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Deterministic phase slips in mesoscopic
superconducting rings
I. Petković1, A. Lollo1, L.I. Glazman1,2 & J.G.E. Harris1,2

The properties of one-dimensional superconductors are strongly influenced by topological

fluctuations of the order parameter, known as phase slips, which cause the decay of

persistent current in superconducting rings and the appearance of resistance in

superconducting wires. Despite extensive work, quantitative studies of phase slips have been

limited by uncertainty regarding the order parameter’s free-energy landscape. Here we show

detailed agreement between measurements of the persistent current in isolated flux-biased

rings and Ginzburg–Landau theory over a wide range of temperature, magnetic field and ring

size; this agreement provides a quantitative picture of the free-energy landscape. We also

demonstrate that phase slips occur deterministically as the barrier separating two competing

order parameter configurations vanishes. These results will enable studies of quantum and

thermal phase slips in a well-characterized system and will provide access to outstanding

questions regarding the nature of one-dimensional superconductivity.
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P
hase slips are topological fluctuations of the order
parameter in one-dimensional superconductors1. They
are responsible for the emergence of finite resistance in

the superconducting state and for the decay of supercurrent
in a closed loop2–4. Despite extensive research and a good
understanding of their basic features, there remain a number of
open questions related to their dynamics5. One of the
conceptually simplest systems in which to study phase slips is
an isolated, flux-biased ring. Such a system can access several
metastable states and undergoes a phase slip when it passes from
one of these states to another2. Tuning the free-energy barrier
between the states to zero with the applied flux F will result in a
deterministic phase slip from the state that has become unstable6,
whereas tuning the barrier to a small but non-zero value will lead
to a stochastic phase slip via thermal activation2,3 or quantum
tunnelling7–14.

The interpretation of measurements of stochastic phase
slips7,15–25 has been complicated by these processes’ strong
dependence on the system’s details, such as the form of the
free-energy landscape, the damping of the order parameter and
the noise driving its fluctuations. Of particular importance is
accurate knowledge of the barrier between metastable states,
which enters exponentially into the rate of stochastic phase slips5.
In contrast, deterministic phase slips are governed solely by the
form of the free-energy landscape: they occur when the barrier is
tuned to zero. For a strictly one-dimensional ring (in which the
order parameter only varies along the ring’s circumference),
Ginzburg–Landau (GL) theory can be used to analytically
calculate the barrier height, the flux at which the deterministic
phase slips occur2,3 and the measurable properties of the
metastable states, for example, their persistent current2,3,26 and
heat capacity27. As a result, measurements of these properties that
demonstrate precise agreement with theory are important for
benchmarking a system in which to study thermal and quantum
stochastic phase slips. Previous measurements of persistent
current I(F) in isolated superconducting rings have found
quantitative agreement with theory only at low magnetic field
and very close to the critical temperature Tc, where metastability
is absent or nearly absent26,28,29. However, at lower temperatures,
where metastability is well-established, only qualitative agreement
with theory has been demonstrated30–32.

Here we present measurements of I(F) in isolated
superconducting rings for temperatures spanning Tc/2oToTc.
The results, over the full range of magnetic field, show
quantitative agreement with the GL theory augmented by the
empirical two-fluid model4; the latter states the temperature
dependence of the input parameters of GL theory in a broad
temperature domain. The combination of the GL theory,
nominally valid only at T-Tc, with the two-fluid model has
been shown to accurately represent the results of microscopic
theory down to TETc/2 and was successfully used, for example,
in explaining measurement of the parallel critical field of thin
Al films33 in this temperature range. We find that phase slips
occur at the flux values predicted by GL theory, even to the point
of demonstrating a small correction due to the rings’ finite
circumference34,35. In addition, we find that the dynamics of the
phase slips is strongly damped, so that the disappearance of a
barrier leads the system to relax to the adjacent local minimum.
The measurement described here employs cantilever torque
magnetometry, which has been shown to be a minimally invasive
probe of persistent current in isolated metal rings36 and is
capable of resolving individual phase slips in a single ring37. As a
result, these measurements demonstrate the essential features for
studying stochastic phase slips: samples with a well-characterized
free-energy landscape and a detection scheme suitable for
measuring their intrinsic dynamics.

Results
Description of the system. In this experiment, four separate
samples were measured. Each sample consists of an array
of 100–1,000 nominally identical aluminum rings. Arrays were
used to get a better signal-to-noise ratio. Ring radii of the
four samples are R¼ 288–780 nm, with nominal widths of
w¼ 65–80 nm and thickness d¼ 90 nm. Detailed sample
properties are listed in the Methods section and in the
Supplementary Table 1. Scanning electron microscopy photos of
the sample are shown in Fig. 1a.

The measurement setup is shown in Fig. 1b. A uniform
magnetic field of magnitude B is applied normal to the rings’
equilibrium orientation. As the cantilever oscillates, current
circulating in the rings experiences a torque gradient, which
shifts the cantilever’s resonant frequency by an amount
df, monitored by driving the cantilever in a phase-locked loop.
More details on the measurement setup are given elsewhere37,38.
In the configuration used here, df¼ k I F, where F¼BpR2 and k
is a constant depending on the cantilever parameters, inversely
proportional to the spring constant36,37. A detailed description of
the conversion of data from df to I is given in the Supplementary
Notes 1 and 2, and Supplementary Fig. 1.

