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Multimode optomechanical dynamics in a cavity
with avoided crossings
D. Lee1, M. Underwood1, D. Mason1, A.B. Shkarin1, S.W. Hoch1 & J.G.E Harris1,2

Cavity optomechanics offers powerful methods for controlling optical fields and mechanical

motion. A number of proposals have predicted that this control can be extended considerably

in devices where multiple cavity modes couple to each other via the motion of a single

mechanical oscillator. Here we study the dynamic properties of such a multimode opto-

mechanical device, in which the coupling between cavity modes results from mechanically

induced avoided crossings in the cavity’s spectrum. Near the avoided crossings we find that

the optical spring shows distinct features that arise from the interaction between cavity

modes. Precisely at an avoided crossing, we show that the particular form of the optical

spring provides a classical analogue of a quantum non-demolition measurement of the

intracavity photon number. The mechanical oscillator’s Brownian motion, an important source

of noise in these measurements, is minimized by operating the device at cryogenic

temperature (500 mK).

DOI: 10.1038/ncomms7232

1 Department of Physics, Yale University, New Haven, Connecticut 06511, USA. 2 Department of Applied Physics, Yale University, New Haven, Connecticut
06511, USA. Correspondence and requests for materials should be addressed to J.G.E.H. (email: jack.harris@yale.edu).

NATURE COMMUNICATIONS | 6:6232 | DOI: 10.1038/ncomms7232 | www.nature.com/naturecommunications 1

& 2015 Macmillan Publishers Limited. All rights reserved.

mailto:jack.harris@yale.edu
http://www.nature.com/naturecommunications


O
ptomechanical systems are typically modelled as a single
cavity mode whose eigenfrequency depends linearly on
the displacement of a mechanical oscillator1. This ‘single-

mode’ model of optomechanics gives an accurate description of
devices in which there is a clear separation of frequencies (for
example, between the mechanical frequency and the cavity mode
spacings), and when only a single cavity mode is strongly driven2.
Single-mode optomechanical devices have been used to realize a
number of goals in recent years, including demonstrations of
quantum effects associated with Gaussian states of the cavity field
and/or the mechanical oscillator3–14.

For some optomechanical devices the single-mode description
breaks down and more complex behaviour can occur. In
particular, devices in which multiple cavity modes couple to
each other via the oscillator’s motion are predicted to offer novel
means for controlling and measuring both the mechanical motion
and electromagnetic fields15–23. Such a mechanical coupling
between the cavity modes can be produced by applying strong
coherent drives to the modes (in which case adiabatic elimination
of the mechanical degree of freedom results in an effective
coupling between the drives’ sidebands)22,23. This approach can
be realized in a very wide range of optomechanical systems, since
most cavities possess several modes that can be driven strongly,
and whose eigenfrequencies depend upon the oscillator’s
displacement. Recent experiments have used this approach24,25

(or a related approach that combines strong drives with a
piezoelectric material26) to transfer modulation sidebands
between different wavelengths, including from microwave to
near-infrared.

A different method for mechanically coupling cavity modes
(and one which does not require multiple strong drives) is to
employ devices in which the cavity’s eigenmodes (rather than
eigenfrequencies) depend strongly upon the oscillator’s displace-
ment. This situation occurs when the oscillator’s displacement
causes crossings in the cavity’s spectrum: these crossings are
typically avoided (owing to broken symmetries within the
device)27–29, and in the vicinity of each avoided crossing the
cavity’s eigenbasis depends strongly upon the oscillator’s
displacement29,30. Theoretical studies of the resulting coupling
show that it can offer improved performance over single-mode
devices, for example, in producing squeezed states of the
mechanical oscillator and optical field19–21. Perhaps more
importantly, the multimode coupling associated with avoided
crossings offers capabilities that are fundamentally distinct from
those of single-mode devices, with applications in macroscopic
matter-wave interferometry18 and measuring the phonon
statistics of a driven mechanical oscillator15,16.

Avoided crossings are not a generic feature in optomechanical
systems, but have been demonstrated in devices based on the
membrane-in-the-middle design27,29,31,32, ultracold atoms33 and
whispering gallery mode resonators34,35. To date, measurements
of these systems have mostly focused on static spectroscopy
of the cavity modes (that is, to determine the parameters of the
avoided crossings)27–29,31–35. However the utility of the avoided
crossings arises from their dynamical effects, which have received
much more limited experimental study33–35.

Here we address three outstanding issues related to multimode
optomechanical devices based on cavities with avoided crossings.
First, we describe thorough measurements of the optomechanical
dynamics in the vicinity of the avoided crossings. Far from the
crossings, we find a behaviour that is dominated by the
conventional dynamical back action1 of the laser driving the
cavity; in contrast, near the crossings the behaviour is dominated
by the elastic energy stored by the intracavity light. Second, we
exploit the elasticity of the intracavity light at the crossings to
demonstrate a classical analogue of a quantum non-demolition

measurement of the cavity’s photon number. Third, the device is
operated at temperature T¼ 500 mK, which minimizes the
impact of thermomechanical noise, and should aid in future
work directed at observing quantum effects in multimode
optomechanical systems. These results complement the
earlier studies of classical multimode dynamics in different
systems, for example, in purely mechanical devices36,37, purely
electromagnetic devices38 and devices in which multiple
mechanical modes couple via a single electromagnetic mode39–41.

Results
Experimental setup. The experimental setup is shown in Fig. 1a. It
consists of a Si3N4 membrane (1 mm� 1 mm� 50 nm) placed
inside a Fabry–Perot optical cavity and cooled by a 3He cryostat to
T¼ 500 mK. The cavity finesse F¼ 4,000 (linewidth k/2p¼
1 MHz), and the membrane’s fundamental mode resonates at
om/2p¼ 354.6 kHz with a quality factor Q¼ 100,000. Laser light
with wavelength l¼ 1,064 nm enters the cryostat via an optical
fibre. This light is coupled from the fibre to the cavity via cryogenic
free-space optics that are aligned in situ using piezoelectric motors.
Similar motors are used to adjust the membrane’s position, tip and
tilt within the cavity. An additional piezoelectric element allows for
fine displacement of the membrane along the cavity axis and for
excitation of the membrane’s vibrational modes.

Two lasers are used to address two cavity modes that are
separated by 8.13 GHz (roughly twice the free spectral range). The
first laser is the ‘probe’ beam; it is locked to the cavity and detects
the membrane’s motion via a heterodyne scheme. The second
laser is the ‘control’ beam, and is locked to the probe beam with a
controllable frequency offset. This control beam produces the
multimode optomechanical interactions that are the main focus
of this paper. Additional information about the setup is provided
in Supplementary Fig. 1 and the Supplementary Methods.

