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In this Letter we study a system consisting of two nearly degenerate mechanical modes that couple to a
single mode of an optical cavity. We show that this coupling leads to nearly complete (99.5%) hybridization
of the two mechanical modes into a bright mode that experiences strong optomechanical interactions and a
dark mode that experiences almost no optomechanical interactions. We use this hybridization to transfer
energy between the mechanical modes with 40% efficiency.
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Optomechanical systems, in which electromagnetic
resonators interact with mechanical resonators, offer a plat-
form for studying a wide range of nonlinear and quantum
effects. These systems have been studied in the context of
quantum-limited detection of forces and displacements, the
production of nonclassical states of light, synchronization
and chaotic dynamics, and tests of quantummechanics with
massive degrees of freedom [1].
Optomechanical systems are usually modeled as a single

optical mode that is parametrically coupled to a single
mechanical mode. This simple model accurately describes
many experiments; however, real devices invariably consist
of multiple optical and mechanical modes. The presence of
multiple modes can provide important capabilities, includ-
ing new types of optomechanical interactions, robust means
for detecting quantum effects, and the ability to transfer
quantum states between different systems [2–13].
One important class of multimode optomechanical sys-

tems consists of devices in which a single optical mode
couples to multiple mechanical modes. This situation arises
naturally when an optomechanical device with well-
separated optical resonances is driven by a single laser
beam. Within the usual weak-coupling description of opto-
mechanics, the undriven optical modes are irrelevant, and
only the driven mode needs to be considered [14–16].
Mechanical modes, on the other hand, cannot be ignored
just because they are not driven. This is because any optical
mode can be detuned (to some degree) by the displacement
of any of the devices’ mechanical modes. As a result, the
effective Hamiltonian for such a device will involve one
optical mode coupled to many mechanical modes.
In such a system, the motion of a given mechanical mode

will modulate the intracavity optical field, which will in
turn drive the other mechanical modes. This can be thought
of as an optically mediated coupling between the mechani-
cal modes. This intermode coupling can be neglected for
mechanical modes whose resonance frequencies are well
separated. However, mechanical resonators with some

degree of symmetry will have some nearly degenerate

modes, and for these modes this coupling can be important.
In this Letter we demonstrate that the optomechanical

coupling between one optical mode and two mechanical
modes causes the mechanical modes to nearly fully (99.5%)
hybridize into bright and dark states. We then transfer
classical mechanical energy between the mechanical modes
by modulating the hybridization in a classical analogy to
Rabi oscillations. The optomechanical hybridization of
mechanical modes has been seen previously in a photonic
double-nanobeam system [17], whispering gallery-mode
resonators [17,18], and nanobeams embedded in a micro-
wave cavity [19]. However, these experiments did not use
this hybridization to transfer energy. Two of these devices
would have a low transfer efficiency because of a relatively
low mechanical quality factor [17] or incomplete hybridiza-
tion [19]. We estimate that the device in Ref. [18] could
transfer energy with reasonable efficiency, but Ref. [18]
focused on using the optical force to regeneratively oscillate
and synchronize the two mechanical resonators.
The device described here operates in the classical

regime. However, in the quantum regime (that is, when
the mechanical modes are nearly in the ground state),
the fact that the intrinsic mechanical damping rate is small
and the intermode coupling is both conservative and strong
(in contrast to previous work [17,19,18]) means that it
would be well suited for realizing proposals for entangling
mechanical modes and creating nonclassical mechanical
states [4,5,8,10]. In addition, the long lifetime of the
mechanically dark state could be used to store quantum
information [17,20].
The device studied here is a “membrane-in-the-middle”

optomechanical system composed of a SiN membrane
placed in an optical fiber cavity [Fig. 1(a)] [21,22]. The
70 μm long Fabry-Perot cavity is formed between the
end faces of two 200 μm diameter single-mode optical
fibers. Each fiber face has a concavity with a 300 μm radius
of curvature and a dielectric coating that is highly reflective
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at wavelength λ ¼ 1550 nm. The resulting cavity has
a finesse ≲100 000 depending upon the position of
the membrane, corresponding to a cavity linewidth
κ=2π ≳ 20 MHz.
The SiN membrane is 250 μm square and 100 nm thick.

