, Yale University, New Haven, CT 06520, USA.
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the ring), we observe asmany as 450 oscillations
over a 5.5-T range of B (figs. S12 to S17).

Figure 1E shows the data from Fig. 1D after
subtracting the smooth background and con-
verting the data from dnðBÞ to I(B) using the
expressions in the SOM text. The lefthand axis
in Fig. 1E shows IS, the total PC inferred from
the measurement, which is the sum of the PC
from each ring in the array. The righthand axis
shows the estimated typical single-ring PC: Ityp ¼
IS=

ffiffiffiffi
N

p
. This relationship between Ityp and IS

arises because the PC in each ring is predicted to
oscillate as a function of B with a phase that
depends on the ring’s microscopic disorder, and
thus is assumed to be random from ring to ring.
This assumption is verified below.

To establish that dn provides a reliable mea-
sure of the PC, Ityp(B) was measured as a func-
tion of several experimental conditions: the laser
power incident on the cantilever, the amplitude
and frequency of the cantilever’s motion, the
polarity and orientation of the magnetic field,
and the presence or absence of room-temperature
electronics connected to the cryostat. These data
are shown in the SOM text and indicate that the
measurements of Ityp(B) are independent of these
parameters (for the conditions of our experiment)
and reflect the equilibrium PC in the rings.

Figure 2, A to C, shows Ityp(B) for arrays of
rings with three different radii: r = 308, 418, and
793 nm.We have alsomeasured a single ringwith
r = 418 nm (Fig. 2D). Figure 2, E to H, shows
jI˜ typð fFÞj, the absolute value of the Fourier trans-
form of the data in Fig. 2, A to D [ fF is the flux
frequency in units of (h/e)−1]. Figure 2, I to L,
shows GtypðdBÞ, the autocorrelation of Ityp(B) for
each of these samples. GtypðdBÞ is calculated
from measurements of Ityp(B) taken over a much
broader range ofB than is shown in Fig. 2, A toD;
the complete data are shown in the SOM text.

A number of conclusions can be drawn from a
qualitative examination of these data. First, Ityp(B)
oscillates with a period ≈h/e but also contains an
aperiodic modulation that broadens the peaks in
I˜typð fFÞ and causes GtypðdBÞ to decay at large
dB. This modulation is due to the fact that we
apply a uniform B to the sample, leading to mag-
netic flux inside the metal of each ring given by
FM = BAM where AM is the area of the metal
projected along B

⇀
. This leads to a new effective

disorder potential [and hence a randomization
of the phase of the I(B) oscillations] each time
FM changes by ~F0 (15). As a result, the peaks
in I˜typðfFÞ span a band of fF roughly bounded
by the rings’ inner and outer radii (the blue bars
in Fig. 2, E to H), and the decay of GtypðdBÞ is
found to occur on a field scale [defined as the
half width at half maximum of GtypðdBÞ(15)]
Bc = kF0/AM. Here k is a constant that is pre-
dicted (16) to be ≈1; we find 1 < k < 3 in these
samples. For the array samples, ring-to-ring var-
iations in r (estimated to be ~1%) should con-
tribute negligibly to Bc and the peak widths in
I˜typðfFÞ. The fact that the r = 418 nm array and
the r = 418 nm single ring show similar peak

width and Bc indicates that ring-to-ring variations
in r do not affect the signal appreciably.

It is clear from Fig. 2 that the PC is smaller
in larger rings. This is consistent with the pre-
diction (17) that the typical amplitude Ih/e(T = 0)
of the h/e-periodic Fourier component of I(F)
at T = 0 corresponds roughly to the current
produced by a single electron diffusing around
the ring at the Fermi energy, and hence should
scale as 1/r2. In addition, Ih/e(T) is predicted (17)
to decrease on a temperature scale (known as the
Thouless temperature) TTº1=r2, corresponding
to the scale of disorder-induced correlations in
the ring’s spectrum of single-electron states.

In Fig. 2E, a small peak at fF = 2 can be
seen, corresponding to the second harmonic of
I(F). This harmonic has attracted particular
attention because under some conditions, it has a
component that is not random from ring to ring
(4, 12, 18, 19). The signal from such a nonran-
dom “average” current would scale as I ðavgÞS ºN
rather than

ffiffiffiffi
N

p
. Furthermore, the amplitude of

I ðavgÞS can be strongly enhanced by electron-electron
interactions (4–6) and other effects (8, 9). However,
I ðavgÞS arises because of time-reversal symmetry
within the metal, which in our experiments is
broken by FM. We calculate that FM suppresses
I ðavgÞS by a factor ee−2pr=1:3ℓB (where the magnetic

Table 1. Sample parameters. For each of the four ring samples, the rings’mean radius r, linewidth w, and
thickness d are listed, along with the number N of rings in the sample. The electrons’ diffusion constant D,
extracted from the fits in Fig. 3, is given. The stated errors are statistical errors in the fits. An additional 6%
error in D is estimated for uncertainties in the overall calibration, as discussed in the SOM text. The fifth
sample is the codeposited wire used in the transport measurements described in the SOM text. For this
sample, D was determined from the wire’s resistivity.

Sample r (nm) w (nm) d (nm) N D (cm2/s)

308-nm array 308 115 90 1680 271 T 2.6
418-nm array 418 85 90 990 214 T 3.3
793-nm array 793 85 90 242 205 T 6.5
418-nm ring 418 85 90 1 215 T 4.6
Wire (see SOM text) 289,000 (length) 115 90 1 260 T 12

Fig. 1. (A) Cantilever
torque magnetometry
schematic. An array of
metal rings is integrated
onto the end of a canti-
lever. The cantilever is
mounted in a 3He refrig-
erator. A magnetic field B
is applied at an angle q
from the plane of the
rings. The out-of-plane
component of B provides
magnetic flux F through
the ring. The in-plane
component of B exerts a
torque on the rings’
magnetic moment and
causes a shift in the
cantilever’s resonant fre-
quency dn. Laser interfer-
ometry is used tomonitor
the cantilever’s motion
and to determine dn. (B)
A scanning electron mi-
crographof several Si can-
tilevers similar to those
used in the experiment.
The light regions at the
end of some of the can-
tilevers are arrays of Al
rings. The individual rings
are visible in (C), which
shows a magnified view of the region in (B) outlined in red. (D) Raw data showing dn as a function of B for
an array of N = 1680 rings with r = 308 nm at T = 365 mK and q = 45°. (E) PC inferred from the frequency
shift data in (D) after subtracting a smooth background from the raw data. The lefthand axis shows the total
current IS in the array, and the righthand axis shows the estimated typical per-ring current Ityp = IS/

ffiffiffi
N

p
.