Static spectroscopy. Figure 1b and c show the cavity reflection
spectra measured separately by the probe beam (upper plots) and
the control beam (lower plots). In each case the reflection was
recorded as a function of laser detuning and the membrane’s static
displacement zdis. The brightest curve corresponds to the TEM00

mode (‘singlet’), while the slightly dimmer curves correspond to
the TEM{20,11,02} (‘triplet’) modes. The triplet modes are nearly
degenerate, but can be resolved in the closer view shown in Fig. 1c.

The longitudinal order of the singlet mode differs by one from
that of the triplet modes; as a result their resonance frequencies
ocav undergo roughly opposite detuning as a function of zdis

(ref. 28), and so appear to cross each other near zdis¼ 0 nm and
zdis¼ � 160 nm. A closer view of the apparent crossing near
zdis¼ 0 nm shows that two of the triplet modes avoid the singlet
mode (Fig. 1d)29. The optomechanical dynamics that occur near
these avoided crossings is the main focus of this paper.

Because the probe and control beams address modes with
slightly different wavelength, the avoided crossings for the two
beams occur at different values of zdis. This makes it possible to
position the membrane so that the probe beam addresses a mode
that is not a part of an avoided crossing (and so simply provides
an efficient readout of the membrane’s oscillatory motion zosc(t))
while the control beam addresses modes that undergo an avoided
crossing (thereby producing multimode optomechanical cou-
pling). Such a position is indicated in Fig. 1c as a dashed yellow
line, which we define as zdis¼ 0 nm.

Optomechanical dynamics near the avoided crossings. To
demonstrate the impact of the avoided crossings on the mem-
brane’s motion, we first position the membrane at zdis¼ 0 nm
where the detuning of the modes addressed by the control beam is
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Figure 1 | System overview and cavity reflection spectroscopy. (a) Schematics of the cryogenic ‘membrane-in-the-middle’ setup. Two separate lasers

(‘probe’ and ‘control’) address a Fabry–Perot cavity containing a Si3N4 membrane at TB500 mK. Two modulators (AOM and EOM) in the probe beam path

allow for Pound–Drever–Hall locking to the cavity and heterodyne detection of the membrane’s motion. (b) Cavity reflectivity, plotted as a function of the

membrane’s static displacement zdis and laser detuning D. The upper and lower plots are measured by the probe and the control lasers, respectively. The

cavity’s TEM00 singlet mode and the TEM{20,11,02} triplet modes are visible. (c) A closer view of the dashed area in b showing avoided crossings between

the singlet and triplet modes. The crossings in the modes addressed by the probe beam occur roughly 10 nm away from the crossings in the modes

addressed by the control beam. At zdis¼0 nm (dashed yellow line), the probe beam can be used to detect membrane motion while the control beam

addresses the avoided crossings. (d) Zoom-in of the avoided crossings measured with the control beam. (e) The calculated cavity spectrum corresponding

to the same parameters as in d. (f) Measured power spectral density of the membrane’s Brownian motion as a function of control laser detuning D (the

range of D is given by the dashed green line in d). For this measurement zdis¼0 nm and Pin¼80 mW. Shifts in the membrane’s resonance frequency,

consistent with quadratic optomechanical coupling, are visible around the cavity resonances at D¼±1.6 MHz. (g) Calculated power spectral density of the

membrane’s Brownian motion for the same parameters as in f.
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quadratic to lowest order, that is, ocav / z2
osc. In this case, each

intracavity photon is predicted27,42 to produce an optical spring
that shifts om by an amount g2 ¼ o00cavz2

ZP (the primes indicate
differentiation with respect to zosc, and zZP is the amplitude of the
membrane’s zero-point motion). Figure 1f plots the power spectral
density of the membrane’s Brownian motion (recorded by the
probe beam) as the control beam’s detuning D is varied.

These data show the two qualitative features of quadratic
coupling. First, the change in the membrane’s resonance
frequency dom is proportional to the number of intracavity
photons (that is, dom(D) has even symmetry about each cavity
resonance with an approximately Lorentzian shape). Second, the
sign of dom is set by the sign of o00cav (that is, positive when the
laser is tuned to the higher-frequency cavity mode and negative
when the laser is tuned to the lower-frequency mode). In contrast,
for conventional single-mode optomechanics (in which the
detuning is linear: ocavpzosc) dom(D) has odd symmetry about
a cavity resonance and its sign is the same regardless of which
cavity mode is excited by the laser1.

To make a more quantitative comparison with the theory, we
use multimode optomechanics theory42 to calculate the cavity
reflection, optical spring and optical damping in the presence of
the avoided crossings (see the Supplementary Fig. 2 and the
Supplementary Note 1 for more details). The majority of the
parameters in this theory are determined by fitting the cavity’s
static spectrum to expressions that include three cavity modes.
Figure 1d,e shows a comparison of the measured and fitted
reflection, and the Supplementary Table 1 lists the values of all
the system parameters. To determine the remaining parameters,
and to test the predictions of this model with respect to the
dynamical behaviour, we measured the membrane’s Brownian
motion at several values of zdis between � 1 nm and þ 1.25 nm.
At each value of zdis, the control beam detuning D was varied over
a range that included both of the cavity modes participating in the
avoided crossing. For each value of D, the membrane’s resonance
frequency om and mechanical damping rate gm were determined
by fitting the Brownian motion spectrum. Figure 2 shows the
changes in these quantities (that is, the optical spring dom and
the optical damping dgm) as a function of D for each value of zdis.

When the membrane is furthest from the avoided crossing
(that is, for the uppermost and lowermost curves in Fig. 2), the
features in dom and dgm show odd symmetry about the cavity
resonances (which are indicated by dashed lines), consistent with
conventional single-mode optomechanics and linear coupling. As
zdis approaches 0 nm, the features in dom and dgm decrease in
size, consistent with the decreasing slope of the cavity detuning
near the avoided crossing. Precisely at the avoided crossing (olive-
coloured data in Fig. 2), the odd-symmetry feature in dom is
completely absent and is replaced by an even-symmetry feature
(as discussed above in the context of Fig. 1f).

The solid lines in Fig. 2 are calculated from the model
described in Methods. These calculations use the parameters
determined from the cavity’s static spectrum (Fig. 1d,e), as well as
three additional fit parameters. A complete description of the
fitting process is given in the Supplementary Figs 3–7 and the
Supplementary Note 2. The agreement between the data and the
fits in Fig. 2 indicates that multimode optomechanics theory
provides an accurate description of this system, particularly in the
vicinity of multiple avoided crossings between the cavity modes.

Figure 3 shows similar measurements, but carried out at fixed
zdisE0 nm as a function of the control beam power Pin. The data
are plotted along with the predictions of the model. These
predictions use the parameter values taken from the fits in Fig. 2,
except for zdis and Pin, which are used as fit parameters (the fit
values of zdis and Pin agree well with independent measurements,
as described in the Supplementary Fig. 7). Figure 3 shows clearly
that when zdisE0 nm, the feature in dom has an even symmetry
at each cavity resonance while the feature in dgm has odd
symmetry, in agreement with theory.