Because it is nearly square and under significant stress,
the resonance frequencies of its higher-order modes are
expected to be simply related to its fundamental resonance
frequency ωð1;1Þ=2π ¼ 1.7 MHz. Labeling each mode
by the number of antinodes along each axis (j, k), as
shown in Fig. 1, the resonance frequencies are
ωðj;kÞ ¼ ωð1;1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j2 þ k2
p

=
ffiffiffi

2
p

. We find that the measured
ωðj;kÞ follow this relationship to within 0.1% for j,
k < 6, implying that each mode with j ≠ k has a (nearly)
degenerate partner.
As described in Ref. [22], the membrane is positioned

so that the frequency of the optical cavity varies linearly
with the membrane position. The cavity is locked to the
laser at frequencies ≪ ωð1;1Þ so the membrane’s motion
is imprinted on the reflected laser field, which is measured
using a heterodyne technique. We measure the power spec-
tral density of the heterodyne signal near the membrane’s
resonance frequencies and fit these data to extract each
mechanical mode’s linewidth and resonance frequency.
Before concentrating on the cavity-induced coupling

between nearly degenerate mechanical modes, we charac-
terize the optomechanical shift in the resonance frequency
(“optical spring”) and linewidth (“optical damping”) of
the nondegenerate (3,3) mode. For this mode,
ωð3;3Þ=2π ¼ 5.092 MHz, and the quality factor Qð3;3Þ ¼
500 000. The effective mass is m ¼ ρV=4 ¼ 5.4 ng, which
is the same for all of the membrane’s modes.
The effects of the optomechanical coupling are revealed

by varying the detuning Δ between the laser and the cavity.
In Fig. 2 we plot the shift in the mechanical linewidth δγð3;3Þ
and the resonance frequency δωð3;3Þ as a function of Δ.
Since ωð3;3Þ ≈ 0.2κ (the unresolved-sideband regime),
δωð3;3Þ and δγð3;3Þ are largest when Δ ≈ −κ=3. We sepa-
rately measure the incident power Pin ¼ 3 μW and relative

input coupling κL ¼ 0.05κ and fit the data in Fig. 2 to
theoretical predictions [14,15] using the single-photon
optomechanical coupling gð3;3Þ and cavity linewidth κ as
fitting parameters. The result of this fit is shown in
Fig. 2 (green line) and gives κ=2π ¼ 21 MHz and
gð3;3Þ=2π ¼ 1050 Hz, in agreement with independent
measurements.
Now we focus on the effect of the optomechanical

coupling on the nearly degenerate (3, 5) and (5, 3) mechani-
cal modes. For these modes, ωð3;5Þ=2π ¼ 6.999 MHz,
ωð5;3Þ=2π ¼ 7.005 MHz, Qð3;5Þ ¼ 440 000, Qð5;3Þ ¼
220 000, gð3;5Þ=2π ¼ 700 Hz, and gð5;3Þ=2π ¼ 950 Hz. In
Figs. 3(a) and 3(c) we plot the measured power spectral
density of the heterodyne signal as a function of Δ (y axis)
and the measurement frequency (x axis) at two different
incident powers (Pin ¼ 3 μW and Pin ¼ 38 μW). The ther-
mal motion of each mode is clearly visible in these power
spectral densities.
In order to qualitatively understand the data in Figs. 3(a)

and 3(c) and make a comparison with theory, we consider a
system of N mechanical oscillators coupled to a single opti-
cal mode. This analysis is presented in the Supplemental
Material [23]. When N ¼ 2, as in our system, we can sim-
plify the more general theory using a description based on
bright and dark states.
Specifically, we start with two intrinsic mechanical

modes, each with displacement zn, single-photon optome-
chanical coupling gn, intrinsic complex resonance fre-
quency ξn ¼ ωn − iγn=2, and intrinsic mechanical
susceptibility χn½ω�−1 ¼ iξn − iω (where n ¼ 1, 2). We
then define a dark state displacement zd ¼ vz1 − uz2,
which is a linear combination of the original, intrinsic mode
displacements with weights u, v ¼ g1;2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g21 þ g22
p

. The
“dark” label is used because zd is not coupled to the cavity
(that is, the single-photon optomechanical coupling
gd ¼ 0).

FIG. 1 (color online). (a) Experimental setup with a SiN mem-
brane placed in a cavity formed between the mirrored ends of
two fibers. (b)–(d) Schematic representation of the mode shapes
of the three relevant membrane modes.