Oscillations with a characteristic period of ~20 mT (corresponding to F = h/e) are visible in (D) and (E).
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length ℓB ¼ ffiffiffiffiffiffiffiffiffiffi
h=eB

p
), which for this experiment

should render I ðavgÞS unobservably small. As a result,
the peak in Fig. 2E at fF = 2 presumably reflects
the random component of the second harmonic
of I(F), which is predicted (17) to have a zero-
temperature amplitude Ih/2e(0) = Ih/e(0)/2

3/2, to be
suppressed on a temperature scale = TT/4, and to
produce a signal with the same

ffiffiffiffi
N

p
scaling as Ih/e.

We now turn to a more quantitative analysis
of the data. Theory predicts (17) that, for each
independent realization of the disorder potential,
Ih/pe [the p

th harmonic of I(F)] is drawn randomly
from a distribution with a mean 〈Ih=pe〉 ¼ 0 and a

root mean square (rms) value 〈I2h=pe〉
1=2, which in

general is nonzero. Here 〈⋯〉 represents an
average over disorder potentials. The quantity
〈I2h=pe〉

1=2 can be calculated explicitly as a func-
tion of r, T, p, and the electrons’ diffusion con-
stant D for a variety of models.

To compare our data against these calcu-

lations, we make use of the fact that 〈I2h=pe〉
1=2

can be extracted from a measurement of IS(B)
when the measurement record spans many Bc.
When this condition is satisfied, averages per-
formed with respect to B are equivalent to
averages performed with respect to disorder
realizations, and it is straightforward to show
that the area under a peak in jI˜typð fFÞj2 (Fig. 2,
E to H) at fF = p is simply related to 〈I2h=pe〉

1=2

ð f þF − f −F Þ−1
ðf þF
f −F

jI˜typð fFÞj2 − bð fFÞ
� �

dfF

2
64

3
75
1=2

¼ I2h=pe
1=2

ED
(1)

Here b is the noise floor in jI˜typðfFÞj2 and is
estimated from the portions of the data away
from the peaks. We take the limits of integration

f þF and f −
F to be roughly the values of fF cor-

responding to h/pe flux periodicity through the
outer and inner radii of the ring, respectively. In
previous experiments, 〈I2h=pe〉 could only be
determined by measuring several rings, one ring
at a time (3, 20). This approach was limited by
the low SNR achieved in single-ring measurements
and practical limits on the number of nominally
identical rings (≈15) that could be measured.

Fig. 2. PC versus mag-
netic field in (A) the
308-nm array for T =
365 mK, q = 45°; (B)
the 418-nm array for T=
365mK, q =45°; (C) the
793-nm array for T =
323mK, q = 6°; and (D)
the 418-nm ring for
365mK,q =45°. In each
case, a smooth back-
groundhasbeenremoved.
(E to H) Fourier trans-
forms of the data in (A)
to (D). The expected h/e
and h/2e periodicities
are indicated by the hor-
izontal blue bars. Thebars’
widths reflect the rings’
linewidth w. A small h/2e
peak is present in (E)
(visible in the log-scale
graph, inset). (I to L)
The autocorrelation func-
tions of the data shown
in (A) to (D), but com-
puted over a field range
DB larger than shown in
(A) to (D): DB = (I) 5.4 T,
(J) 5.3 T, (K) 0.6 T, and (L)
1.1 T (full data are shown
in the SOM text).

Fig. 3. Temperature depen-
dence of the h/e and h/2e
Fourier components of the
current per ring. The vertical
axis indicates 〈I2h=e〉

1=2 and
〈I2h=2e〉

1=2, the rms values of
the Fourier amplitudes of the
persistent current. In each
data set, the open points were
taken with q = 45°, where-
as for the solid points, q =
6°. The arrows indicate the
data points derived from I(B)
measurements taken over a
magnetic field range much
greater than Bc; other data
points are derived from the
scaling of I(B) measured over
a smaller range of B, as
described in the SOM text.
The lines (solid for array samples, dotted for the single ring) are fits to the prediction for non-interacting
diffusive electrons. The electron diffusion constant D is the only fitting parameter and is listed in Table 1.
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Measurements of 〈I2h=e〉
1=2 for each sample

and 〈I2h=2e〉
1=2 for the smallest rings are shown as

a function of T for q = 45° (open symbols) and
q = 6° (solid symbols) (Fig. 3). It can be seen
that the PC in larger rings decays more quick-
ly with T than in smaller rings, and that 〈I2h=2e〉1

=2

decays more quickly than 〈I2h=e〉
1=2, which is

consistent with the discussion above. In addi-
tion, the agreement between the data for the r =
418 nm array and the r = 418 nm single ring
indicates that the PC signal scales as

ffiffiffiffi
N

p
and

hence that the PC is random from ring to ring.
The solid lines are fits to theoretical predic-

tions in which 〈I2h=pe〉
1=2 is calculated for diffusive

non-interacting electrons. This calculation
closely follows that of (17) but takes into account
the presence of the large magnetic field B inside
the metal (which lifts the spin degeneracy and
breaks time-reversal symmetry) as well as spin-
orbit scattering (the rings’ circumference exceeds
the spin-orbit scattering length, as discussed in
the SOM text). We find

I2h=peðTÞ
D E

¼ g p2
T

TT

� �
I2h=peð0Þ

D E
ð2Þ

where gðxÞ ¼ p6
3 x2 ∑

∞

n¼1
n exp ½−ð2p3nxÞ1=2 �,

〈I2h=peð0Þ〉1=2 ¼ 0:37p−3=2 3eD
ð2prÞ2, andTT ¼ ℏp2D

kBð2prÞ2.

The data from each sample were fit sepa-
rately, in each case using D as the only fitting
parameter. The best-fit values of D are listed in
Table 1. These values are typical for high-purity
evaporated Al wires of the dimensions used here
(21, 22); however, to further constrain the com-
parison between our data and theory, we also
independently determined D from the resistivity
of a co-deposited wire (the wire’s properties are
listed in Table 1). This measurement is described in
detail in the SOM text and provides a value ofD in
good agreement with the values extracted from the
PC measurements. The values of D in Table
1 show a correlation with the samples’ linewidths,
which may reflect the increased contribution of
surface scattering in the narrower samples.

The calculation leading to Eq. 2 assumes the
phase-coherent motion of free electrons around
the ring. Measurements of the phase coherence
lengthLF(T) in the co-depositedwire are described
in the SOM text and show that LF ≫ 2pr for nearly
all the temperatures at which the PC is observable.
The closest approach between LF and 2pr at a
temperature where the PC can still be observed
occurs in the 308-nm array at T = 3K, where we
find LF(3 K) = 1.86 × (2pr). It is conceivable that
the more rapid decrease in 〈I2h=e〉

1=2 observed in
this sample above T = 2 K (Fig. 3) is due to
dephasing; however, it is not possible to test this
hypothesis in the other samples, because the
larger rings’ PC is well below the noise floor
when LF(T) = 1.86 × (2pr). To the best of our
knowledge the effect of dephasing on the PC has
not been calculated.