Previous measurements of static reflection spectra at room
temperature showed that it is possible to tune the avoided
crossings by adjusting the membrane’s tilt relative to the cavity
axis, and its position along the cavity axis29,32 (see also ref. 35). To
illustrate this capability at T¼ 500 mK and to demonstrate its
impact on the optomechanical dynamics, cavity spectra are shown
in Fig. 4a,b for two different membrane alignments. When the
membrane is positioned near the cavity waist with nominally zero
tilt (Fig. 4a), only one of the triplet modes forms an avoided
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Figure 2 | Optomechanics near the cavity’s avoided crossings. (a–b) Changes in the frequency (a) and linewidth (b) of the membrane’s fundamental

mode, plotted as a function of the control laser detuning D and the membrane’s static displacement zdis. The avoided crossing occurs at zdis¼0 nm.

The solid lines are the fits described in Methods and the Supplementary Note 2. The dashed lines indicate the cavity resonances. For clarity, each curve is

shifted vertically by 3 Hz. For large negative values of zdis, the lower-frequency cavity mode produces larger optomechanical effects than the higher-

frequency cavity mode due to the fact that it corresponds to the TEM00 mode, which is more strongly coupled to the driving laser (as can be seen in

Fig. 1d). For large positive values of zdis, the situation is reversed.
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crossing with the singlet mode. After translating the membrane by
� 15mm along the cavity axis and tilting it by 0.3 mrad (Fig. 4b),
two of the triplet modes form avoided crossings.

Figure 4c shows measurements of dom(D) for each of the three
avoided crossings in Fig. 4a,b. For each measurement, zdis was set
so that the membrane was at the avoided crossing. The solid lines
are fits to the same model as the previous figures. As the avoided
crossing gap is decreased, the peaks in dom move close together

and grow larger, reflecting the increase in o00cav. For the uppermost
trace, the gap at the avoided crossing is no longer substantially
larger than k, and the two peaks begin to merge. See
Supplementary Table S2 for a full description of the fit results.

Classical analogue of a quantum non-demolition measurement.
Proposals for realizing a quantum non-demolition measurement of

15
50 μW

Pin= Pin=
50 μW

96 μW 96 μW
117 μW
145 μW
157 μW
183 μW

117 μW
145 μW
157 μW
183 μW10

5

0

–5

15

10

5

0

–8 –4 0 4
Laser detuning (MHz)

–8 –4 0 4
Laser detuning (MHz)

F
re

qu
en

cy
 s

hi
ft,

 �
�

m
 /2

π 
(H

z)

Li
ne

w
id

th
 c

ha
ng

e,
 �

� m
 /2

π 
(H

z)

Figure 3 | Optomechanics at an avoided crossing. (a–b) Changes in the frequency (a) and linewidth (b) of the membrane’s fundamental mode as a

function of the control laser detuning D and control beam power Pin. The membrane is nominally at the avoided crossing (zdis¼0 nm). Pin and zdis are

the fit parameters for the theory curves. The fit results for Pin are shown in the legend. The fit results for zdis had a mean value of 0.32 nm with a s.d. of

0.03 nm. For clarity, each curve is shifted vertically by 3 Hz.

N
orm

alized cavity
reflection

10

0.80

0.84

0.88

0.92

10

III

II

I

8

6

4

2

0

–2

–10 –5 0 5 10

8.7 MHz nm–2

�′′/2π =

4.2 MHz nm–2

1.7 MHz nm–2

0.96

1.00

0.77

0.82

0.86

0.91

0.95

1.00

0

–10

–5

La
se

r 
de

tu
ni

ng
 (

M
H

z)

Laser detuning (MHz)

10

0

–10La
se

r 
de

tu
ni

ng
 (

M
H

z)

50

I

III

II

–5 50
Membrane displacement (nm) Membrane displacement (nm)

N
orm

alized cavity
reflection

F
re

qu
en

cy
 s

hi
ft,

 �
�

m
 /2

π 
(H

z)

Figure 4 | Optomechanics as the avoided crossings are tuned. (a–b) Cavity reflection spectrum for two different membrane alignments: membrane

located at the cavity waist with a tilt of B0 mrad (a) and translated � 15mm along the cavity axis and tilted 0.3 mrad (b). The data in (b) is reproduced

from Fig. 1d. The three avoided crossings have quadratic coefficients o00cav=2p ¼ 1:7 MHz nm2 (I), 4.2 MHz nm� 2 (II) and 8.7 MHz nm� 2 (III). (c) The

membrane’s frequency shift measured at the three avoided crossings as a function of the control laser detuning. For each measurement, Pin¼ 80mW. For

clarity, each curve is shifted vertically by 3 Hz. See Supplementary Information for details of the theory and fit results. The data in Figs 2 and 3 were

measured using the crossing with o00cav=2p ¼ 4:2 MHz=nm2.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7232 ARTICLE

NATURE COMMUNICATIONS | 6:6232 | DOI: 10.1038/ncomms7232 | www.nature.com/naturecommunications 5

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


the membrane’s phonon number or the cavity’s photon number
make use of the fact that at an avoided crossing, a change in the
number of quanta in one oscillator (optical or mechanical) shifts
the frequency of the other oscillator by g2. Detecting individual
quantum jumps with such a measurement requires single-quan-
tum strong coupling30, which has not been achieved in
optomechanical devices to date. However, even without single-
quantum strong coupling the non-demolition nature of these
measurements is predicted to enable the detection of non-classical
fluctuations of a driven oscillator15,16. Here we demonstrate a
classical analogue of such a measurement by using the membrane’s
resonance frequency om to monitor classical fluctuations of the
intracavity laser power.

These fluctuations are produced by modulating the power of
the control laser with a frequency 75 Hz and depth 0.77. At the
same time, the membrane’s fundamental mode is driven (using
the piezo element) in a phase-locked loop (PLL). The PLL
ensures that the frequency of the piezo drive tracks fluctuations
in om and the PLL error signal provides a record of these
fluctuations (see the Supplementary Methods for details).
Figure 5a shows Sff, the spectrum of these fluctuations, when
the membrane is positioned at an avoided crossing (zdis¼ 0 nm
in Fig. 4a) and the control beam is tuned to the cavity resonance
(D¼ 0). The peak in Sff at 75 Hz reflects the response of om to
the laser’s modulation.