FIG. 2 (color online). Optomechanically induced shift in
mechanical linewidth (top) and frequency (bottom) of the (3,3)
membrane mode as a function of detuning with theoretical fit
(solid green line). These data are taken with an incident power
of 3 μW and a cavity linewidth of 21 MHz.
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On the other hand, the single-photon optomechanical
coupling of the bright mode, with modal displacement
zb ¼ uz1 þ vz2, is larger than that of the original modes
gb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g21 þ g22
p

. The new modes zb and zd have intrinsic
complex resonance frequencies ξb;d ¼ u2ξ1;2 þ v2ξ2;1 and
are generally not normal modes of the system; the effective
coupling between them is gbd ¼ uvðξ1 − ξ2Þ.
Using these expressions, the displacement spectra of zb

and zd in response to the thermal Langevin forces ηb and
ηd are

ðχ−1b ½ω� þ iΣbb½ω�Þzb½ω� ¼ −igbdzd½ω� þ ffiffiffiffiffi

γb
p

ηb½ω�; (1)

χ−1d ½ω�zd½ω� ¼ −igbdzb½ω� þ ffiffiffiffiffi

γd
p

ηd½ω�: (2)

The only term in these expressions that depends on the
optical drive is the “self-energy” Σbb½ω�, which determines
the optical spring δωb ¼ ReðΣbb½ωb�Þ and damping
δγb ¼ −2 ImðΣbb½ωb�Þ of the bright mode.
We use this model to fit the data in Fig. 3(a,c) and plot

the resulting theoretical curves in Figs. 3(b) and 3(d) (see
Supplemental Material for a direct comparison of theory
and data [23]). The system parameters κ, Δ, and Pin are
determined from simultaneous measurements of the (3,3)
mode (as in Fig. 2). We then use a least-squared fit to
the data in Figs. 3(a) and 3(c) to determine the remaining
parameters: g1;2, ω1;2, and γ1;2 [where the subscripts 1 and 2
now label the modes (3,5) and (5,3)].
This model also provides a qualitative interpretation of

the data. In order to significantly hybridize the intrinsic
modes into bright and dark modes, the optical spring
δωb needs to be large enough that jωb þ δωb − ωdj ≫
jgbdj or, in this case, −δωb=2π ≫ 1 kHz. At low Pin
[Figs. 3(a) and 3(b)] or at high Pin and large detunings [near

the bottom of Figs. 3(c) and 3(d)], the optical spring is
relatively small and this condition is not satisfied. The
intrinsic modes do not significantly hybridize and instead
independently exhibit essentially the same behavior as
shown in Fig. 2 for the nondegenerate (3, 3) mode.
On the other hand, in Figs. 3(c) and 3(d) at detunings

Δ≳ −1.5κ the optical spring is large enough that the intrin-
sic modes begin to hybridize into bright and dark modes.
When the detuning Δ≳ −0.75κ, the lower-frequency state
is almost entirely bright and exhibits large optical spring
and optical damping, while the higher frequency state is
almost entirely dark (based on the fit parameters from
Fig. 3 the hybridization is 99.5%). In this regime the cou-
pling gbd leads to only two noticeable effects. First, it
makes the effective dark mode linewidth larger than the
intrinsic linewidth of γd=2π ¼ 20 Hz. Second, it allows
the dark mode to be visible in the reflected light spectrum;
otherwise this mode would be completely uncoupled from
the cavity field.
The high mechanical quality factors and purely optome-

chanical coupling of the membrane modes make it possible
to observe this hybridization in the time domain. As shown
in Fig. 4, modulating the optical drive results in the transfer
of mechanical energy between the two intrinsic mechani-
cal modes.
This measurement starts by using a piezo actuator

to drive either the (3,5) or (5,3) mechanical mode and lock-
ing the cavity to a weak laser beam with detuning
Δweak ¼ −0.7κ for Figs. 4(a)–4(c) and Δweak ¼ −0.4κ for
Figs. 4(d)–4(f). For this measurement, the cavity linewidth
κ=2π ¼ 40 MHz. The weak laser beam is primarily used to
measure the mechanical displacement, though its dynami-
cal backaction does increase the mechanical linewidths by a
factor of ∼2. The piezo drive is turned off and a strong laser
beam at detuning Δweak þ κ=8 and power Pin is turned on