Our measurement of the PC in normal metal
rings over a wide range of temperatures, ring sizes,
array sizes, magnetic field magnitudes, and mag-
netic field orientations with high SNR, excellent
background rejection, and low measurement back-
action indicates that the rings’ equilibrium state is
well described by the diffusive non-interacting elec-
tron model. In addition to providing a clear exper-
imental picture of PCs in simple metallic rings,
these results open the possibility of using measure-
ments of the PC to search for ultra–low temperature
phase transitions (6) or to study a variety of many-
body and environmental effects relevant to quan-
tum phase transitions and quantum coherence in
solid-state qubits (23, 24). Furthermore, the micro-
mechanical detectors used here are well suited to
studying the PC in circuits driven out of equilibrium
(for example, by the controlled introduction of
microwave radiation) (8). The properties of PCs in
these regimes have received relatively little atten-
tion to date but could offer new insights into the
behavior of isolated nanoelectronic systems.

References and Notes
1. M. Buttiker, I. Imry, R. Landauer, Phys. Lett. 96A, 365 (1983).
2. L. Saminadayar, C. Bäuerle, D. Mailly, Encycl. Nanosci.

Nanotech 3, 267 (2004).
3. H. Bluhm, N. C. Koschnick, J. A. Bert, M. E. Huber,

K. A. Moler, Phys. Rev. Lett. 102, 136802 (2009).
4. V. Ambegaokar, U. Eckern, Phys. Rev. Lett. 65, 381 (1990).
5. V. Ambegaokar, U. Eckern, Europhys. Lett. 13, 733 (1990).
6. H. Bary-Soroker, O. Entin-Wohlman, Y. Imry, Phys. Rev.

Lett. 101, 057001 (2008).
7. U. Eckern, P. Schwab, Adv. Phys. 44, 387 (1995).
8. V. E. Kravtsov, V. I. Yudson, Phys. Rev. Lett. 70, 210 (1993).
9. P. Schwab, U. Eckern, Z. Phys. B 103, 97 (1997).

10. A. C. Bleszynski-Jayich, W. E. Shanks, R. Ilic, J. G. E. Harris,
J. Vac. Sci. Technol. B 26, 1412 (2008).

11. A. C. Bleszynski-Jayich, W. E. Shanks, J. G. E. Harris,
Appl. Phys. Lett. 92, 013123 (2008).

12. E. M. Q. Jariwala, P. Mohanty, M. B. Ketchen, R. A. Webb,
Phys. Rev. Lett. 86, 1594 (2001).

13. M. E. Huber et al., Rev. Sci. Instrum. 79, 053704 (2008).
14. D. Mailly, C. Chapelier, A. Benoit, Phys. Rev. Lett. 70,

2020 (1993).
15. W. J. Skocpol et al., Phys. Rev. Lett. 56, 2865 (1986).
16. P. A. Lee, A. D. Stone, H. Fukuyama, Phys. Rev. B 35,

1039 (1987).
17. E. K. Riedel, F. von Oppen, Phys. Rev. B 47, 15449 (1993).
18. L. P. Levy, G. Dolan, J. Dunsmuir, H. Bouchiat,

Phys. Rev. Lett. 64, 2074 (1990).
19. B. L. Altshuler, Y. Gefen, Y. Imry, Phys. Rev. Lett. 66, 88

(1991).
20. V. Chandrasekhar et al., Phys. Rev. Lett. 67, 3578 (1991).
21. P. LaFarge, P. Joyez, D. Esteve, C. Urbina, M. H. Devoret,

Nature 365, 422 (1993).
22. C. Song et al., Phys. Rev. B 79, 174512 (2009).
23. P. Cedraschi, V. V. Ponomarenko, M. Büttiker, Phys. Rev.

Lett. 84, 346 (2000).
24. A. Kopp, K. Le Hur, Phys. Rev. Lett. 98, 220401 (2007).
25. We thank M. Devoret, R. Ilic, T. Ojanen, and J. C. Sankey

for their assistance. A.C.B.-J., W.E.S., and J.G.E.H. are
supported by NSF grants 0706380 and 0653377.
F.v.O. is supported in part by the Deutsche-Israelische
Projektkooperation. J.G.E.H. acknowledges support from
the Sloan Foundation. A.C.B.-J. acknowledges support from
UNESCO-L’Oreal. L.G. is supported in part by U. S.
Department of Energy grant DE-FG02-08ER46482. F.v.O
and L.G. acknowledge the hospitality of the Kavli Institute
for Theoretical Physics in the final stages of this work.

Supporting Online Material
www.sciencemag.org/cgi/content/full/326/5950/272/DC1
SOM Text
Figs. S1 to S18
References and Notes

23 June 2009; accepted 8 September 2009
10.1126/science.1178139

The Shape and Surface Variation of 2
Pallas from the Hubble Space Telescope
B. E. Schmidt,1* P. C. Thomas,2 J. M. Bauer,3 J.-Y. Li,4 L. A. McFadden,4 M. J. Mutchler,5
S. C. Radcliffe,6 A. S. Rivkin,7 C. T. Russell,1 J. Wm. Parker,8 S. A. Stern8

We obtained Hubble Space Telescope images of 2 Pallas in September 2007 that reveal distinct
color and albedo variations across the surface of this large asteroid. Pallas’s shape is an
ellipsoid with radii of 291 (T9), 278 (T9), and 250 (T9) kilometers, implying a density of 2400
(T250) kilograms per cubic meter—a value consistent with a body that formed from water-rich
material. Our observations are consistent with the presence of an impact feature, 240 (T25)
kilometers in diameter, within Pallas’s ultraviolet-dark terrain. Our observations imply that Pallas is
an intact protoplanet that has undergone impact excavation and probable internal alteration.