Figure 5b and c shows Ao, the amplitude of the 75 Hz
modulation of om as a function of D. In Fig. 5b, Ao(D) is
measured with zdis¼ 0 nm (that is, at an avoided crossing).
The maximum value of Ao occurs at D¼ 0, as expected for
quadratic coupling. In contrast Fig. 5c, shows Ao(D) measured
with zdis¼ 3 nm (that is, far from an avoided crossing). In this
case, Ao has a minimum at D¼ 0 as expected for the
linear coupling. The solid lines in Fig. 5b,c are fits to the same
model as in the other figures. We emphasize that the important
difference between the quadratic and linear coupling is not the
specific form of Ao(D) (although measuring Ao(D) does provide
a simple practical means for distinguishing them), but rather the
different physical mechanisms by which the two couplings
produce an optical spring. Specifically, the optical spring
associated with linear coupling in single-mode devices arises
from the leakage of light into and out of the cavity with each
oscillation of the membrane1. In contrast, the optical spring
associated with quadratic coupling results from the elastic
energy stored in the intracavity field34. This distinction underlies
a number of the proposed applications of these avoided
crossings15–18.

Discussion
In summary, we have measured the dynamics of an optomecha-
nical device in which multiple cavity modes are coupled by the
motion of a single mechanical oscillator (in contrast with
previous work, which has focused on static spectroscopy). We
find that the avoided crossings between the cavity modes result in
an optical spring that differs substantially from conventional,
single-mode optomechanical devices. These results are in
quantitative agreement with a classical theory of the device’s
linear dynamics. This agreement, along with the demonstration of
this device’s in situ tunability and cryogenic operation, are
important steps towards studying the nonlinear and quantum
regimes of multimode optomechanical devices. In particular, by
improving this device’s cavity finesse and mechanical quality
factor (as demonstrated in ref. 14), it should be possible to exploit
multimode effects to efficiently produce squeezed states of the
mechanical oscillator and optical field19–21, transfer states
between cavity modes17, initialize macroscopic matter-wave
interferometers18 and measure the quantum statistics of a
driven mechanical oscillator15,16.

Methods
Following the description in ref. 42, we represent the cavity field as a superposition
of basis modes, which we take to be the cavity’s eigenmodes when the membrane is
far from the avoided crossings. The amplitudes of these modes, an, are the cavity’s
degrees of freedom. The membrane couples these modes and detunes them by an
amount that depends upon zdis and zosc (here zdis is the uniform translation of the
membrane chip and zosc is the instantaneous displacement associated with the
membrane’s oscillatory motion). For the small range of motion considered here, we
assume that this detuning is linear in both zdis and zosc. These effects can be
incorporated into the usual optomechanical equation of motion via the
Hamiltonian H1 ¼~ayM~aþ ‘oð0Þm byb, where the components of the vector ~a are
the mode amplitudes an, b is the amplitude of the mechanical oscillation and M is a
matrix whose diagonal elements represent the detuning of the cavity modes and
whose off-diagonal terms represent the coupling between modes42.

The optomechanical effects associated with the avoided crossings emerge from
this model even in the simple case of just two optical modes (n¼ 1, 2); in this case

M ¼
ocþo0dis;1zdis þo0osc;1zosc teif

te� if oc þo0
dis ;2

zdis þo0osc;2zosc

 !
and

~a ¼
a1

a2

� �
:

ð1Þ

This model allows the detuning associated with zdis to have different coefficients
ðo0dis;nÞ from the detuning associated with zoscðo0osc;nÞ, since the exact location of
the cavity mode on the membrane is not known a priori. The cavity spectra in
Fig. 1b–d correspond to the case where zdis is varied (by scanning the voltage on a
small piezoelectric element) while zosc¼ 0 nm. In this case, the two cavity modes
would cross at zdis¼ 0 nm, but instead the off-diagonal terms in M produce a gap
with magnitude 2t.
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frequency via the quadratic optomechanical coupling. (b,c) The amplitude of the peak in Sff, plotted versus control laser detuning at zdis¼0 nm

(b) and zdis¼ 3 nm (c). The solid lines are fit to the absolute value of the expected optical spring. The fit results are zdis¼ �0.14±0.07 nm, b¼0.67±0.15

for b and zdis¼ 3.09±0.01 nm, b¼0.67±0.14 for c. The quoted errors are statistical fit errors. The data in this figure was taken using the lower branch of

the avoided crossing ‘I’ in Fig. 4a.
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The Supplementary Note 1 provides a more detailed description of this model
and describes how it is used to calculate the optical spring, optical damping and the
cavity reflection spectrum. We note that although the restriction to two optical
modes (equation (1)) provides an intuitive explanation of most of our data, we use
three optical modes (n¼ 1, 2, 3) for most of the quantitative analysis. Explicit
expressions for three optical modes are given in the Supplementary Note 1; they are
straightforward extensions of equation (1) in which M includes two coupling terms
(t1eif1 and t2eif2 ) corresponding to the two avoided crossings seen in Fig. 1d.

In fitting the cavity spectrum to this model (as in Fig. 1e) there are a large
number of fitting parameters; however the fits are highly constrained by the fact
that each of the model’s parameters corresponds to a prominent feature in the data.
For example, the three o0dis;n are set by the slopes of the cavity resonances far from
the crossings, while the coupling rates t1 and t2 are determined by the magnitudes
of the gaps. The coupling phases f1 and f2 are determined by the amplitudes of
the cavity resonances near the crossing. Each mode’s k is determined by the width
of the resonance far from the crossing, while the input coupling of each mode is
determined by the amplitude of the resonance far from the crossing. This analysis
of the cavity’s static spectrum provides all the model parameters except for the
three coefficients o0osc;n . The o0osc;n are extracted from fitting the optical spring and
optical damping data in Fig. 2, as described in the main body of the paper.
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Supplementary Figure 1: Schematics of experimental cavity setup inside the 3He refrigerator. 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2: a-b, Calculated optical spring (a) and damping (b). The model includes one singlet 
mode and two of triplet modes.   

 

 

 

 

 

 

 

 



 
 

 

Supplementary Figure 3: a, Mechanical resonance frequency during forward and backward sweeping of laser 
detunings. b, Amount of frequency drift as a function of elapsed time. Fit result is shown in the plot. c, 
Mechanical resonance frequency after the drift correction.  