FIG. 3 (color online). Power spectral density (arbitrary units) of the heterodyne signal (a), (c) and theoretical fits (b), (d) as a function
of measurement frequency (horizontal axis) and detuning between the incident laser and the cavity resonance (vertical axis). The data are
presented for two incident laser powers: 3 μW for (a), (b) and 38 μW for (c), (d). A direct comparison of the theory and the data is shown
in the Supplemental Material [23].
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for a time τ. This pulse hybridizes the mechanical modes.
After this pulse, the weak laser beam is used to determine
the energy in each of the intrinsic mechanical modes. This
measurement is facilitated by the separation in time scales
between the 10 ms lifetimes of the intrinsic mechanical
modes, the 100 μs period of the hybridization oscillations,
the 140 ns period of mechanical oscillations, and the 10 ns
lifetime of the optical cavity.
In Fig. 4 we plot the ratio of the final energy in

each intrinsic mechanical mode after the pulse to the total
initial energy as a function of τ and at different Pin. In
Figs. 4(a)–4(c) the system is initialized by driving the
(5,3) mode, while in Figs. 4(d)–4(f) it is initialized by
driving the (3,5) mode. The theory curves in Fig. 4 are
derived from the solution to a set of differential equations
describing the motion z1 and z2 of two linearly coupled
harmonic oscillators. The coupling and oscillator para-
meters are taken from the self-energy matrix Σ½ω� (see
Supplemental Material [23]) and depend on the strength
and detuning of the “strong” laser pulse.
In Fig. 4, some of the parameters for the theory curves

are chosen manually to match the data. The values of g1;2,
ω1;2, and γ1;2 are determined by fitting data similar to
Fig. 3. The cavity linewidth κ is measured independently.
A single value of Δweak is chosen to fit the data in the three
upper plots. Pin is chosen to fit the data in Fig. 4(a), and
then increased by a factor of 2 in Fig. 4(b), and another
factor of 2 in Fig. 4(c), in accordance with the experimental
procedure. The same approach was used to choose different
values ofΔweak and Pin for the lower three plots. Finally, we
apply a scaling factor of 1.3 to the initial energy in the

driven mode to correct for the nonlinearity of the detector.
This manual choice of five parameters completely deter-
mines the theory curves in Fig. 4.
The pulse power used in Fig. 4 is sufficient to hybridize

the system, resulting in Rabi-like oscillations between the
intrinsic (3,5) and (5,3) eigenmodes. We can gain a more
qualitative understanding of the data in Fig. 4 by consid-
ering the hybridization of the original modes into bright
and dark modes. The oscillation frequency increases with
Pin since the frequency splitting between the dark and
bright modes is increased. The oscillations are suppressed
on a time scale given by the optomechanically dominated
damping rate of the bright mode, which also increases with
increasing Pin. After the bright mode decays, the ratio of
the energy in the two modes is constant and given by
the fractional contribution of each intrinsic mode to the
dark mode. The total energy continues to decrease as the
dark mode decays.
By optimizing the pulse power and length, we are able to

transfer energy between the two intrinsic modes with an
efficiency of 40% [e.g., see Figs. 4(b) and 4(c)]. This trans-
fer efficiency is limited by the optomechanical damping
of the bright mode δγb. Since δγb is comparable to the
coupling rate between the mechanical modes, significant
energy is lost to the optical field during the energy transfer.
The transfer efficiency can be increased by increasing the
ratio of the optical spring to the optical damping δωb=δγb
by, for example, operating in either the resolved κ ≪ ωm or
unresolved κ ≫ ωm sideband limit [10].
The main barrier between the present setup and operation

in the quantum regime is the 300 K temperature of the

FIG. 4 (color online). The energy in each mechanical mode immediately after a hybridization pulse, plotted as a function of the pulse
duration. The energy is normalized to the energy in the driven mode just before the hybridization pulse. In panels (a)–(c) the system is
initialized by driving the (3,5) mode and shows the transfer of energy to the (5,3) mode. Panels (d)–(f) show the transfer of energy in the
opposite direction. Solid lines are the fits described in the text, and the error bars indicate statistical uncertainties.
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environment. To consider the performance of this system in
a cryogenic environment, we note that if it was cooled to
100 mK, it would be possible to laser cool both of the
membrane modes to a mean energy of less than one phonon
[14,15]. Assuming thatQð3;5Þ andQð5;3Þ increase to 5 × 106

at cryogenic temperatures [24,25], the thermal and optome-
chanically induced decoherence rates become comparable
to the coupling strength between the two mechanical
modes. With these assumptions, we estimate the quantum
state transfer fidelity to be 10% (see Supplemental Material
[23]). We note that the device described here is well suited
to cryogenic operation. For example, SiN membranes have
been used in a number of cryogenic optomechanical experi-
ments [24,25] and we have shown that fiber cavities can
operate at 4 K (see Supplemental Material [23]).