In the current paradigm, the largest asteroids
were among the first solar system bodies to
form and were the building blocks of planets

[e.g., (1) and references therein]. Pallas is the
second largest and third most massive asteroid,
with a mean radius of 272 km; 1 Ceres is 475 km
(2) and 4 Vesta is 265 km (3). These three bodies
are the archetypes of their spectral classes: Ceres
is the largest of the rare G-types, Vesta is the likely
parent body of the Vestoid V-type asteroids and
the associated howardite, eucrite, and diogenite
(HED) meteorites [e.g., (1)], and Pallas is the
largest of the B-types. Like Vesta, Pallas is linked

to an orbital family sharing its orbital and spectral
parameters. The largest of these is 5222 Ioffe,
with a diameter of 22 km (4). It is assumed that
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Peaudecerf, E. Ginossar, F. von Oppen, L. Glazman, and J. G. E. Harris 
 
1. Transport measurements 

Transport measurements were performed on an aluminum wire codeposited with the 
rings studied in this report. The wire was deposited adjacent to the cantilevers on the same 
silicon wafer (approximately 5 mm away) and had a length of 289 μm, a linewidth w of 115 ± 6 
nm (measured by SEM) and a thickness d of 90 ± 1 nm (measured by AFM). An SEM image of 
a similar wire is shown in Fig. S1. All measurements were performed with the wire in a three 
terminal ac resistance bridge using a lock-in amplifier(S1,S2). Excitation currents were chosen 
to be low enough that the measurement results were independent of the magnitude of excitation. 
In order to prevent high frequency noise from reaching the sample, the measurement lines 
incorporated coaxial low pass filters at the room temperature feedthrough into the cryostat (3 dB 
frequency ~ 1.9 MHz) and at the cold stage of the fridge (3 dB frequency ~ 80 MHz). For the 
magnetoresistance measurements described below, the chip was mounted with the magnetic field 
normal to its surface. 
 

1.1 Resistivity measurement 
 The wire’s resistivity ρ was obtained by measuring the total change in resistance of the 
sample at 360 mK as the magnetic field was swept through the wire’s superconducting critical 
field (Fig. S2). The diffusion constant D was then calculated using the Einstein relation 
 

gDe21 =−ρ          (S1) 
 
with e the electron charge and g the electron density of states per unit volume at the Fermi level. 
The density of states can be written in terms of the free electron density n and the Fermi energy 
εF as Fng ε23= . With n = 1.81 × 1029 m-3 and εF =11.5 eV for aluminum(S3), the wire’s 
measured resistivity of ρ = 1.03 ± 0.05 × 10-8 Ωm corresponds to a diffusion constant of D = 
0.026 ± 0.01 m2/s. To avoid confusion in the following sections, we denote this value of D as Dρ. 
 

1.2 Superconducting critical field measurement 
The wire’s superconducting critical field  was measured as a function of temperature CH

T  near the wire’s superconducting transition temperature . In the Ginzburg Landau 
framework valid for a dirty superconductor near , the superconducting critical field for a thin 
wire lying on a plane normal to the applied magnetic field can be written as 

CT

CT

 

( ) ( )TTk
Dew
hTH CBC −=

π
12       (S2) 

 
where h is Planck’s constant and  is the Boltzmann constant(SBk 4). The superconducting critical 
field was measured by sweeping the magnetic field at different sample temperatures and 
observing the change in resistance from the normal to the superconducting state. The 
superconducting critical field was taken to be the field at which the wire resistance reached a 
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fixed fraction of the normal state resistance. In Fig. S3, the measured  and a fit to Eq. S2 
are shown. The extracted fit parameters are 

( )TH C

19.1=CT K and D = 122 ± 5 cm2/s. We denote this 
value of D as DHc. 
 We note that Eq. S2 is applicable only when the electrons’ elastic scattering length  is 
much smaller than the wire’s transverse dimensions w and t. If we use the value of 
Dρ determined from the resistivity measurements described above and a Fermi velocity vF = 2.0 
× 106 m/s, then we find a value of = 3 Dρ/vF = 40 nm. This indicates that  ~ w, d, and hence 
that Eq. S2 is not valid. As a result we do not consider DHc to provide an accurate estimate of D, 
and include it here only for completeness. Discrepancies between DHc and Dρ due to the 
breakdown of Eq. S2 have been noted previously(S

e

e e

5). 
 

1.3 Measurement of the electron phase coherence and spin orbit lengths 
 The electron phase coherence and spin orbit scattering lengths were extracted from 
measurements of the magnetoresistance of the same wire at temperatures above Tc. Such 
measurements were first performed in aluminum wires two decades ago and have been reviewed 
previously(S6). 

The coherent interference of time reversed trajectories leads to an increase in the 
probability for a quasiparticle to return to its original position and thus an increase in electrical 
resistance, a phenomenon known as weak localization. The presence of a magnetic field 
suppresses weak localization by breaking time reversal symmetry and allows a direct measure of 
electron phase coherence through the resulting magnetoresistance. Spin orbit scattering can also 
modify the spin components of time reversed paths and thus the weak localization contribution to 
conductivity. The analytic form for the weak localization correction to the resistance R  in a 
magnetic field B  is given by 

 
( ) ( )

( ) ( )( )ϕLϕ
δ bBfLLbBf

BR
BRBR

R
R

SO

WL

,
2
1

3
4,

2
3

0
0

11 −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +=

=
=−

=

)

  (S3) 

 
where  is electron phase coherence length and  is the spin orbit length. The function ϕL

1

SOL

(1 ,f B B  is given by 
 

( ) ( )
( )

1 21 22 2

1 1
1 1

, 1
48

b we Bf B B R
B b w Bπ

−
⎛ ⎞⎛ ⎞

= +⎜⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠
⎟⎟     (S4) 

 
with R dρ=  the sheet resistance per square unit of the wire. The field scale  is given by ( )wb
 

( ) 24el
lb =          (S5) 

 
where l is in units of length. This form for the weak localization correction to the 
magnetoresistance is derived from a perturbative calculation and is valid for 

mT for our wire.(S( ) 300~12 wbB < 6) 
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Just above , superconducting fluctuations result in a small, temperature dependent 
population of Cooper pairs, which reduce the resistance of the metal. This reduction of the 
resistance is known as the Aslamazov-Larkin correction to the conductivity. Further above , 
in the temperature range relevant to our measurements, Cooper pairs from superconducting 
fluctuations are too short-lived to contribute directly to the conductivity and the Aslamazov-
Larkin correction can be neglected. However, after a Cooper pair decays, the two electron 
quasiparticle wave functions are still correlated and provide a contribution to the conductivity 
like a Cooper pair, known as the Maki Thompson contribution, as long as the electrons maintain 
phase coherence. Because all Cooper pairs are composed of electrons in the singlet state, spin 
orbit scattering does not affect the Maki Thompson contribution to the conductivity. The 
correlation between quasiparticles formed by the decay of a Cooper pair has a theoretically 
similar description to the cooperon which describes weak localization and thus both effects have 
similar analytic forms for their contributions to the magnetoresistance. Specifically, the Maki 
Thompson correction to the resistance obeys: 

CT

CT

 
( ) ( )

( ) ( )( ϕβδ LbBf
T
T

BR
BRBR

R
R

C

MT

,
0

0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

=
=−

= )      (S6) 

 
where ( )tβ  is a function introduced by Larkin(S7) which diverges logarithmically as . Eq. 