 
 

 

 

 

 

 

 

 

 

Supplementary Figure 4: a, Measured cavity spectroscopy showing three triplet modes, one of which couples to 
the singlet to form an avoided crossing. b, Vertical slice at zdis = -5 nm (dashed line), showing the fractional 
magnitude of the reflection dips for both the singlet and the triplet. Data is in blue, fit to two Lorentzians on a 
sinusoidal noise background is in red. 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

Supplementary Figure 5: Plot of upper and lower mode resonance frequencies near the avoided crossing from 
the Supplementary Figure 4, as found from Lorentzian fits. The solid lines are theory fits whose parameters are 
given in the text. 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 6:  Cavity spectrum (calculated from theory) for three different values of the tunneling 

phase, .  Equally-coupled modes were used here to make the effect more visible. 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

Supplementary Figure 7: Fit results vs control values. a-c, the fit results used for Fig. 2 (a) and Fig. 3 (b-c). The fit 
results of membrane displacement zdis (a) and control laser power Pin (c) are compared with their control values 
and show good agreement. The error bars denote statistical fit errors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

System  

parameters 

Figures in the main text 

Figure 2 Figure 3 Figure 4 

I II III 

𝜔″ 2𝜋⁄ † (MHz nm
-2

) 4.2 4.2 1.7 4.2 8.7 

𝜔      
 2𝜋⁄  (MHz nm

-1
) 1.87 1.87 2.13 1.87 1.87 

𝜔       
 2𝜋⁄  (MHz nm

-1
) -1.77 -1.77 -1.82 -1.77 -1.77 

𝜔       
 2𝜋⁄  (MHz nm

-1
) -1.77 -1.77 N/A -1.77 -1.77 

𝜔      
 2𝜋⁄  (MHz nm

-1
) 1.40 1.40 1.56 1.40 fit parameter 

𝜔       
 2𝜋⁄  (MHz nm

-1
) -1.46 -1.46 -1.66 -1.46 -1.46 

𝜔       
 2𝜋⁄  (MHz nm

-1
) -0.65 -0.65 N/A -0.65 fit parameter 

𝑡 2𝜋⁄  (MHz) 1.57 1.57 4.57 1.57 1.57 

𝑡 2𝜋⁄  (MHz) 0.76 0.76 N/A 0.76 0.76 

𝜅 2𝜋⁄  (MHz) 1.0 1.0 1.0 1.0 1.0 

𝜅    2𝜋⁄  (kHz) 74 74 46.8 74 74 

𝜅  2𝜋⁄  (MHz) 1.3 1.3 1.3 1.3 1.3 

𝜅     2𝜋⁄  (kHz) 7 7 4.7 7 7 

𝜅  2𝜋⁄  (MHz) 1.3 1.3 N/A 1.3 1.3 

𝜅     2𝜋⁄  (kHz) 4 4 N/A 4 4 

 1.9 1.9 1.6 1.9 1.9 

 1.1 1.1 N/A 1.1 1.1 

Pin (W) 40 fit parameter 80 fit parameter 80 

†calculated value from 𝜔    
  and t 

Supplementary Table 1: System parameters used for the Figures in the main text 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

Fit 

parameters 

Figures in the main text 

Figure 2 Figure 3 Figure 4 

I II III 

zdis (nm) Supp. Fig. 7a Supp. Fig. 7b -0.42 ± 0.05† 0.36 ± 0.01† -0.09 ± 0.01† 

Pin (W) N/A Supp. Fig. 7c N/A 96.4 ± 3.0† N/A 

𝜔      
 2𝜋⁄  (MHz nm

-1
) N/A N/A N/A N/A 1.26 ± 0.02† 

𝜔       
 2𝜋⁄  (MHz nm

-1
) N/A N/A N/A N/A -0.62 ± 0.05† 

†statistical fit error 

Supplementary Table 2: Fit results used for the Figures in the main text 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Supplementary Note 1: Theory 

Here, we outline our model for the optomechanical interactions arising from two coupled optical 
modes. We begin with a derivation of single (optical) mode optomechanics, then generalize this to two 
or more coupled optical modes. 

 

Optomechanics of a single optical mode 

First, we review the derivation of optomechanics for a system with a single optical mode, in which the 
Hamiltonian is: 

 ̂   (𝜔     ̂) ̂  ̂    𝜔  ̂  ̂   ̂        (1) 

The first term describes the optical cavity, while the second accounts for the mechanical motion. In this 
expression  ̂ and  ̂ are annihilation operators for the optical and mechanical modes, respectively, 𝜔  is 

bare cavity resonant frequency,    is the linear optomechanical coupling for one phonon (
   

  
     

where      √ 2𝜔  ⁄ ) and 𝜔  is the mechanical mode frequency. Mechanical displacement is 

expressed as  ̂    ̂   ̂ . Finally,  ̂    accounts for all coupling to the environment (decays and 
drives). 

This Hamiltonian leads to the following equations of motion: 

 ̇̂   (𝜅 2⁄   𝜔 ) ̂      ̂ ̂  √𝜅   ̂   √𝜅    ̂      (2) 

 ̇̂   (  2⁄   𝜔 ) ̂      ̂  ̂  √   ̂     (3) 

Decay rates of the optical and mechanical modes are denoted as 𝜅 and   , respectively. 𝜅   describes 
the coupling through the input port, which we use to drive the mode, while 𝜅    𝜅  𝜅   describes 
coupling to other dissipation channels.  ̂   and  ̂    are drives through these two channels ( ̂    is just 
vacuum noise, while  ̂   includes any external drives). Finally,  ̂ is the thermal drive for the mechanical 
mode. 

For simplicity, we consider the (experimentally relevant) classical case, for which the equations of 
motion become 

 ̇   (𝜅 2⁄   𝜔 )        √𝜅          (4) 

 ̇   (  2⁄   𝜔 )         √        (5) 

Next  we introduce an external coherent optical drive detuned by ∆ from the cavity resonance: 
   (𝑡)        (    ) , which (if we disregard mechanical motion and the negligible static 
displacement due to radiation pressure) creates a steady cavity optical field  (𝑡)     

  (    ) .  The 
field’s amplitude can be expressed as 

   
√       

  ⁄    
      √𝜅            (6) 



 
 

where    𝜔  is the cavity susceptibility    𝜔  (𝜅 2⁄   (   ))  . We can now linearize our 
equations of motion around this coherent drive by writing  (𝑡)  (    (𝑡))   (    )  where 
 (𝑡)    : 

 ̇   (𝜅 2⁄   ∆)            (7) 

 ̇   (  2⁄   𝜔 )   (       )  √       (8) 

Here,        is the total optomechanical coupling. Taking the Fourier transform of these equations, 
we find 

  𝜔       𝜔    𝜔         (9) 

   𝜔      
   𝜔    𝜔        (10) 

  𝜔     𝜔 (  (    𝜔     𝜔  )  √    𝜔 )   (11) 

   𝜔    
   𝜔 ( (    𝜔     𝜔  )  √     𝜔 )   (12) 

Here we’ve introduced the mechanical susceptibility    𝜔  (  2⁄   (𝜔   ))  .  

Next, we substitute the expressions for   𝜔 ,    𝜔  into the mechanical equation of motion, multiply 
both of these equations by (   𝜔   

   𝜔 )   and add them together. Assuming that we’re interested 
in frequencies 𝜔  𝜔 , and that   𝜔     ⁄ , we can simplify   

    𝜔    2⁄   (  𝜔 )  
2 𝜔    

   𝜔 . In the end, this allows us to obtain the solution 

(  
   𝜔     𝜔 )  𝜔  √    𝜔       (13) 

From this, we see that the bare mechanical susceptibility   
   𝜔    2⁄   (𝜔   ) is modified by 

the self-energy term   𝜔    | | (   𝜔    
   𝜔 ) . Thus, changes in mechanical resonance 

frequency and linewidth can be expressed as  𝜔   e(  𝜔  ),     2 m(  𝜔  ). 