Metastable states and hysteresis. A superconducting ring is
considered one dimensional if its lateral dimensions are smaller
than the coherence length x and the penetration depth l. The
equilibrium properties of such a ring have three distinct
temperature regimes, which are set by R/x(T). For temperature
T only slightly below Tc such that 2Rox, the ring is in a
superconducting state for some values of F, whereas for the other
values it is in the normal state39,40, due to competition between the
superconducting condensation energy and the flux-imposed
kinetic energy of the supercurrent. At slightly lower T (such that
xo2Ro

ffiffiffi
3
p

x), the condensation energy is slightly larger and for
each value of F the ring has exactly one superconducting state.
Finally, at even lower T such that 2R4

ffiffiffi
3
p

x, the condensation
energy is high enough to allow for several equilibrium states at a
given F. Depending on the ring’s circumference, these three
regimes may occur in the vicinity of Tc described by the GL theory
or may extend to lower temperatures, prompting the use of the
empirical two-fluid model along with GL.

Figure 1c–e shows I(B) for the sample with R¼ 538 nm as T is
varied. The red points show measurements taken while B is
increasing and the blue points while B is decreasing. All the
measurements exhibit sawtooth-like oscillations whose period is
inversely proportional to the ring area pR2. The smooth parts of
the sawtooth represent current In in equilibrium states character-
ized by the order parameter winding number n and the jumps
correspond to phase slips between these states. The jumps occur
with flux spacing equal to the superconducting flux quantum
F0¼ h/2e, indicating that n changes by unity at each jump.
Measured I(B) curves for all other temperatures and ring sizes are
given in Supplementary Fig. 2. The three qualitative regimes
described previously are accessed by varying either T or B, as they
both diminish the condensation energy. For low T and B the data
are hysteretic, indicating the presence of multiple equilibrium
states. At sufficiently high T or B the hysteresis vanishes,
indicating that only one superconducting state is available.
For the highest values of B and T there are ranges of B over
which I¼ 0 (to within the resolution of the measurement),
corresponding to the rings’ re-entry into the normal state.
In this so-called Little–Parks regime we observe the expected
features: the persistent current goes through zero when the flux
bias equals an integer number of flux quanta, whereas the
winding number changes at half-integer values39,40. This is
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described in more detail in Supplementary Note 3 and shown in
Supplementary Figs 3 and 4.

Fit to theory. To compare these measurements with theory, we
first identify the winding number n of each smooth portion of
I(B). Next, we simultaneously fit all of the smooth portions of I(B)
using the analytic expression derived from the GL theory for
one-dimensional rings26. This expression includes the rings’ finite

width w, which accounts for the magnetic field penetration into
the ring volume and is crucial for reproducing the overall decay of
I at large B. At each value of T, the fitting parameters are x and
the Pearl penetration depth lP¼ l2/d, appropriate when the
bulk penetration depth l4d (ref. 4; ref. 41) which holds. The
cantilever spring constant is assumed to be temperature
independent and is used as a global fit parameter for each
sample, along with the ring dimensions w and R. The resulting fits
are shown as thick curves in Fig. 1c–e. The full set of fits to
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Figure 1 | Measured I(B). (a) Scanning electron microscopy photos of the sample. Left to right: several free-standing cantilevers, an array of rings on a

single cantilever, a single Al ring from the array. The scale bars left to right are: 100mm, 2 mm and 500 nm. (b) Measurement setup. A cantilever supporting

rings is placed in a perpendicular magnetic field B. The cantilever’s position is monitored by a laser interferometer (red). The signal from the photodiode

(PD) is sent to a phase-locked loop (PLL), which drives a piezoelectric element (green) under the cantilever. The current in the rings is determined from the

frequency of the PLL drive. (c–e) Supercurrent per ring I as a function of magnetic field B for rings with radius R¼ 538 nm at different temperatures

T (marked on each panel). Points are data; thick curves are the fits described in the text. Red (blue) corresponds to increasing (decreasing) B.
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measured I(B) for all R and T is shown in Supplementary Figs 5
and 6, along with a more detailed description of the fitting
procedure given in Supplementary Note 4.

In each data set we identify the rings’ critical field Bc3, which
we take to be the value of B at which I becomes indistinguishable
from 0 and remains so for all B4Bc3. It is noteworthy that the
identification of Bc3 is independent of any theoretical model.
Next, we use the GL result for one-dimensional rings31

Bc3¼ 3.67F0/(2pwx(T)) to extract x(T) (the fit parameters are
Bc3,0� 3.67F0/(2pwx0) for each sample and Tc common to all the
samples). The coherence lengths x(T) extracted from the fits of
I(B) and from the Bc3(T) data agree with each other in the entire
temperature interval and are approximated remarkably well by
x Tð Þ¼x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2ð Þ= 1� t2ð Þ

p
, where t¼T/Tc. The same relation

inspired by the two-fluid model4 was used successfully to treat the
thin-film upper critical field33,42. Along with x(T),
fits of I(B) yield the temperature dependence of the Pearl
penetration depth, which agrees well with the two-fluid model,
lP(T)¼ lP0/(1� t4). Figure 2 shows the best-fit parameters x and
lP, as well as Bc3, all as a function of T. The best-fit values of x0

(B200 nm), lP0 (B100 nm), Tc (B1.32 K) and Bc3,0, along with
more details, are given in Supplementary Note 5 and
Supplementary Table 1. Lastly, we note that Bc3(T) should be
independent of R and proportional to 1/w, consistent with the
data in Fig. 2c.