S6 is valid provided that

1→t

( CB TTTk
L
D ln2 <<
ϕ

)  and ( C
B TT
De
TkB ln

4
<< ).(S8) 

 Magnetoresistance measurements were made at a series of wire temperatures above Tc 
between 1.8 and 10 K. Because of the limitations on the validity of Eq. S6, measurements could 
only be made at relatively high temperatures compared to those for which we measured 
persistent currents. Fig. S4 shows magnetoresistance measurements with fits to the sum of Eqs. 
S3 and S6 for three different temperatures. From these fits we determine that spin-orbit 
scattering contributes significantly to the magnetoresistance only at higher temperatures where 
the Maki Thompson contribution is small.  

For temperatures above 4 K, the magnetoresistance data were fit with both  and LSO as 
fitting parameters. In this range, LSO was measured to be 1.1

ϕL
± 0.25 μm and observed to be 

independent of temperature. Following this analysis, the data for the whole temperature range 
was fit with  fixed to 1.1 μm and  as the only free parameter. In Fig. S5, the fitted values 
for  found in this way are plotted versus temperature.  

SOL ϕL

ϕL
We note that LSO is less than the circumference of the rings used in the persistent current 

measurements. For this reason, we have fit our data to the expression for the persistent current 
(Eq. 2 of the main paper) which assumes strong spin-orbit coupling. 
 The electron phase coherence length is limited to a finite value due to scattering 
processes in which electrons change energy. For the temperature regime of our measurements, 
the processes expected to be dominant are electron-phonon and electron-electron scattering. 
Scattering from magnetic impurities should be negligible for our high purity aluminum film 
(total impurity concentration 10 ± 5 ppm; Fe concentration 0.5 ppm.). The electron-phonon 
phase scattering rate  follows the form  1−

epτ
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31 TAepep =−τ          (S7) 
 
where s-1 K-3 for bulk aluminum(S6101.9 ×=epA 6,S9). For the conditions of our measurement, 

the electron-electron phase scattering rate  has been observed to be dominated by the process 
of multiple collisions with small energy transfers and to follow the form[

1−
eeτ

10] 
 

2 32
1 2 3

4
B

ee ee
R e k DA T T

w
τ − ⎛ ⎞⎛ ⎞= = ⎜ ⎜ ⎟

⎝ ⎠⎝ ⎠

2 3
⎟ .     (S8) 

 
The total electron phase breaking rate  is approximately equal to the sum of these two 

rates(S

1−
ϕτ

10). The blue lines in Fig. S5 show a fit to the measured ( )TLϕ  using Eqs. S7 and S8 and 

the relation ϕϕ τDL =  with  and  as the free parameters. The fitted values are 

s-1K-3 and D = 700 
epA D

7(1.21 0.07) 10epA = ± × ±  30 cm2/s. We denote this value of D as Dϕ . While 
Dϕ  differs from Dρ and the value of D extracted from the persistent current, we note that  
only depends upon D1/3 and so provides a relatively weak constraint on D. In addition we note 
that Eq. S8 is derived without considering the presence of superconducting fluctuations in the 
wire. These fluctuations may alter the numerical coefficient in S8 and hence the extracted value 
of 

ϕL

Dϕ . 
 
2. Calibration of the persistent current signals 

2.1 Estimation of persistent current from cantilever frequency 
We infer the sample’s persistent current I from changes in the resonance frequency ν of 

the cantilever on which the sample is mounted. Here we describe the manner in which I is 
inferred from ν. 

The cantilever’s potential energy is a sum of two terms. The first is the elastic energy 
stored in the cantilever’s deformation, which is very nearly a harmonic potential. The second 
term arises from the interaction between the ring’s persistent current and the applied magnetic 
field. This magnetic term is a more complicated function of the cantilever’s displacement, as 
both the persistent current and the resulting torque depend upon the angle between the ring and 
the applied field. We can write the magnetic energy as  

 

mag ( , ) ( , ) sin
B

E B I B A dBθ θ′= ∫ θ ′       (S9) 

  
where A is the area of the ring and θ is the angle between the plane of the ring and the applied 
magnetic field B (Fig 1A in the main paper). We note that a cantilever deflection leads to both a 
translation and a rotation of the sample; the latter changes θ and hence is responsible for the 
coupling between the persistent current and the cantilever. 
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We consider a persistent current which is approximately periodic* in the flux through the 
ring Φ = ABsinθ. Expressed in terms of its Fourier components, the current is: 

 
( ) ( )

/ /
0 0

sin sin( ) sin(2 ) cos(2 )h pe h pe
p

BA BAI B I p I pθ θπ π+ −⎡ ⎤
= +⎢ ⎥Φ⎣ ⎦

∑ Φ
    (S10) 

 
Here p is equivalent to the variable fΦ in the main paper, and p = 1 corresponds to a period of h/e. 
The presence of magnetic flux inside the metal of the ring leads to aperiodic modulations of the 
PC oscillations; as a result we do not constrain p to be an integer. This same modulation 
necessitates the cosine terms in Eq. S10, which are not present in treatments which assume time-
reversal symmetry in the metal. We write the Fourier series as a sum over p rather than an 
integral in order to correspond more closely with the data, which consists of discrete 
measurements of I(B) and hence a discrete spectrum typ ( )I fΦ . Lastly, we note that the signal is 
expected (and observed) to be dominated by its Fourier components with . This fact will be 
used in some of the approximations below. 

1p ≈

The magnetic energy Emag can then be evaluated from Eqs. S9 and S10: 
 

( ) ( ) ( )0
mag / /

0 0

sin sin( , ) cos(2 ) sin(2 )
2

p
h pe h pe

p

BA BAE B I p I p
p

θ θθ π π
π

+ −⎛ ⎞Φ
= −⎜ ⎟Φ Φ⎝ ⎠

∑   (S11) 

  
The potential associated with the persistent currents (Eq. S11) is obviously not harmonic 

and hence will lead to a cantilever frequency shift which depends upon the amplitude of the 
cantilever’s motion. For arbitrarily small amplitude, the frequency shift δν

0

 is simply 
proportional to . However, this approximation is only valid when the cantilever’s motion 
is small enough that the resulting modulation of the flux through the ring 

2
magEθ∂

acφ Φ . In practice 
we typically use cantilever amplitudes which lead to 0~ac 2φ Φ , so we need to derive δν  for 
amplitudes relevant to our actual measurement. This calculation is done using canonical 
perturbation theory in the Hamilton-Jacobi framework, which is valid for δν ν , and hence 
appropriate for our measurements. 