We thank H. Seok and P. Meystre for helpful discussions
related to quantum state transfer. This work has been sup-
ported by the DARPA/MTO ORCHID program through a
grant from AFOSR.
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1. Theoretical derivation and fits
to data

We consider a system with several mechanical modes, all
of which couple to a single optical mode. The optical
mode’s linewidth is κ = κL + κM, where κL is the cavity
loss rate due to coupling through the input mirror and κM

includes all other losses. The cavity is driven by a laser
with amplitude ain which is detuned by ∆ from the cavity
resonant frequency ωc. There are N mechanical oscillators
coupled to the cavity mode and the nth mechanical
oscillator has a single-photon optomechanical coupling gn,
intrinsic linewidth γn, and resonant frequency ωn. Since
our room-temperature experiment is firmly in the classical
regime ~ωn � kBT , we use a classical analysis. We also
disregard all noise on the optical drive. Under these
assumptions, the system’s linearized equations of motion
are

ḋ = −(
κ

2
− i∆)d− i

∑
n

αnzn (1)

ċn = −(
γn

2
+ iωn)cn − i(α∗nd+ αnd

∗) +
√
γnηn, (2)

where d = a − ā are the small fluctuations of the optical

mode’s amplitude around its mean value ā =
√
κLain

κ/2−i∆ , zn =

c∗n +cn is the position of the nth mechanical oscillator, cn is
the quadrature amplitude of the mode’s displacement, and
αn = āgn. Each mode’s thermal fluctuations are generated
by a thermal Langevin force ηn(t) where 〈η∗n(t)ηm(t′)〉 =
δnmδ(t− t′)kBT/~ωn.

From this model, we can recover the standard dynamical
backaction for a single mechanical mode coupled to a cavity
[12,13] by taking N = 1. To do this, we find the Fourier
transform of the displacement z1[ω] arising from the ther-
mal Langevin force by inserting the expression for d from
(1) into (2) and taking the limit ω1 � γ1:

(χ−1
1 [ω] + iΣ11[ω])z[ω] =

√
γ1η1[ω] (3)

where the intrinsic mechanical susceptibility χ1[ω]−1 =
γ1/2− i(ω − ω1) is modified by an optically-induced “self-
energy” term Σ11[ω] = −i|α1|2(χc[ω] − χ∗c [−ω]) which is
a function of the cavity susceptibility χc[ω] = (κ/2 −
i(ω + ∆))−1. This self-energy represents the optomechan-
ical contribution to the mechanical resonance frequency
δω1 = Re(Σ11[ω1]) and damping δγ1 = −2Im(Σ11[ω1]).
The (3, 3) mode data in Fig. 2 of the main article is fit
to these expressions for δω1 and δγ1, which are consistent

with more complete derivations of single-mode dynamical
backaction [12,13].

Extending this approach to the full system with N oscil-
lators coupled to a single cavity, the analog of (3) is

(χ−1
n [ω] + iΣnn[ω])zn[ω] = −i

∑
m 6=n

Σnm[ω]zm[ω] +
√
γnηn[ω]

(4)
where Σ[ω] is now a matrix with elements Σnm[ω] =
−i|αnαm|(χc[ω]−χ∗c [−ω]). In solving for Σ[ω] we continue
to assume that ωn � γn and that gn is a real positive num-
ber for all n so that αnα

∗
m = |αnαm| = α∗nαm. This set

of equations describes a system of coupled harmonic oscil-
lators where all of the oscillator parameters and coupling
rates depend on the intra-cavity field.

Equation (4) describes the behavior of the N mechanical
oscillator system, but we can better understand the behav-
ior of our system (in which N = 2) by using a bright and
dark state description. Specifically, we define a dark state
displacement

zd = vz1 − uz2 (5)

which is a linear combination of the original, intrinsic mode
displacements z1 and z2 with weights u = g1/

√
g2

1 + g2
2

and v = g2/
√
g2

1 + g2
2 . The “dark” label is used because

zd is not coupled to the cavity (that is, the single-photon
optomechanical coupling gd = 0). On the other hand, the
single-photon optomechanical coupling of the bright mode,
with modal displacement

zb = uz1 + vz2, (6)

is larger than that of the original modes gb =
√
g2

1 + g2
2 .