Criterion for deterministic phase slip. Figure 1c–e shows that on
each branch In, the values of current at which the phase slips
occur for increasing and decreasing B are located nearly
symmetrically around zero current. To examine the locations of

these phase slips quantitatively, we define Df�n ¼f�n �fmin;n.
Here f�n is the experimental value of the normalized flux
f¼F/F0 at which the transition n$n� 1 occurs and fmin,n is
the value of f at which In reaches zero. Flux fmin,n is either
directly measured or obtained by extrapolation between sweep-up
and sweep-down branches. As defined, Dfþn are positive
(increasing B, for which n-nþ 1) and Df�n are negative
(decreasing B, for which n-n� 1). (In the following we nor-
malize all flux values by F0 and denote them by the character f.)

Our next step is to compare the experimental values of
switching flux Df�n with theory. In the Langer–Ambegaokar
picture, valid for a current-biased wire much longer than x, the
barrier between states n and n� 1 vanishes when the bias current
reaches the critical current Ic (ref. 2). In the case of a flux-biased
ring, still for R44x, the barrier between states n and n±1 goes to
zero at flux values

f�c;n¼fmin;n�
Rffiffiffi
3
p

x
þO

w
R

� �2
� �

; ð1Þ

where fmin;n¼ n
1þ w

2Rð Þ
2. In the case R\x, which corresponds to

our experimental situation, it was shown that the system remains
stable beyond f�c;n and loses stability at a flux34,35

f�f ;n¼fmin;n�
Rffiffiffi
3
p

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

2R2

s
þO

w
R

� �2
� �

: ð2Þ

From these expressions we see that the switching flux is set by
the ratio R/x and therefore the precise determination of x is
crucial for quantitative comparison with theory. To simplify this
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Figure 2 | Coherence length, penetration depth and rings’ critical field. (a,b) Coherence length x and Pearl penetration depth lP as a function of

temperature. The squares are the best-fit values from the GL fits described in the text. (c) Rings’ critical field Bc3 as function of temperature. The squares

are determined from measurements of I(B). The lines in all panels are the fits described in the text.
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comparison, it is convenient to refer all quantities not to
zero field, but to the zero current field of each winding number,
so we define Df�c;n¼f�c;n�fmin,n and Df�f ;n¼f�f ;n�fmin,n.
Additional details on the free energy landscape close to the phase
slip points are given in Supplementary Note 6 and Supplementary
Fig. 7.

Figure 3 shows the measured Df�n as a function of n.
The vertical axis in Fig. 3 is normalized to Dfþf ;0. The
horizontal axis is normalized to the experimentally observed
maximum winding number nmax, where nmaxE

ffiffi
3
p

R2

wx . The
ratio n/nmax is very close to B/Bc3. There is a symmetry
Dfþn ¼ �Df�� n for � nmax r nr nmax; thus, it suffices to
consider nZ0. Figure 3a shows the data for R¼ 288 nm. The bars
represent the width of the steep portion of the sawtooth
oscillations, primarily due to the small size inhomogeneities in
the array (see Supplementary Figs 8 and 9, and Supplementary
Notes 7 and 8). In Fig. 3b we show the data for all four
samples, normalized such that all the data collapse together.
Supplementary Fig. 8 shows the same data separated into four
panels by ring size for a more detailed comparison.

The solid lines in Fig. 3 show the predicted Df�f ;n/Dfþf ;0
(see equation (2)), whereas dotted lines in Fig. 3a show
Df�c;n/Dfþf ;0 (equation (1)). The difference between the solid
and dotted lines increases with the ratio x(T)/R and is therefore

the most pronounced for small rings (Fig. 3a) or at high
temperature due to the increase of x(T). We see that the
prediction Df�f ;n/Dfþf ;0 , which includes the finite-circumference
effect (R\x), agrees well with the measured switching locations
over the full range of T, B and R.

The finite-circumference effect can also be seen directly in
Fig. 4, which shows I(B) over a narrow range of B for the smallest
rings. For both increasing B (red) and decreasing B (blue), each
sawtooth oscillation reaches a maximum current and then starts
to diminish before the switching occurs, as seen in the regions
indicated by the black arrows.

Damping. For T well below Tc once x is exceeded sufficiently by
the circumference of the ring, there are typically multiple free-
energy minima into which the system may relax. Despite this
freedom, we find that the winding number always changes as
|Dn|¼ 1. This is seen for all measured rings and all T down to the
lowest value T¼ 460 mK. In contrast, previous experiments30,31

with Al rings at To400 mK have found |Dn|41.
We expect the tendency for |Dn|41 to increase with lowering

T. Indeed, a circulating current of almost-critical value and
temperature T close to Tc result, respectively, in the suppression
of the BCS (Bardeen-Cooper-Schrieffer) singularity in the electron
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density of states and high density of Bogoliubov quasiparticles in
a superconductor4. These are the two conditions making the
dynamics of the order parameter dissipative and well described43

by the time-dependent GL equation. In the context of phase slips3,
it determines a viscous motion of the phase difference across the
phase slip, j tð Þ (t being time), down the monotonic part of the
effective potential relief V jð Þ, and this viscous motion results in
|Dn|¼ 1. In the opposite limit of low temperatures, the quasi-
particle density is low and we may try considering the phase slip
dynamics in terms of the Andreev levels associated with the phase
slip. Their time evolution caused by the variation of j tð Þ results in
Landau–Zener tunnelling between the occupied and empty levels,
thus leading to dissipation44 of the kinetic energy of the condensate
(the energy is irreversibly spent on the production of quasi-
particles). Our estimate (Supplementary Note 9) of the energy lost
in this way is Ediss� ‘ S=e2rxð ÞD, where r and S are, respectively,
the normal state resistivity and cross-section of the aluminum wire
forming the ring, and D is the superconducting gap; a numerical
proportionality factor is beyond the accuracy of the estimate.