We begin by noting that the angle θ  can be written as tip
0 m

q
L

θ θ γ= +  where 0θ  is the 

value of θ  at the cantilever’s equilibrium position,  is the cantilever’s length,  is the 
displacement of the cantilever’s tip from equilibrium, and 

L tipq

mγ  is the ratio between the slope of 

                                                 
* This assumption of a persistent current which is periodic in the flux through the ring is a better 
approximation (for the purposes of this calculation) than might be gathered from the appearance of the 
persistent current data in the main paper (e.g., Fig. 1(e)), which clearly includes aperiodic modulations. 
This is because the data in the main paper is taken while varying the applied magnetic field, which adds 
flux both through the ring and the metal; the latter leads to aperiodic modulations of the current as 
discussed in the main paper. However when calculating the frequency shift at a given field, we are 
concerned with modulations of the flux due to the cantilever’s motion. It is straightforward to show that 
this motion predominantly modulates the flux through the ring and not the flux through the metal.  
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the cantilever at the position of the ring and the factor Lqtip  for flexural mode m. For a ring 
located at the cantilever tip { 788.4,377.1=m }γ  for the first two flexural modes.  

The position of the cantilever can be rewritten in terms of the action-angle variables as 

(tip
2 sin 2q J
k
ν )πη=  where k  is the cantilever’s mechanical spring constant,  the action 

variable, and 

J

η  the canonically conjugate angle variable. The shift in cantilever resonant 
frequency is then given by(S11) 
 

( )(
2

0

,J d E J
π

δν η θ η= ∂ ∫ )         (S12) 

( )( ) 0 ( ) ( )max
/ /

1max 0 0

cos cos 2 sin 2m m
h pe h pe

p

AB q I p I p
kLq L

νγ γ π π
∞

+ −

=

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞Φ Φ
= − −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟Φ Φ Φ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

∑0 1
0

cos
2

AB
J p

θ
θ π

       

where we have kept only the lowest-order term in the small parameter tip
m

q
L

γ  and assumed that 

θ0 is chosen so that 0

0

1
2 tanABπ θ

Φ . In Eq. S12, ( )1J x  is the first Bessel function of the first 

kind and  is the amplitude of motion of the cantilever tip in units of distance. It can be 
readily verified that in the limit  Eq. S12 reduces to 

maxq

max 0q → 2
magEθδν = ∂ . 

From this point we use two approaches to extract I(B) from our measurement of ( )Bδν . 
In the first (Method A), we extract each  Fourier component of I(B) (i.e., the pth) separately by 

converting the frequency shift data into the derivative I
B

∂
∂

 using 

 

( ) ( )
1

/ 00 m
0 1

0 max 0

cos2 sin cos 2h pe m mI ABpA qAB J p
B kLq

θπ θ νγ γδν θ π
−

⎡ ⎤∂ ⎛ ⎞
≈ − ⎢ ⎥⎜ ⎟∂ Φ Φ⎝ ⎠⎣ ⎦

ax

L
 (S13) 

 
The approximation in going from Eq. S12 to Eq. S13 relies on the fact that the argument of the 
Bessel function varies only slightly over any given data set. Equation S13 is then integrated 
numerically with respect to B to get Ih/pe(B). Ih/pe(B) is then Fourier transformed, and only the 
Fourier component at fΦ = p is kept. This routine is repeated for each p, resulting in ( )I fΣ Φ ; 

division by N  gives typ ( )I fΦ , and inverse Fourier transform gives Ityp(B).  
The advantage of Method A is that it provides an accurate estimate of the Fourier 

components over a wide range of p and so is suitable for data in which the persistent current has 
Fourier components near h/e and h/2e (we never observe a signal at higher fΦ). The disadvantage 
of Method A is that there are values of p which lead to zeroes in the Bessel function in Eq. S.13, 
and any technical noise in the measurement of δν  will be converted to a diverging I for these p 
(equivalently, the measurement is not sensitive to these Fourier components of I). The values of 
p at which these divergences occur can be modified by varying qmax, and we used this fact to 
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verify for each sample that no signal (e.g., at h/2e) was being masked by this effect. Furthermore, 
for the samples with fairly large signals (the 308 nm and 418 nm arrays), qmax was set low 
enough that the divergences in the rhs of Eq. S13 occurred at high values of p (i.e., > 4) and so 
did not interfere with the inferred Fourier components at h/e or h/2e. As a result, the typ ( )I fΦ  for 
these samples (Figs. 2E – F) was analyzed using Method A. Ityp(B) for these samples (shown in 
Figs. 1E, 2A – B) is the inverse Fourier transform of typ ( )I fΦ

2

, with the very lowest Fourier 
components (corresponding to the smooth background visible in the raw data, e.g., in Fig. 1D) 
discarded. The Fourier components where the rhs of Eq. S13 diverges were also discarded in 
calculating Ityp(B). 

For samples with weaker signals (the 418 nm ring and 793 nm array) qmax could not be 
decreased far enough to push the divergences in Eq. S13 entirely out of the fΦ band of interest 
(i.e., 0 < p < 2). However by varying qmax we confirmed that there was never a signal at h/2e 
above the noise floor. To present the data from these samples we use a second method (Method 
B) which makes use of the fact that persistent current signal for these samples occurs entirely 
near  (i.e., has no observable components at 1p ≈ p ≈ ) and that the argument of the Bessel 
function in Eq. S12 varies only weakly over a given data set. In this method we set p = 1 in the 
Bessel function and so rewrite Eq. S12 as  

 

( ) ( )0 max
0 1

max 0

( ) ( )
/ / sinh peI+ −

1 0 0

cos
cos 2

                                    cos 2 2

m m

h pe
p

ABAB qJ
kLq L

I p p

θνγ γδν θ π

π π
∞

=

⎛ ⎞
≈ − ⎜ ⎟Φ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞Φ Φ
× −⎜ ⎟⎜ ⎟ ⎜ ⎟Φ Φ⎝ ⎠ ⎝ ⎠⎝ ⎠
∑

 (S14) 

 

This allows us to convert the measured frequency shift directly to I
B

∂
∂

 (again taking ): 1p ≈

 

( )( )
1

0 max
0 1

0 max 0

2 sin cos 2m mI A qAB J
B kLq L

π θ νγ γδν θ π
−

⎡ ⎤⎛ ⎞∂
≈ − ⎢ ⎥⎜ ⎟∂ Φ Φ⎝ ⎠⎣ ⎦

0cosAB θ
 (S15) 

 
I ( )fΦThis quantity is then integrated numerically and Fourier transformed to get Σ and then 

divided by N  to get typ ( )I fΦ . Method B was used for the 418 nm ring and 793 nm array (Figs. 
2G – H). It should be emphasized that the choice of qmax for taking this data leads to an 
insensitivity to Fourier components of I(B) corresponding to h/2e period (i.e., the zeroes of 
Bessel function in Eq. S12); however by varying qmax  (and hence varying the location of the 
insensitive band) in other data runs we confirmed that there was no h/2e periodic component of 
I(B) above the noise floor.  