 

Optomechanics of coupled optical modes 

Consider the case of two crossing optical modes  which we’ll call left (L) and right (R). We will 
disregard mechanical motion for now, but still consider constant membrane displacement (as it 
provides a way to tune the resonant frequencies of the two optical modes). The Hamiltonian for this 
system is 

 ̂   (𝜔        ) ̂ 
  ̂   (𝜔        ) ̂ 

  ̂   (𝑡    ̂ 
  ̂  𝑡     ̂ 

  ̂ )   ̂    (14) 

The first two terms describe the behavior of the left and the right cavity modes. The optomechanical 
coupling rate of each mode to the membrane displacement is denoted as      and      (in the notation 
of the main text, these are equal to 𝜔     

  and 𝜔     
  multiplied by     ). The membrane displacement, 

  , which is a unitless (normalized to     ) parameter here, is chosen such that for     , the 

frequencies of both modes are equal to 𝜔 . The third term describes tunneling between the two modes 
with rate t. Note that we have chosen to use a real coupling term t and explicitly include a complex 
phase factor    . This can be thought of as the phase acquired by a photon tunneling from one mode to 
another. In addition to this phase factor, we could have chosen to have each mode couple to the input 



 
 

drive with a different phase shift. These two effects, while both physical, have identical effects on the 
model, so here we choose to only include a tunneling phase. 

It is natural now to introduce vector notation for these modes, denoting vectors with a single bar and 
matrices with a double bar. For later notational convenience, we will also move to a frame rotating at 
𝜔 , so that our mode crossing effectively  occurs at 𝜔   . Using the definitions 

 ̅̂  (
 ̂ 

 ̂ 
)        (15) 

 ̅̂  ( ̂ 
  ̂ 

 )      (16) 

𝜔̿  (  𝑡   

𝑡     
)      (17) 

 ̿  (
     

     
)      (18) 

the Hamiltonian simplifies to 

  ̂    ̅̂ (𝜔̿   ̿   ) ̅̂   ̂      ̅̂ 𝜔̿ (  ) ̅̂   ̂      (19) 

(DC optomechanical coupling is absorbed into 𝜔̿ (  )  𝜔̿   ̿   ). 

We now switch to the classical description and express the equations of motion using the vector 
notation: 

 ̇̅   (𝜅̿ 2⁄   𝜔̿ (  )) ̅  √𝜅  
̅̅ ̅̅ ̅̅         (20) 

𝜅̿  (
𝜅  
 𝜅 

)        (21) 

√𝜅  
̅̅ ̅̅ ̅̅  (

√𝜅    

√𝜅    

)       (22) 

Here we account for the fact that the bare linewidths (𝜅  and 𝜅 ) and input coupling rates (𝜅     and 
𝜅    ) can be different for the two modes. Since the same incident beam couples to both modes,     is 

just a scalar, and the modes only differ in their coupling rates (as noted before, the phases of input 
coupling coefficients have been absorbed into our definitions of    and   ). Now we turn on an 
external drive detuned from the crossing point by ∆  written (in the rotating frame) as    (𝑡)  
        .  This provides us with a steady state solution 

 ̅(𝑡)    ̅̅ ̅            (23) 

 ̅  (𝜅̿ 2⁄   (𝜔̿ (  )   ))  √𝜅  
̅̅ ̅̅ ̅̅        (24) 

  ̿    √𝜅  
̅̅ ̅̅ ̅̅               (25) 

where scalars are assumed to be proportional to the identity matrix, i.e.   ∆̿ (
∆  
 ∆

), and we’ve 

introduced the cavity susceptibility 



 
 

 ̿  𝜔  (𝜅̿ 2⁄   (𝜔̿ (  )     ))      (26) 

Knowing this steady state solution we can, for example, find the reflected light amplitude as a function 
of    and ∆ (thus producing the sort of cavity spectra seen in Fig. 1d). The amplitudes of both cavity 
modes add coherently in the reflected light and we have 

           (√𝜅          √𝜅         )       √𝜅  
̅̅ ̅̅ ̅̅  

 ̅    (27) 

     (  √𝜅  
̅̅ ̅̅ ̅̅  

 ̿    √𝜅  
̅̅ ̅̅ ̅̅ )         (28) 

Now we can add mechanical motion to our system. Depending on the overlap of the cavity modes with 
the particular mechanical mode, the optomechanical coupling will likely be reduced  from the 
membrane displacement coupling (      ). (For instance, if the cavity mode is centered near a nodal 

line of the mechanical mode, the resultant coupling will be significantly reduced.) We will denote the 
optomechanical coupling for an oscillating mode as 

 ̿  (
     

     
)      (29) 

Note that, as before, these coupling rates are normalized by     , so in the notation of the main 

text,        𝜔       
     . The mechanical motion will result in two additional terms in the 

Hamiltonian 

 ̂    ̅̂  ̿  ̅̂ ̂    𝜔  ̂  ̂   ̂      (30) 

The first term accounts for the optomechanical coupling, while the second describes the mechanical 
motion. The equations of motion then transform into 

 ̇̅   (𝜅̿ 2⁄   𝜔̿ (  )) ̅    ̿  ̅  √𝜅  
̅̅ ̅̅ ̅̅        (31) 

 ̇   (  2⁄   𝜔 )    ̅  ̿  ̅  √        (32) 

Using the steady state solution  ̅  from before we can, exactly as in the single mode case, linearize 

these equations: 

 ̇̅   (𝜅̿ 2⁄   𝜔̿ (  )   ∆) ̅    ̅       (33) 

 ̇   (  2⁄   𝜔 )   ( ̅  ̅   ̅  ̅)  √       (34) 

The total optomechanical coupling is now a vector  ̅   ̿  ̅ .  

The derivation now follows the single-mode derivation nearly exactly, and we arrive at the final result: 

  𝜔     ̅ ( ̿  𝜔   ̿ 
   𝜔 ) ̅      (35) 

From which the optical spring and damping can be found via  𝜔   e(  𝜔  ) and     2 m(  𝜔  ). 

Although slightly bulkier, this model of the optomechanics of multiple coupled optical modes is not 
significantly more complicated than the case of a single optical mode. The important feature of this 
model is that it universally describes a system that can exhibit both linear and quadratic coupling, 



 
 

depending on the static position of the membrane. Far away from the crossing, we can generate the 
canonical results for linear optical spring and damping, and as the membrane approaches the crossing 
point (    ) we see these linear effects vanish and the qualitatively different  results of quadratic 
optomechanics arise. 