The new modes zb and zd are generally not normal modes
of the system, so the final ingredient in the bright/dark
state description is the effective coupling between the
modes gbd = uv(ξ1−ξ2) where ξn = ωn− iγn/2 is the com-
plex resonance frequency of the nth mode (where n = 1, 2).
The bright and dark states have ξb = u2ξ1 + v2ξ2 and
ξd = u2ξ2 + v2ξ1. Using these expressions, the displace-
ment spectra zb[ω] and zd[ω] are

(χ−1
b [ω] + iΣbb[ω])zb[ω] = −igbdzd[ω] +

√
γbηb[ω] (7)

χ−1
d [ω]zd[ω] = −igbdzb[ω] +

√
γdηd[ω]. (8)

Note that the only term in these expressions that depends
on the optical drive is

Σbb[ω] = −i|ā|2g2
b (χc[ω]− χ∗c [−ω]), (9)
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FIG. 1. Power spectral densities of reflected light showing the thermal motion of two mechanical modes. Each data set is taken at
a different detuning of the incident laser beam from the cavity resonance with either 3 μW incident power (top) or 38 μW incident
power (bottom). For clarity, the experimental data (color lines) and fit to theory (black lines) at each detuning are offset along the
y-axis by 1 decade per MHz of detuning (that is, 1 decade per 0.05κ of detuning). The same experimental data and fits are presented
as density plots in Fig. 3 of the main article; these supplemental plots are intended to facilitate a more detailed comparison of the
measured power-spectral density and theoretical fits. The theory and fitting procedure are discussed in the main article.

which determines the optical spring and damping of the
bright mode. We use this model to fit the data in Fig.
3(a,c) of the main article and plot the resulting theoretical
predictions in Fig. 3(b,d) of the main article. The same
data and theory is plotted in a different format in Fig. 1

of the supplemental material.
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2. Transfer efficiency and moving
towards the quantum regime

In this experiment, the efficiency of energy transfer
between the two intrinsic mechanical modes is predom-
inately limited by the optomechanical damping of the
bright mode δγb. This damping rate is comparable to the
coupling rate between the mechanical modes (the real part
of the off-diagonal self-energy matrix element Re(Σ12), see
(4)). Since the coupling rate is also approximately equal
to the rate at which mechanical energy oscillates between
the two intrinsic modes, the bright mode loses significant
energy to the environment during the energy transfer.

This problem can be alleviated by reducing the mag-
nitude of the optical damping δγb relative to the optical
spring δωb. This occurs naturally when operating deep in
either the resolved κ� ωm or unresolved κ� ωm sideband
limit and appropriately choosing the detuning and power
of the coupling beam, as described in [10].

A more fundamental restriction on the energy trans-
fer efficiency is the intrinsic mechanical damping. Even
when the optical damping is small, the transfer efficiency
will be < 10% if the sum of the two intrinsic mechani-
cal linewidths is comparable to the mechanical coupling
strength. Another requirement for complete energy trans-
fer is that the two optically-shifted mechanical modes must
have the same frequency and damping (ω1 +δω1 = ω2 +δω2

and γ1 + δγ1 = γ2 + δγ2). If this condition is not approx-
imately satisfied, then the energy transfer will not be effi-
cient even in the absence of any dissipation in the system;
this is similar to Rabi-flopping with an off-resonant drive.

When quantum state transfer is considered, the sys-
tem requirements become much stricter. Our room-
temperature system is unable to access the quantum
regime, but if the system were cooled to < 100 mK then
we estimate that the transfer fidelity for a quantum state
would be >∼ 10%. Here we first describe a possible quan-
tum state transfer protocol and then estimate the effect of
the two dominant mechanisms for decoherence in the sys-
tem: the thermal Langevin force and the optical force from
radiation-pressure shot noise.