The data showing Ityp(B) for these samples (Figs. 2C – D) are the inverse Fourier 
transforms of typ ( )I fΦ  with the lowest Fourier components (corresponding to the smooth 
background visible in the raw data, e.g., in Fig. 1D) discarded. No high-frequency Fourier 
components were discarded. 
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Applying Methods A and B to a single data set typically results in values of 
1/ 22

h pe D
I  

which differ by ~ 4%. The effect of this uncertainty is discussed below in Section 2.3. 
 

2.2 Tests of the conversion between frequency shifts and persistent currents 
We tested the accuracy of Eqs. S12 – S15 in several ways. A direct comparison between 

Eq. S13 and a measurement of δν versus qmax at a single value of B is difficult to perform, due to 
the fact that the cantilever frequency depends on qmax even in the absence of a magnetic field 
(presumably because of the weak intrinsic nonlinearity of the cantilever’s mechanical 
properties). To remove this nonmagnetic background, we measured δν  as a function of qmax at 
two similar magnetic fields, as indicated in Figure S6A. After subtracting the two curves (shown 
separately in the inset of Fig. S6B) the remaining frequency shift is dominated by the component 
due to the persistent current. The result is shown in the main body of Fig. S6B, along with a fit to 
equation S12 (with p = 1) with reasonable parameters for the ring’s size and the amplitude of the 
h/e component of the current. 

Figs. S7-S8 show two other tests, in which the inferred current was observed to be 
unaffected over a wide range of cantilever amplitudes and for excitation of two different 
cantilever flexural modes. 

The quality of the fit in Fig. S6, along with the data in Figs. S7-S8, implies that our 
method of extracting the persistent current from the frequency shift is accurate and, furthermore, 
that the cantilever’s motion in the magnetic field does not produce any appreciable 
nonequilibrium effects. 
 

2.3 Uncertainty estimates 
Uncertainties in the measurements of 

1/ 22
h pe D

I  shown in Fig. 3 of the main paper arise 

from a number of sources which we list here. 
1) We estimate that our temperature measurements have an uncertainty of 7% (based on 

the manufacturer’s specifications and comparison with fixed points).  
2) The statistical error in our estimation of the background b(fΦ) ranges from 0.5 pA (for 

the 793 nm array) to 10 pA (for the 418 nm ring).  
3) Since the quantity 

1/ 22
h pe D

I  is itself a variance of a distribution that we are estimating 

from a finite data set, the uncertainty in our estimate will be given by the Standard Error of the 
Variance (SEV). The SEV is related to the number of independent realizations (in our case, this 
number is the ratio between the span of B over which the measurement is made and Bc). For our 
data the SEV  error in 

1/ 22
h pe D

I  ranges from 6% (for the 418 nm array) to 20% (for the 408 nm 

ring). 
 4) We estimate that the uncertainty introduced by the various approximations in Methods 

A and B is 4%.  
Each of these sources of uncertainty will result in errors with varying degrees of 

correlation between the individual data points in Fig. 3. For example the error due to the SEV 
should be constant for a given sample (cf. Fig. S18) and hence lead to an unknown (but constant) 
scaling of the data from each sample, while the error in b(fΦ) should be random for each 
measurement, leading to scatter in Fig. 3. The uncertainties in D quoted in Table 1 correspond to 
the statistical error in the fits of Fig. 3, and hence reflect the sources of error leading to scatter in 
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Fig. 3. Based on standard error propagation, we estimate that uncertainty in the overall scaling of 
the curves in Fig. 3 leads to an additional uncertainty ~ 6% in each value of D. 

 
3. Measurement diagnostics 

We performed a variety of diagnostic measurements to characterize the invasiveness of 
our cantilever-based detector. In particular we wanted to ensure that the measurement does not 
induce spurious non-equilibrium effects that may obscure or mimic the PC signal. The effects of 
cantilever oscillation amplitude and frequency are discussed in the Section 2.2; here we show the 
effects of readout laser power, magnetic field polarity, magnet persistent mode, and the presence 
of room-temperature electronics connected to the cryostat. 
 Fig. S9 shows the persistent current as a function of B for five different laser powers Pinc, 
where the laser is used for interferometric detection of the cantilever’s position. The signal is 
independent of laser power between Pinc = 0.8 nW and 80 nW and is only slightly affected at Pinc 
= 800 nW. The data in the main paper were taken with Pinc ~ 5 nW. In particular, the data in Fig. 
S9 indicates the absence of heating at the laser powers used in the experiment. 
 We measured the persistent current at both positive and negative magnetic fields and the 
results are plotted in Fig. S10, with the x-axis negated for the negative B trace. The signal is 
unaffected by the polarity of the field.  
 Lastly, we took data with the magnet in different operational modes: (1) the magnet 
persisted and the current in the magnet leads ramped down to zero, (2) the magnet persisted with 
current flowing in the magnet leads, and (3) the magnet not persisted. To minimize RF electronic 
noise in mode (1), all electronics were disconnected from the dewar (e.g., thermometry, heaters, 
liquid helium level meters, etc.) except the PZT drive which was fed through a room-temperature 
1.9 MHz coaxial low pass filter. The results plotted in Fig. S11 show no dependence of the 
persistent current signal on the operating mode of the magnet. 
 
4. Magnetic Field Sweeps 

As discussed in the main paper, measuring the persistent current over a range of B 
spanning many Bc allows us to determine the disorder averaged current 

1/ 22
h e D

I . Figures S12-

S17 show data from these large B sweeps for each of the samples measured. In each of these 
figures the quantity plotted is ( )I B′ , where 

 
0( )

2 sin
II B

A Bπ θ
Φ ∂′ =

∂
        (S16) 

 
which is derived from measurements of the cantilever frequency shift using Eq. S15. The choice 
of normalization in Eq. S16 means that the oscillations of ( )I B′  in Figs. S12 – S17 have the 
same amplitude as the oscillations in I(B). 