The condensate energy difference between the two metastable
states involved in a |Dn|¼ 1 transition is EDn¼1¼ ‘=eð ÞjcS�
‘ S=e2rxð ÞD; here, jc�D= erxð Þ is the critical current density.

Furthermore, the lower of the two states is protected by a barrier
dFDn¼1� x=Rð Þ5=2EDn¼1 (the estimate is easily obtained from the
Langer–Ambegaokar2 scaling, dFp(1� j/jc)5/4, of the barrier with
the current density j, see Supplementary Note 9). The height of the
barrier is smaller for larger rings.

We find the irreversibly lost energy Ediss to be of the order of the
energy difference between the two metastable states EDn¼ 1. The
above estimates, given their limited accuracy, allow (but do not
guarantee) the condensate to have a sufficient excess of kinetic
energy to overcome a small barrier out of the metastable state with
Dn¼ 1. In addition to higher temperatures, in a notable difference
from the previous experiments the rings studied here had smaller
R, providing a better protection of the metastable states.

Discussion
We have studied the persistent current in arrays of flux-biased
uniform one-dimensional superconducting Al rings. We found
detailed agreement with GL theory, including the location of
deterministic phase slips, which are predicted to occur when the

barrier confining the metastable state occupied by the ring goes to
zero. In one dimension, GL theory has a relatively simple, analytic
form and, due to their small width, our rings are strictly in
the one-dimensional limit, in contrast to those studied
previously30–32. As a result, GL theory provides detailed
knowledge of the free-energy landscape in these samples. This
should enable systematic study of thermal and quantum phase
slips in isolated rings and progress towards the quantitative
understanding of coherent quantum phase slips45,46, one of the
outstanding goals in the field14,47,48.

Methods
Sample fabrication. Ring radii of the four measured samples are R¼ 288, 406, 538
and 780 nm, nominal widths are w¼ 65 nm (for R¼ 406, 780 nm) and 80 nm
(for R¼ 288, 538 nm), and thickness d¼ 90 nm. Further details on sample properties
are listed in the Supplementary Table 1. Each array is fabricated on a Si cantilever of
length B400mm, thickness 100 nm and width B60mm, with resonant frequency
fB2 kHz, spring constant kB1 mN m� 1 and quality factor QB105. Cantilevers are
fabricated out of a silicon-on-insulator wafer. They are patterned out of the top silicon
layer by means of optical lithography followed by a reactive ion etch. Rings are
then fabricated on top of patterned cantilevers using standard e-beam lithography
with a polymethyl methacrylate (PMMA) mask, into which Al is evaporated in a
high-vacuum thermal evaporator. After lift-off, the top of the wafer is protected and
the backing silicon layer is etched in KOH, followed by a BOE etch of the SiO2

layer and drying in a critical point dryer. This results in cantilevers being fully
suspended. Further details on the the fabrication process are given elsewhere36,37.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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Supplementary Figure 1 | Background removal. (a) Raw data, cantilever frequency shift as function of
field for increasing B (red) and decreasing B (blue) for the rings with radius R = 406 nm and T = 762
mK. Third order polynomial background is shown as the black curve. (b) Cantilever frequency shift after
background substraction and averaging. The signal is due to the magnetic moment of the supercurrent.
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Supplementary Figure 2 | Measured supercurrent as function of field. Shown are different samples with
R = 780, 538, 406, 288 nm ((a) to (d)), in the full temperature range. Lower curves of the same color correspond to
increasing B and upper ones to decreasing B.
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Supplementary Figure 3 | Little-Parks regime. Measured supercurrent I(B) for ring sizes and temperatures
marked in each panel. Normal state regions (I = 0) are denoted by black arrows. Red curves correspond to sweep
up and blue to sweep down.
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Supplementary Figure 4 | Quantization in the Little-Parks regime. Full squares denote normalized flux values
at which current goes through zero, and empty squares denote normalized flux at which the winding number changes
by one, both as function of winding number n. Black lines are the theoretical predictions for both cases, full and
dotted respectively. In panel (b) with respect to (a) the linear background Φ/Φ0 = n is subtracted both from data and
theoretical predictions, which enables to outline the trend due to finite-width correction. Purple vertical lines denote
the normal-state regions. Red squares are for sweep up and blue for sweep down. Here R = 406 nm and T = 1133 mK.

Supplementary Figure 5 | Supercurrent vs. field and Ginzburg-Landau fit. Data is shown for different
ring sizes (columns) and temperatures (marked on each panel). Points and thin curves: data; thick curves: Ginzburg-
Landau fit (see text). Red curves on each graph correspond to sweeping the field up, and the blue ones to sweeping
down. Thin black dotted curves: the Ginzburg-Landau fit, extended over the full field range of each winding number.



5

Supplementary Figure 6 | Supercurrent vs. field and Ginzburg-Landau fit. Data is shown for different
ring sizes (columns) and temperatures (marked on each panel). Points and thin curves: data; thick curves: Ginzburg-
Landau fit (see text). Red curves on each graph correspond to sweeping the field up, and the blue ones to sweeping
down. Thin black dotted curves: the Ginzburg-Landau fit, extended over the full field range of each winding number.