One possible quantum state transfer protocol is very sim-
ilar to the energy transfer experiment described in the main
text. First, the two mechanical modes are optomechani-
cally cooled using a 10-20 μW “cooling” laser to close to
the ground state, that is, with an average energy that is
less than one phonon (see Fig. 2). This optical power
should be compatible with operation in a dilution refrig-
erator. Simultaneously, one of the modes is driven to a
low-energy coherent state by, for example, modulating the
incident laser power at that mode’s mechanical resonance
frequency or using a piezo drive. After the system reaches
a steady state, the cooling laser and mechanical drive are
turned off and a stronger “coupling” laser pulse is applied
for a short amount of time. Transferring the coherent me-
chanical state between the modes would typically require a
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FIG. 2. Theoretical calculation of the average energy of a me-
chanical mode (in units of phonons) as a function of the detuning
∆ of the laser from the cavity resonance frequency (in units of
the cavity linewidth κ) for three different incident laser powers:
1.2 μW in red, 10 μW in green, and in the limit of infinite laser
power in blue.[14, 15] We assume a 21 MHz linewidth optical
cavity, as in the main paper, and calculate the average phonon
occupation of a single 7 MHz mechanical mode in a 100 mK
thermal environment with a Q of 5 × 106 and a single-photon
optomechanical coupling g/2π = 850 Hz.

30 μsec pulse with 200 μW of power, which should be com-
patible with operation at 100 mK. This general approach
could also be used to entangle the two mechanical modes
by only half-completing the transfer. Note that, unlike the
dissipation-induced steady state entanglement discussed in
[5], this entanglement relies on the dispersive coupling be-
tween the two modes, the scheme is pulse-based, and the
state is transient.

It has been pointed out before [5] that the presence of two
nearly degenerate mechanical modes can significantly hin-
der optomechanical cooling if the frequency difference be-
tween the two modes is smaller than the optomechanically-
damped linewidths δγ1,2. One way to think about this ef-
fect is that the mechanical modes hybridize into the bright
and dark mode basis as the laser power and optomechan-
ical cooling/damping is increased. Since the dark mode is
almost completely decoupled from the cavity field, the cool-
ing and damping of the dark mode is significantly reduced
compared to the expectations from single-mode optome-
chanics.

If we take the 7 MHz modes described in this paper and
assume a 100 mK environment and quality factors of 5 mil-
lion (consistent with the quality factor of other silicon ni-
tride membranes at cryogenic temperatures [23, 24]), then
the cooling-induced decoupling, that is, hybridization, is
relatively small. The optomechanical damping required to
cool these modes below the single phonon level is ∼2 kHz
(close to the thermal decoherence rate discussed below),
while the two mechanical modes are spaced by ∼5 kHz.
However, reductions in the quality factor of either mode or
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in the frequency difference between the modes could keep
the “darker” mode from cooling to the single phonon level.

Now we consider the two main sources of decoherence
which will limit the quantum transfer efficiency. The ther-
mal Langevin force results in a decoherence rate for a coher-
ent state that is approximately SthFF = γm(2nth+1), where
γm is the intrinsic mechanical linewidth, nth ≈ kBT/(~ωm)
is the thermal phonon occupation, T is the temperature of
the environment, and ωm is the intrinsic mechanical reso-
nance frequency. Using the parameters from the previous
paragraph, the resulting thermal decoherence rate is ap-
proximately 1 kHz which is smaller than our current 30 kHz
coupling rate.

The other decoherence channel is due to optical vacuum
fluctuations, that is, radiation pressure shot noise (RPSN).
The magnitude of the decoherence rate is approximately
SRPSNFF = δγ(2nopt + 1). Here δγ = −2Im(Σ[ωm]) is the
optical damping and nopt is the effective phonon occupa-
tion due to the non-zero effective temperature of the opti-
cal mode bath. In the resolved-sideband limit (ωm � κ)
whenever the detuning ∆ ≈ −ωm then nopt � 1. In this
regime the effective temperature of the optical bath has
negligible effect on the decoherence rate (and the optical
damping can cool the mechanical mode to much less than
one phonon). However, in the Doppler regime ωm <∼ κ the
effective temperature nopt can become more than one which
significantly increases the decoherence rate. Expressing the
optomechanical decoherence rate in terms of previously de-
rived system parameters (see the first section of the sup-
plemental material), we find

SRPSNFF = |α|2κ(|χc[ωm]|2 + |χc[−ωm]|2). (10)

Based on these decoherence rates, we can roughly es-
timate the transfer fidelity of a quantum state. The op-
tomechanical coupling Re(Σ12) between the two mechanical
modes sets the approximate transfer time π/Re(Σ12). The
transfer fidelity is approximately equal to the decoherence
during this time

exp

[
− π

Re(Σ12)
(SthFF + SRPSNFF )

]
. (11)

Since both the decoherence rate SRPSNFF and the coupling
Re(Σ12) depend on the laser detuning ∆, we maximize this
ratio for our system (assuming a thermal decoherence rate
of ∼1 kHz as given above and 200 μW incident laser power)
and estimate a quantum state transfer efficiency of ∼ 10%.