These large sweeps provide a direct measure of 
1/ 22

h e D
I  (the quantity relevant for making 

comparisons with theory), and result in the points marked by arrows in Fig. 3 of the main paper. 
For the remainder of the points in Fig. 3, we make use of the fact that I(B) is found empirically to 
depend upon T only via an overall scaling, as shown in Fig. S18.  To generate the points in Fig. 3 
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not marked by arrows, this scaling is applied to the value of 
1/ 22

h e D
I  determined from the large B 

sweeps. 
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5. Supplementary Figures 

 

 
 

Figure S1 SEM image of a 289 μm long wire similar to the one used for transport measurements. 
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Figure S2 Resistance versus magnetic field at 365 mK for the transport wire. The superconducting transition occurs 
over a range of magnetic field beginning at 52 mT. The magnetic field was swept in the direction of increasing field 
strength. 
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Figure S3 Superconducting critical field versus temperature for the transport wire. For the data shown, Hc(T) was 
taken to be the field at which the resistance was ten percent of the normal state value. The data are fit using Eq. S2 
with DHc and Tc as fitting parameters. Defining Hc(T) to occur at a different percentage of the normal state resistance 
value shifts the fitted Tc slightly but does not affect DHc. 
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Figure S4 Change in resistance versus magnetic field with fits to Eqs. S3 and S6 for three different temperatures. In 
order to achieve an adequate signal to noise ratio, the data were fit over ranges shown despite the conditions cited in 
the text for validity of Eq. S6.8 
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A 

 
Figure S5 Electron phase coherence length Lφ versus temperature. The dots represents values extracted from fits to 
the magnetoresistance of the 289 μm wire. The same data is plotted on a linear scale (A) and a log-log scale (B). The 
solid line is the fit to the functional form described in the text, and the dashed lines indicate the specific 
contributions to this fit from electron-electron scattering and electron-phonon scattering, as discussed in the text.  
  

5

4

3

2

1

0

L f (m
m

)

2 4 6 80

Temperature (K)

10 12

5
6

1

2

3

4
5
6

L f (m
m

)

B 

..

.
2 3 4 5 6 7 8 9

10
Temperature (K)

 13



10

8

6

4

2

0

Fr
eq

ue
nc

y 
S

hi
ft 

(m
H

z)

2.52.01.51.00.50.0
Flux amplitude through ring (f0)

100

50

0

2.52.01.51.00.5

2
1
0

-1
-2C

ur
re

nt
 (n

A
) 

7.17.06.96.86.7
 B (T)

 

A 

B 

Figure S6 (A) Detail of the persistent current versus magnetic field for the array of 308 nm rings. For the 
measurement shown, the cantilever was oriented with θ = 6°. The arrows indicate two field values at which 
measurements of the cantilever frequency shift were performed as a function of cantilever amplitude. (B) Difference 
in cantilever frequency shift for the two field values indicated in (A) versus cantilever amplitude of oscillation. The 
cantilever was driven in its second flexural mode, which had a frequency of 13718 Hz and a spring constant of 0.053 
N/m.  The cantilever had a length of 449 μm. The cantilever amplitude is plotted on the x-axis in terms of the 
amplitude of the flux modulation φac (in units of the flux quantum) through the ring produced by the cantilever 
motion. The solid curve is a fit using Eq. S12 (with p = 1) with I1 = 5.5 ± 0.2 nA and r = 265 ± 2 nm. The inset 
shows the frequency shift measured at the two points indicated in (A) and has the same units as the main plot in (B).
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Figure S7 Cantilever frequency shift versus magnetic field for five different cantilever oscillation amplitudes qmax 
(measured at the location of the rings). The lower panel shows the same data as the upper panel, but scaled so as to 
give  using Eq. S12 with p = 1. The traces collapse on top of each other, indicating that they are due to 
equilibrium persistent currents.  

max(qδν = 0)
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Figure S8 The derivative of the persistent current I´ (derived from Eqs. S15 and S16) versus magnetic field 
measured when oscillating the cantilever at 2.2 kHz (the cantilever’s first flexural resonance) and at 13.7 kHz (the 
cantilever’s second flexural resonance). The persistent current does not depend on the cantilever oscillation 
frequency; the slight difference in the two curves’ smooth backgrounds is presumably due to different mechanical 
resonances present in the sample holder at 2.2 and 13.7 kHz.  
 
 

 
Figure S9 The derivative of the persistent current I´ (derived from Eqs. S15 and S16) versus magnetic field for a 
series of laser powers incident on the cantilever. For the data shown in the main paper, 5 nW of laser power was 
used. 
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Figure S10 The derivative of the persistent current I´ (derived from Eqs. S15 and S16) versus magnetic field for 
both magnetic field polarities. The x-axis of the negative magnetic field trace is negated. 
 

 

 
 
Figure S11 The derivative of the persistent current I´ (derived from Eqs. S15 and S16) versus magnetic field under 
different modes of operation of the superconducting solenoid producing the magnetic field. The operational modes 
of the magnet are indicated in the figure. For the data shown as green dots, all electronics (except for the piezo 
drive) were disconnected from the cryostat. 
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Figure S12 The derivative of the persistent current I´ (derived from Eqs. S15 and S16) versus magnetic field for an 
array of 1680 rings with radius 308 nm at T = 365 mK. The full sweep is separated into three panels for clarity. The 
field is applied at 45° to the plane of the rings. 
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Figure S13 The derivative of the persistent current I´ (derived from Eqs. S15 and S16) versus magnetic field for a 
single ring of radius 418 nm at T = 365 mK. The field is applied at 45° to the plane of the ring. The full sweep is 
separated into two contiguous panels for clarity.
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Figure S14 The derivative of the persistent current I´ (derived from Eqs. S15 and S16) for an array of 990 rings with 
r = 418 nm at T = 365 mK. and θ = 45° to the plane of the rings.  
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Figure S15 The derivative of the persistent current I´ (derived from Eqs. S15 and S16) versus magnetic field for an 
array of 282 rings with radius 793 nm at T = 323 mK. The field is applied at 6° to the plane of the rings. 
 
 
 

 
 
Figure S16 The derivative of the persistent current I´ (derived from Eqs. S15 and S16)  versus magnetic field for an 
array of 990 rings with radius 418 nm at T = 323 mK. The field is applied at 6° to the plane of the ring. 
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Figure S17 The derivative of the persistent current I´  (derived from Eqs. S15 and S16)  versus magnetic field for an 
array of 1680 rings with radius 308 nm at T = 323 mK. The field is applied at 6° to the plane of the ring. 
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Figure S18 The derivative of the persistent current I´ (derived from Eqs. S15 and S16) versus magnetic field (upper 
plot) for the array of r = 308 nm rings measured with the field applied at 45° to the plane of the rings. The lower plot 
shows the Fourier transform of the same data. Traces are taken at different temperatures, as indicated in the figure 
legend. The amplitude of current oscillations decreases with increasing temperature, but the shape of the oscillations 
remains unchanged. 
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