Supplementary Figure 7 | Free energy. (a) The black curve shows the equilibrium free energy Fn as a function
of B for all n, for the ring with R = 406 nm at T = 876 mK. In this panel, the Fn are calculated from the fit
parameters. The red (blue) curve shows the path followed by the system as B is increased (decreased). (b) Free
energy of an equilibrium state as a function of flux. (c) Absolute value of supercurrent as a function of flux. (d)
Velocity of the superconducting condensate as a function of flux. The black dots in panels b, c and d denote
instability points ϕc, and red dots ϕf (see main text). Shaded regions are unstable in the sense specified in the text.
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Supplementary Figure 8 | Phase slip flux as function of winding number. Dots: experimental values;
bars: observed width of each jump; full lines: prediction for the switching flux ∆ϕ±

f,n; dotted lines: prediction

for the switching flux ∆ϕ±
c,n (see main text). Colors represent temperature. Radii R = 288, 406, 538, 780 nm of

four different samples are denoted on the panels. The normalization of the axes is explained in the main text.
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Supplementary Figure 9 | Transition width. Observed transition width in units of normalized flux ∆Φ/Φ0 as
function of winding number n, for different ring sizes and temperatures. Solid lines indicate a linear fit to the whole
data set at each ring size. Radius sizes are: (a) R = 780 nm, (b) R = 538 nm, (c) R = 406 nm and (d) R = 288 nm.



8

No Rnom (nm) RGL (nm ) wnom (nm) wGL (nm) N ξ0 (nm) λ0 (nm) λP0 (nm) Bc3,0 (T) B GL
c3,0 (T)

1 250 288 80 65 1680 214(2) 97(1) 104(2) 0.0796(6) 0.087(1)

2 375 406 65 48 990 202(2) 95(1) 100(2) 0.1107(7) 0.125(1)

3 500 538 80 65 550 208(2) 95(1) 101(2) 0.0830(6) 0.089(1)

4 750 780 65 51 242 190(3) 98(1) 107(2) 0.1131(7) 0.125(2)

Supplementary Table I | Summary of sample parameters. For each sample the table gives the nominal
lithographic ring radius Rnom and width wnom, as well as the values RGL and wGL obtained as global fit parameters.
The number of rings on each cantilever is N . ξ0, λP0, and Bc3,0 are the zero temperature values of the coherence
length, Pearl penetration depth, and critical field Bc3 determined from the fits in Fig. 2 in the main Text. The
penetration depth λ0 =

√
λP0 d. B GL

c3,0 is calculated using ξ0 and wGL, as described in the text. The quoted error
in the final digit of each fit value corresponds to the statistical uncertainty of the fit (one standard deviation).
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Supplementary Note 1. Background removal

We measure the shift of the resonant frequency of the cantilever f as function of field B. An example of raw data
taken for a ring with radius R = 406 nm at temperature T = 762 mK is shown in Supplementary Figure 1a. Red
trace corresponds to the sweep up of bias field and blue to the sweep down. In addition to the sawtooth oscillations
associated with the rings’ superconductivity, we observe that f also undergoes a small drift as a function of time and
of B. To remove this background, we fit the data above the rings’ critical field to a third-order polynomial, which is
shown as the black curve in Supplementary Figure 1a. We subtract this fit from f to obtain the frequency shift df
due to the magnetic moment of the rings (Supplementary Figure 1b).

Supplementary Note 2. Supercurrent as function of field

In our measurement configuration the magnetic field is perpendicular to the rings’ surface and the frequency shift
is related to supercurrent I as df(B) = κ I(B)BR2π, where κ is a cantilever-specific constant [1, 2]. This constant
depends on the cantilever’s resonant frequency, spring constant, length and the number of rings on it. The resonant
frequency is measured in the phase-locked loop, the length is measured by optical imaging, and the number of rings is
known from the lithography pattern. The spring constant k is obtained as a fitting parameter of the Ginzburg-Landau
fit, as explained in the main text and here in the following section. The best-fit value is within 20% of the nominal
value computed as k = (2πf)2meff , where meff = m/4 is the effective mass of the cantilever and m is the cantilever’s
actual mass. The rings’ radius is also obtained from the Ginzburg-Landau fits. It is highly constrained by the period
of Aharonov-Bohm oscillations, with the result that the statistical error on the best-fit value is ≈ 1 nm. The values
returned by this fit agree well with the values measured by SEM observations.
The supercurrent obtained from the frequency shift as I(B) = df(B)/(2πκR2B) is shown in Supplementary Figure

2. Every panel shows data measured on a sample with a different ring size in the full available temperature range.
The signal becomes very noisy close to zero field, and is not displayed for B very close to 0. This is because

I ∝ df/B and for fields close to zero, dividing the signal df by B leads to unreliable results.