The model discussed thus far is sufficient to predict the optomechanical effects from a single avoided 
crossing between two optical modes. In some of our experimental data, we deliberately introduced a 
second avoided crossing with a nearly-degenerate neighbor of one of the modes. We can easily extend 
our model to allow for multiple interacting modes by working with three-dimensional vector 
equations and introducing additional tunneling terms for the new mode. For instance: 
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where σ is the frequency splitting between the nearly degenerate R1  and R2  modes and we’ve only 
allowed tunneling between each R mode and the L mode. Figures 1d and the Supplementary Figure 7 
show cavity spectra and optomechanical effects calculated using this three-mode theory. 

 

 

 

 

 

 



 
 

 

Supplementary Note 2: Data analysis and fit results 

 

Drift subtraction  

The membrane’s resonant frequency was observed to drift on the order of Hz on a timescale of hours. 
The amount of drift was sometimes larger than the size of the optical spring shift, which complicated 
the characterization of the quadratic optomechanical effects. In order to compensate for this drift in 
our analysis  we always made sure to remeasure the membrane’s Brownian motion at selected laser 
detunings after completing a data run with a given set of parameters. This provided a measurement of 
the Brownian motion under nominally identical conditions, but at different points in time allowing us 
to determine the amount by which the membrane’s resonant frequency had drifted. 

As an example of this process  the membrane’s resonant frequency is plotted as a function of laser 
detuning for 60 W laser power at zdis = 0 nm (Supplementary Figure 2a). This data run took 1 hour 
and 46 minutes to complete and consisted of a high resolution laser detuning sweep across the avoided 
crossing (starting at negative detuning), followed by a retaking of selected points in the opposite 
direction. As can be seen in the Supplementary Figure 2a  the membrane’s mechanical frequency drifts 
by just under 3 Hz during this time.  

For laser detunings that were measured in both the forward and backward directions, we plotted the 
difference in the membrane’s mechanical frequency as a function of the time passed between the first 
and second data point at each detuning (Supplementary Figure 3b). From the slope of this plot, we 
determined the rate of membrane resonant frequency drift, and subtracted this drift from the original 
spring shift data. The corrected data is shown in the Supplementary Figure 3c. After correction, the 
data shows a reasonable amount of repeatability despite the time that passed between the forward and 
backward runs. For actual fitting and data analysis, we discarded the backward run from the post-drift 
subtraction data. 

 

System parameters 

Our model for predicting optomechanical effects near an avoided crossing depends on a large number 
of system parameters, including cavity properties, membrane properties, and interaction strengths. 
When fitting the actual optomechanics data, we would like to minimize the number of free parameters 
by using independent measurements whenever possible. Our cavity spectrum (as in the 
Supplementary Figure 4a) provide an excellent resource for characterizing both the optical properties 
and some of the interaction strengths in our system.   

To completely model the anti-crossing of two optical modes, we need to know the total decay rate of 
each mode (𝜅 , 𝜅 ), the decay rate of each mode due to its input mirror (𝜅    , 𝜅    ), the linear coupling 
between each mode and the membrane’s displacement (𝜔     

 , 𝜔     
 ), and the membrane-mediated 

coupling rate between the two modes, which we describe as 𝑡   , with t and  real.  All of these 
parameters can be measured from cavity spectroscopy data such as in the Supplementary Figure 4a. 

Each vertical slice of the spectrum (e.g. dashed line in the Supplementary Figure 4a) shows the 
reflected light intensity measured as the laser driving the cavity is swept over a certain frequency 



 
 

range. Cavity mode resonances appear as Lorentzian peaks whose full width at half maximum (FWHM) 
is equal to 𝜅. The ‘depth’ of the dip provides a measure of 𝜅  . If we choose a membrane position far 
from the avoided crossing, then the interaction of the two optical modes can be neglected, and we can 
make independent measurements of 𝜅 and 𝜅   for both modes. For the two-mode crossing in the 
Supplementary Figure 4, we find 𝜅 2𝜋⁄  = 1.0 MHz, 𝜅    2𝜋⁄  = 47 kHz, 𝜅 2𝜋⁄   = 1.3 MHz, and 

𝜅    2𝜋⁄  = 5 kHz. 

While the triplet modes are clearly visible in the color maps of cavity spectrum, the lasers are only 
weakly coupled to them (by design), and our ability to accurately determine the resonance reflection 
dip and linewidth is limited. However, by averaging data from different membrane positions, we are 
able to produce values with sufficient accuracy for use in the theoretical model. 

The linear couplings (𝜔     
 , 𝜔     

 ) and tunneling rate (t) determine the exact shape of the anti-

crossings in the cavity spectra. To measure them, we again fit the Lorentzian peaks at each membrane 
position and record the center frequencies of each mode (see the Supplementary Figure 5). The 
functional dependence of cavity resonant frequency on membrane position near the crossing is given 
by the eigenvalues of the M matrix in equation (1) in the main text (a simple hyperbola, in the case of 
𝜔     

   𝜔     
  ). Instead of fitting to this, here we chose to fit the linear slopes far away from the 

crossing and find the tunneling rate t by fitting the curves near the crossing to a quadratic (the second 
derivative of the eigenvalues of M at zdis = 0 nm relates t to this quadratic coefficient). For the two-
mode crossing in the Supplementary Figure 4, we find 𝜔      

 2𝜋⁄  = 2.1 MHz nm-1, 𝜔      
 2𝜋⁄  = -1.8 

MHz nm-1, and 𝑡 2𝜋⁄   = 4.6 MHz. 

The final system parameter is the phase factor,    . It is perhaps most instructive to think of as the 
phase acquired by a photon as it tunnels from one mode to the other. An alternate interpretation can be 
seen by removing this complex phase from the tunneling amplitude and instead having each mode 
couple to the laser drive with a different phase shift. It is physically correct to include both of these 
phases, but their effects on the model are equivalent, so we group them together as the complex phase 
of t. This phase shift affects the avoided crossing in measurable ways. The plots in the Supplementary 
Figure 6 show the calculated effect of  on the cavity spectrum near the crossing. We see clearly that 
when the optical modes hybridize,  modifies the interference of the two modes and results in different 
relative coupling strengths. We determined  for our system by measuring the relative coupling 
(comparing resonant reflection dips) at zdis = 0 nm. We found  = 1.6 (approximately π/2, 
corresponding to equal dips at the quadratic point). 