This brief discussion of transfer efficiency also serves to
highlight the differences between this experiment and pre-
vious optomechanical experiments with coupled mechanical
oscillators. The two membrane modes explored in this ex-
periment have nearly identical frequencies (5 kHz splitting)
and large quality factors Q > 100, 000 with linewidths of
15 Hz and 30 Hz. The frequency difference and linewidths
are negligible compared to the maximal coupling rate of
about 30 kHz, so the main limitation on transfer efficiency
was the optical damping and this limitation can be reduced
in the future.

For comparison, earlier experiments have demonstrated
larger absolute coupling rates: 300 kHz in [18], about 0.5-
1 MHz in [17], and about 1.5 MHz in [19]. However, the
450 kHz frequency splitting between intrinsic modes in [18]
was larger than the coupling rate, thus the intrinsic modes
were not fully hybridized which, among other things, re-
sults in a poor transfer efficiency. The systems in [17] can
be fully hybridized; however the intrinsic damping rates
are comparable to the coupling rates which fundamentally
limits the energy transfer efficiency.

The system in [19] has a coupling that is much larger than
the mechanical frequency splitting of 60 kHz and intrin-
sic mechanical linewidths of about 20 kHz, thus we would
expect efficient transfer of classical energy. However, we
estimate that this linewidth is too large for efficient quan-
tum state transfer. This experiment also concentrated on a
very different regime, in which the optical force was used to
drive self-sustained mechanical oscillations and synchronize
the two mechanical oscillators.
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3. Cryogenic operation of a fiber-
cavity

To date, fiber-cavities have been operated at room-
temperature. However, a fiber-cavity is a natural way to in-
tegrate an optical cavity into a dilution refrigerator. This is
because it is intrinsically fiber-coupled, which greatly sim-
plifies the task of getting light into and out of the cryostat.
It is also a compact device which easily fits on the cold-
plate of a typical refrigerator. Here we describe the first
demonstration of a fiber-cavity (without a membrane) over
the temperature range 300 K to 4 K.

This device (Fig. 3) is formed by inserting mirror-coated
fibers into each side of a single glass ferrule. The ferrule
aligns the two mirrored fiber-ends along most directions.
After rotating each fiber to optimize finesse, one fiber is
glued to the glass ferrule and the other is glued to a metal
plate which is actuated by a piezo to change the cavity
length.

We characterize the performance of the fiber-cavity by
measuring the cavity reflection as a function of temperature
and piezo voltage at two different wavelengths (1550nm
in Fig. 4(a), 1310nm in Fig. 4(b)). The mirror-coating
is designed to be highly reflective at 1550nm (finesse of
30,000 at room temperature) but is only weakly reflective
at 1310nm (R ≈ 10%). As expected, we observe that the
cavity length and the piezo travel range are temperature
dependent. However, the cavity finesse (Fig. 4(c)) and cou-
pling are approximately independent of temperature.

In summary, the cavity is cryogenically compatible be-
cause the change in cavity length is small (less than 10 μm),
the piezo travel at 4 K is still greater than the laser wave-
length, and the cavity finesse and coupling do not change
appreciably with temperature.

FIG. 3. Device for cryogenic testing. The cavity is formed inside
of a single glass ferrule and the cavity length is tuned using a
pair of piezo elements driven in parallel. At room temperature
the cavity length is 50 microns.

FIG. 4. (a,b) The reflection from the cavity is plotted as a func-
tion of voltage applied to the cavity-length piezo (x-axis, larger
voltages correspond to a longer cavity) and cavity temperature
(y-axis) for two different laser wavelengths: (a) 1550nm, where
the cavity mirrors are highly reflective with finesse of 30,000
(technical difficulties resulted in no data between 80 K and 4 K);
and (b) 1310nm, where the cavity mirrors have a small reflec-
tivity R ≈ 10%. As the temperature decreases, we observe that
the cavity length decreases (by about 6 μm) and the piezo range
also decreases (to about 2 μm). (c) We also observe that finesse
of the cavity at 1550nm is approximately independent of tem-
perature.
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