Supplementary Note 3. Little-Parks regime

As mentioned in the main text, at high T and high B the rings exhibit the Little-Parks effect: as function of
bias flux the rings alternate between the superconducting and the normal state due to the competition between the
superconducting condensation energy and the kinetic energy of the current imposed by bias flux [3, 4]. This can be
seen directly in the I(B) curves close to the rings’ critical field, as they show regions of zero current (normal state)
between regions of non-zero current (superconducting state). This is illustrated in Supplementary Figure 3, where
the normal state regions are denoted by black arrows.
It is known from the Little-Parks effect that the supercurrent velocity, and therefore also supercurrent, reaches zero

when bias flux Φmin = nΦ0, where n is an integer [3–5]. GL theory shows this is the case not only in the Little-Parks
region, but in the full field region. Due to finite ring width there is a small correction on this condition [6] and in fact
supercurrent is zero when

Φmin =
nΦ0

1 +
(

w
2R

)2 . (1)

The correction (w/2R)2 is very small in our experiment (a few percent), but at high winding number n it may
lead to an observable deviation from the integer value. This is shown in Supplementary Figure 4 where full squares
are the measured flux values at which the current goes to zero and the full black curve in Supplementary Figure
4a is the theoretical prediction (Supplementary Equation (1)), using parameters w and R obtained by the GL fit.
In Supplementary Figure 4b a linear background nΦ0 has been subtracted from the data and from the theoretical
prediction, and one directly sees the small linear slope due to the finite-width correction. At this scale we can
distinguish red (sweep up) from blue (sweep down) data. The slight discrepancy between data and theory probably
reflects the imperfect background subtraction in the df(B) data, causing the observed zero current to deviate slightly
from the actual value. Ideally, measured sweep up and sweep down values should coincide, so the scatter between
them also points to noise in the readout.
Also shown in Supplementary Figure 4 with empty squares are measured flux values at which the winding number

changes by one in the Little-Parks region. Those flux values are expected to be very close to (n + 1/2)Φ0. Again
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there is a small correction of the order (w/2R)2 which is too cumbersome to write explicitly. The black dotted line
is the theoretical prediction including this correction. Supplementary Figure 4b shows this same data and theory as
Supplementary Figure 4a, with the linear contribution Φ = nΦ0 subtracted. Vertical purple lines show the extent of
the normal regions (denoted by black arrows in Supplementary Figure 3).

Supplementary Note 4. Ginzburg-Landau fit for a one dimensional ring with finite width

We fit the data using a theory which includes the effects of finite ring width. More specifically, we use the expression
for supercurrent I(B) as given in Eq. (7) of [6]. That expression uses the relation of I(B) to the coherence length
ξ and field penetration depth λP prescribed by the Ginzburg-Landau theory, but does not specify the temperature
dependence of ξ and λP . The latter dependence is found from the fits to the frequency shift data df taken in a broad
range of temperatures and fields (I(B) and df are related to each other via the spring constant). For brevity, we will
refer to that procedure as to the Ginzburg-Landau fit.
To perform the fit, we first identify the winding number of each segment of df(B). For the measurements taken

with increasing B, we count the number of segments (i.e., the regions of smoothly varying df between jumps) between
Bc3 and −Bc3. This number is 2nmax + 1, where nmax is the maximum winding number. We thus determine nmax.
Then we start from Bc3 and count down from nmax to zero. We apply the equivalent process to measurements taken
with decreasing B.
As explained in the main text, it is a global fit which fits the entire I(B) measurement (i.e., for all winding numbers

and for B increasing and decreasing). The fitting parameters are: superconducting coherence length ξ, penetration
depth λ, ring radius R, ring width w and spring constant k. Of these, we expect R, w and k to be fixed for each sample
(i.e., to not change with temperature), so we first undertake a preliminary fit to determine these three parameters. In
these preliminary fits, there is a degeneracy between λ and k, since they both set the amplitude of the signal: λ affects
the condensation energy, and therefore the amplitude of the current, while k affects the proportionality constant κ
between current and frequency shift. Therefore we first set the starting value kin to its calculated nominal value (using
the expression given in the Supplementary Note 2) and λin such that Bc0 (the zero temperature bulk critical field, set
by the product of ξ0 and λ0, where zeroes denote the zero temperature value) is 0.01 T, as expected for aluminium
[5]. Then we run the fit for each of the I(B) measurements (i.e., at different T ) for that sample. We then fix k to be
the mean of the values returned by these preliminary fits. Values for R and w are fixed in the same way: by picking
the mean of the values obtained from fits at different temperatures. The scatter between the obtained values for k,
R and w at different temperatures is rather small (a few percent for k and w and less than 1 nm for R).
In the second round of the fit only two fitting parameters remain, ξ and λP . Note that ξ also affects the condensation

energy, and therefore the amplitude of the signal, but it is not degenerate with k and λP since it is very accurately
set by the rings’ critical field Bc3 ∝ ξ−1, as detailed in the main text. This is in a sense lucky because our subsequent
conclusions on the switching flux value hinge on the precise determination of ξ. This can be seen from Eqs. (1) and
(2) in the main text which show that the switching flux criteria depend only on R and ξ. The temperature dependence
ξ(T ) and λP (T ) found this way agrees well with the expectations based on theory and on earlier measurements of the
thin-film critical field, see the main text.
We have made measurements for T > 400 mK. We have tried fitting below 750 mK (∼ Tc/2) but we have found

that the values of w, λ0 and ξ0 don’t converge to a fixed value like they do for T > 750 mK. This likely reflects the
decreasing applicability of GL theory at lower temperatures.
The result of the measurement and the Ginzburg-Landau fit are shown in Supplementary Figures 5 and 6, where