The case in which there are two avoided crossings between nearly-degenerate triplet modes and the 
singlet can be handled in almost exactly the same way as described above to measure 𝜔     

 , 𝜔     
 , , 

and t for each of the three modes. However, since the quadratic curvature is poorly resolved for the 
smallest crossing, we find t for this crossing directly by measuring the gap between the two modes 
(instead of fitting the quadratic curvature). The result is 𝑡 2𝜋⁄   = 0.76 MHz and the other results are 
listed in the Supplementary Table 1. Note that the larger gap is denoted as the crossing t1 between 
modes L and R1 and the smaller gap as the crossing t2 between modes L and R2.  

 

Fit results 

We obtained most of the system parameters from the cavity reflection spectrum. The effective linear 
coupling, 𝜔    

 , however, is not directly obtained from the spectrum. We include it as a fit parameter 
when fitting data measured with different membrane displacements and use the average value as a 



 
 

fixed system parameter for the final fit analysis. The average values of 𝜔    
  are listed in the 

Supplementary Table 1. 

Control laser power Pin is measured with a power meter at the entrance of the fiber prior to entering 
the cryostat. We consider ~ 40% power loss through the fiber. Mechanical quality factor Q   100,000 is 
obtained from membrane ringdown time 𝜏   0.1 s by measuring the decay of the membrane’s 
vibration at 354.6 kHz after the application of a strong piezo drive. The effective mass of the membrane 
is calculated to be 43 ng based on its size and material properties (i.e. Si3N4 membrane of 1 × mm × 
1mm × 50 nm). The system parameters and their values used for Fig. 2-4 in the paper are listed in the 
Supplementary Table 1 while the Supplementary Table 2 shows the fit results. Some of the results i.e. 
zdis and Pin are compared with control values (Supplementary Figure 7a-c). Note that for the data 
analysis of ‘ ’ in Fig. 4  two optical modes are considered: the singlet and one of the triplet modes. For 
the rest of the data, however, an additional triplet mode is included. This additional mode forms an 
avoided crossing nearby with the singlet mode (Supplementary Figure 2). 

  



 
 

Supplementary Methods: Details of experimental setup and methods 

 

Laser setup 

As shown in Fig. 1a, we used two Nd-YAG 1064 nm lasers (Innolight Prometheus) in this experiment.  
The first laser, which we call the probe laser, is used for cavity locking and for measurement of the 
membrane’s Brownian motion. To make this possible  a portion of the probe beam is sent through an 
electro-optic modulator (EOM) to apply 15 MHz phase modulation sidebands for the Pound-Drever-
Hall (PDH) locking technique. This portion of the beam  (the “PDH beam”) also passes through an 
acousto-optic modulator (AOM) which shifts it by 80 MHz. The frequency-shifted PDH beam is then 
combined with the unshifted beam which serves as a local oscillator (LO). Both beams are sent into the 
cryostat to the experimental cavity. Only the PDH beam has the necessary phase modulation sidebands 
to lock to the cavity  so when the probe laser is “locked”  light from the relatively weak PDH beam 
enters the cavity and interacts with the membrane. The LO beam, which is detuned from the cavity by 
80 MHz, promptly reflects off the input mirror of the cavity. When the reflected PDH and LO beams 
recombine on the signal photodiode (SPD), they produce a beat note at 8  MHz. The membrane’s 
mechanical Brownian motion appears as a phase modulation of this beat note. To observe the beat note, 
we use a lock-in amplifier to demodulate the signal from the SPD. Typically, the probe beam has about 
20 W PDH power and several hundred W LO power.  

The control laser is nominally identical to the probe laser, except it is detuned in frequency from the 
probe laser by two cavity free spectral ranges. This frequency offset is produced by mixing a small 
amount of light from both lasers on the fast photodiode (FPD) shown in Fig. 1a, and comparing the 
beat note with a reference tone produced by a signal generator. When both lasers are locked to the 
TEM00 mode, they are locked to different longitudinal modes of the cavity, and therefore at a given 
membrane position  the two lasers may have different couplings to the membrane’s motion. This 
allows us to lock the probe laser to the cavity at a linear point, useful for measurement of the 
membrane’s Brownian motion  and the control laser to the cavity at a quadratic point, useful for 
producing the effects that we want to study. For the classical analog of a QND photon measurement, 
additional AOM is introduced in the control laser beam path.  

 

Cryostat setup 

Light from the two lasers is coupled into the cryostat (Janis Research) through a single-mode optical 
fiber. Light from the fiber passes through a collimator and then continues in free space, hitting two 45° 
angled mirrors before reaching the input mirror of the cavity. The fiber collimator and one of the 
angled mirrors are mounted on custom  ” mirror mounts that can be adjusted in situ using commercial 
piezoelectric actuators (Janssen Precision Engineering, PiezoKnob). 

The fiber collimator, mirrors, and cavity are all attached to a titanium stage. The stage is designed to be 
vibrationally isolated from the outside environment. This is done by suspending the stage on springs 
inside the cryostat. To reduce oscillatory motion of the stage on the springs, copper eddy current 
damping fins are attached to the bottom of the stage. Between the fins are strong rare earth magnets. 
Motion of the stage induces eddy currents in the copper fins, which dissipate the energy as heat. The 
spring/stage system has a resonance frequency around 2 Hz, and is approximately critically damped by 
the eddy current dampers. Several hundred flexible gold-coated copper wires (wire diameter of 76 m) 



 
 

are used for a thermal link between the 3He pot (T   300 mK) and the stage and membrane. A 
schematic of the cold experimental cavity setup is shown in the Supplementary Figure 1. 

To provide further vibration isolation, the cryostat itself is attached to a massive aluminum plate, 
which is mounted on pneumatic air legs. The air legs sit on additional square aluminum plates, which 
are each supported by four passive vibration reducing feet. The entire system can be enclosed within 
an acoustic noise reducing “room”  consisting of plastic panels coated with sound absorbing foam, to 
achieve 13 dB of acoustic noise reduction. However, we determined that this level of acoustic isolation 
was not necessary for the quadratic optomechanics measurement described in this paper, so the 
acoustic shield was not used in this measurement. 

 

Phase-locked loop (PLL) measurement 

To detect classical laser modulation by way of the optical spring effect, we injected 75 Hz amplitude 
noise onto the control laser. This was accomplished by modulating the drive tone of the control beam 
AOM at 75 Hz with a modulation depth of 0.77.  

We then used a piezoelectric element mounted directly beneath the membrane to drive the membrane 
to an amplitude of 2 nm at its fundamental resonant frequency (~ 354.6 kHz). The 75 Hz amplitude 
modulation of the control beam causes a 75 Hz modulation of magnitude of the optical spring effect, 
and therefore modulates the membrane’s fundamental frequency at 75 Hz. We used a phase-locked 
loop (PLL) from a Zurich Instruments HF2LI lock-in amplifier to track the membrane’s resonant 
frequency and detect this 75 Hz modulation, adjusting the frequency of the piezo drive in real time to 
stay on resonance with the membrane. The output signal of the PLL then contains information about 
the laser modulation. 
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