data is shown as points connected by thin curves and the fit is shown as thick curves. Three temperatures spanning
the whole measured range are shown for each ring size. Red curves on each panel are for sweep up and blue for sweep
down. The dotted black curves show the fit results extended over the full field range for each winding number; note
that the portion of the dotted black curve occupied when B is increasing (red) is different from the part occupied for
when B is decreasing (blue) in the hysteretic part of I(B).
The most pronounced discrepancy between the data and the fit is found for the biggest ring at the lowest tem-

peratures, see Supplementary Figure 5a, where the ring’s self-inductance L starts to play a role. In this regime, we
estimate LI ∼ 0.13Φ0, which may lead to non-negligible skewing of the rings’ current-phase relation [7]. For the rest
of the measurements considered here, the effects of L are unimportant, i.e. LI ≪ Φ0. For the smallest to largest ring
size we have computed the expected L = 0.5 − 2.3 pH. This gives LI ∼ 0.03, 0.05, 0.07, 0.13Φ0 respectively at 750
mK. At higher temperatures LI is less since I decreases with temperature.
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Supplementary Note 5. Sample parameters

Sample parameters are listed in Supplementary Table I.
The values of ξ0 and Bc3,0 from Figure 2a and c in the main text and given in the Supplementary Table I can be

compared against two separate estimates. First, we note that ξ0 can also be determined via transport measurements,
using the relationship ξ0 = 0.855

√
ξb0le [5], where ξ

b
0 = 1.6µm is the bulk Al coherence length and le the electron mean

free path. Transport measurements of Al wires that were co-deposited with the rings studied here give le = 35±5 nm
[1]; this corresponds to ξ0 = 205±15 nm, in close agreement with the values inferred from the measurements of I(B).
Second, we note that Bc3,0 can be calculated directly from Bc3,0 = 3.67Φ0/(2πwξ0) using the values of ξ0 determined
from the fits in Figure 2a in the main text and wGL. The results of this approach are listed in Supplementary Table
I as B GL

c3,0. For each sample, B GL
c3,0 and Bc3,0 agree to ≈ 10%.

Figure 2 in the main text shows that ξ and λP obtained as fitting parameters follow the expected empirical
temperature dependence, while measured rings’ critical field Bc3 follows the Ginzburg-Landau prediction. The critical
temperature is obtained as a fitting parameter from all three panels separately, and it is found to be: 1.316 ±
0.001, 1.391 ± 0.004 and 1.318 ± 0.002 K respectively. We see that the critical temperature obtained from the fit of
λP is larger by 5 %. This is possibly due to the fact that at low temperature the thickness of the rings is not much
larger than λ and the system is marginally in the regime where Pearl penetration depth applies.

Supplementary Note 6. Free energy

With values of ξ(T ) and λP(T ) obtained by fitting I(B), it is straightforward to calculate the free energy Fn(B)
of each equilibrium state [6]. The black line in Supplementary Figure 7a shows Fn(B) for the rings with R = 406
nm and T = 876 mK. In Supplementary Figure 7a, the red (blue) curves show the path taken by the rings as B is
increased (decreased). The path is determined by using the values of n inferred from the data. Supercurrent is related
to the free energy as I ∝ −∂F/∂B.
Supplementary Figure 7a shows that the phase slips for increasing and decreasing B are located nearly symmetrically

around the minima of Fn(B). Closer inspection shows that the phase slips occur near the inflection points of Fn(B).
To examine the location of these phase slips quantitatively, in the main text we define ∆ϕ±

n = ϕ±
n −ϕmin,n, where ϕ±

n

is the experimental value of the normalized flux ϕ = Φ/Φ0 at which the transition n � n±1 occurs, and ϕmin,n is the
value of ϕ at which Fn reaches its minimum value (or, as stated in the main text, where the current In ∝ −∂Fn/∂ϕ
reaches zero, see also Supplementary Eq. (1)). As defined, ∆ϕ+

n are positive (increasing B) and ∆ϕ−
n are negative

(decreasing B).
Both in a current-biased wire and in a flux-biased ring the phase of the order parameter at equilibrium is ϕ = ks,

where k is a wave-vector, and s the longitudinal coordinate along the wire or ring. Supercurrent is then I ∝ k(1−k2)
[6, 8]. The boundary condition for the wire is kL = 2πn, where L is the wire length, and for a ring kL+ 2πϕ = 2πn,
where L = 2πR. When biasing a wire with current I < Ic, k is not uniquely determined since I ∝ k(1−k2) has multiple
solutions, and the system will always chose the value of k in the stable region (non-shaded area in Supplementary
Figure 7b-d). (Here ”stable” refers to the long wire/ring diameter limit). In contrast, when biasing a ring with flux, k
is uniquely determined (through the boundary condition), and therefore it is possible to bias the system in the shaded
region, which corresponds to the regions indicated by black arrows in Figure 4 in the main text. In these regions the
velocity is super-critical (see Supplementary Figure 7d), but the diminishing density leads to the decrease of current.
This effect is only accessible in the the ring configuration.

Supplementary Note 7. Phase slip flux

In Supplementary Figure 8 we show the extended version of Figure 3 from the main text. Data for each ring size
is given in a separate panel. The measured transition widths are denoted by bars. Dotted lines are the theoretically
predicted values of the switching flux in the limit of a long sample (Eq. (1) in the main text) and full lines are the
theory prediction which takes into account the finite-length correction (Eq. (2) in the main text).
The largest disagreement between data and prediction occurs for the largest rings at low temperature (R = 780

nm, blue and violet squares in Supplementary Figure 8d). This discrepancy is likely due to the increased importance
of the rings’ self-inductance in this regime, which is ignored in our analysis. Self-inductance leads to the skewing of
the current-phase relation and as consequence the GL fit doesn’t work as well.
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Supplementary Note 8. Transition width

We have also studied the width of the jumps from one winding number to another, which is non-zero since the
measurement is performed on an array of rings. The result is shown in Supplementary Figure 9 where the transition
widths are given as function of the winding number n, proportional to B, for all ring sizes and temperatures. We
see that the transition widths have a non-zero value at n = 0 and increase roughly linearly with B. The slope of the
B-dependence is independent of T and decreases with R. It is consistent with lithographic ring-to-ring imprecision
∆R = 1.9, 1.5, 2.1 and 2.0 nm for rings with R = 780, 538, 406 and 288 nm respectively.
The transition width at zero field also shows no discernible temperature dependence. It is a factor of 5− 10 larger

than expected from the rings’ mutual inductance, which results in rings at the middle of an array seeing a slightly
different field than those at the edge. Extrapolating the linear behavior of the transition width to zero field gives
Φn=0, which is seen to increase with R.
We conclude from these observations that the rings’ temperature does not influence the transition widths of the

arrays. This is consistent with the fact that the transition width expected for thermal switching across a barrier [9]
is estimated to be several times less than the observed width.

Supplementary Note 9. Estimate of damping at low temperatures

As explained in the main text, the presence of a large supercurrent justifies the use of the time-dependent Ginzburg-
Landau theory at T → Tc. In that approximation, the time evolution of the phase difference across the phase slip is
described by viscous ”motion” of the phase. As a result, ∆n = 1 in a deterministic phase slip at T close to Tc. Since
there is no quantitative theory of deterministic phase slips at low temperature, we proceed with estimates helping to
asses the possibility of ∆n > 1.
At high winding numbers, the dependence of the kinetic energy of the moving condensate on current I can be

approximated by the linear function δE = (~/e)I. The deterministic phase slip occurs once I reaches its critical
value, I = Ic. Therefore, in a phase slip the condensate energy changes by E∆n = (∆n~/e)Ic. The critical current
Ic = Sjc is proportional to the cross-sectional area S of the wire making the ring. The critical current density jc
can be estimated from the Usadel [10] and BCS self-consistency equations [5] that allow one to relate jc to the gap
width ∆, the electron diffusion coefficient, and the electron density of states at the Fermi level. As a result, at low
temperatures jc ∼ ∆/(eρ ξ) is expressed in terms of the corresponding values of ∆ and coherence length ξ, and the
normal-state resistivity ρ (we note that jc acquires an additional factor (1− T/Tc)

3/2 at T → Tc, in accordance with
the GL theory). Thus, at low temperatures we find for the condensate energy difference

E∆n=1 ∼ ~
e2

S

ρ ξ
∆ . (2)

The second factor here, G = S/(ρ ξ), has the meaning of the normal-state conductance of a wire segment long enough
to house a phase slip.

The barrier ”protecting” the lower metastable state is δF = (~/e)Ic
√

3/2 (1− j/jc)
5/4

= E∆n=1

√
3/2 (1− j/jc)

5/4

[8]. As already mentioned in Supplementary Note 6, I ∼ j ∼ k(1− k2), where k is the wave-vector of the supercon-

ducting phase (here in the units of 1/ξ). Close to Ic (k → 1/
√
3), we have 1 − j/jc ∼ (9/2)

(
k − 1/

√
3
)2
, which, in

combination with k = (ξ/R)(n− ϕ), yields δF∆n=1 ∼ (ξ/R)
5/2

E∆n=1.
To estimate the dissipation due to the quasiparticle production in the course of a phase slip, we model it as a short

SNS junction of conductance G. A finite phase difference φ across it results in the appearance of Andreev levels with
sub-gap energies. Furthermore, the time dependence of φ leads to Landau-Zener transitions between the occupied
and empty levels. As the result, an out-of-equilibrium level occupation is created. In a ∆n = 1 phase slip, the phase
difference φ starts from 0 and ends at 2π; respectively, the Andreev levels ”peel off” and merge with the edges of the
gap ∆. At the end of the cycle, the non-equilibrium occupation of levels transforms into pairs of free quasiparticles
each pair carrying energy 2∆. The number of created pairs Np depends on dφ/dτ (τ denotes time) in the course of
the phase slip. To estimate it, we use the result [11] developed for the dissipative current across a short SNS junction,
Idiss = G

√
|V |∆/e at a constant low (eV ≪ ∆) bias, V = (~/2e)(dφ/dτ). For estimates, we set |dφ/dτ | ∼ 2π/τps

with τps being the time it takes to undergo a phase slip. Dispensing with the unreliable numerical factors, the energy
spent on the quasiparticles’ production can be estimated as

Ediss = 2∆Np ∼ ∆τpsIdiss/e ∼
~
e2

G∆(∆τps/~)1/2 . (3)
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Lastly, we use the estimate τps ∼ ~/∆. It may be viewed as the extrapolation of the TDGL characteristic time
∼ ~/|T − Tc| to low temperatures, or as the RC time constant of the junction with the capacitance C ∼ ~G/∆
renormalized by the quantum fluctuations of charge [12]; the two approaches yield the same result. Replacing τps →
~/∆ and using the conductance G = S/(ρ ξ) associated with the phase slip in Supplementary Equation (3), we find
Ediss ∼ (~S/e2ρ ξ)∆ quoted in the main text.
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