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Topological energy transfer in an optomechanical 
system with exceptional points
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Topological operations can achieve certain goals without requiring 
accurate control over local operational details; for example, 
they have been used to control geometric phases and have been 
proposed as a way of controlling the state of certain systems within 
their degenerate subspaces1–8. More recently, it was predicted that 
topological operations can be used to transfer energy between 
normal modes, provided that the system possesses a specific 
type of degeneracy known as an exceptional point9–11. Here we 
demonstrate the transfer of energy between two vibrational modes 
of a cryogenic optomechanical device using topological operations. 
We show that this transfer arises from the presence of an exceptional 
point in the spectrum of the device. We also show that this transfer 
is non-reciprocal12–14. These results open up new directions in 
system control; they also open up the possibility of exploring other 
dynamical effects related to exceptional points15,16, including the 
behaviour of thermal and quantum fluctuations in their vicinity.

An externally imposed time variation of the Hamiltonian H of an 
otherwise isolated, conservative system provides a powerful means 
for controlling the evolution of the system. If H is varied sufficiently 
slowly, then the adiabatic theorem states that a system prepared at some 
initial time t0 in a non-degenerate normal mode of H(t0) will remain 
in the corresponding normal mode of the instantaneous H(t) (ref. 17). 
As a result, varying H so as to execute a closed loop (in the space of 
 parameters that define H) will return the system to its initial state, up to 
an overall phase. This phase was shown by Berry and  others to include 
a contribution that is determined by a simple geometric property of 
the control loop1–4. The subsequent insight that such a  topological 
 operation (that is, executing a closed control path) may have an 
 outcome that is robust against small fluctuations in the control path has 
had a profound impact on many areas of theory and experiment5–8,18.

More recently, it was predicted9–11 that topological operations may 
also be used to transfer energy between modes in systems that are 
 subject to loss and/or gain. Specifically, energy transfer was  predicted 
to occur for closed adiabatic control paths that enclose an  exceptional 
point (EP, a form of degeneracy that can arise when the effective 
Hamiltonian is non-Hermitian; also known as a branch point). It 
was also predicted12–14 that such operations can be non-reciprocal 
in their dependence on the initial conditions of the system and the 
direction of rotation of the control loop about the EP. The  possibility 
of using  topological operations to control the energy distribution 
within a  system while also inducing non-reciprocal behaviour has 
attracted  considerable attention19–22. Some features of EPs have been 
 demonstrated in static measurements of spectra and eigenmodes23,24; 
however, experiments have not yet realized topological or non- 
reciprocal dynamics by encircling an EP.

Here we measure topological and non-reciprocal dynamics in an 
optomechanical system. We show that the system possesses an EP 
and that external control parameters can be used to encircle the EP on 
timescales comparable to the lifetime of the excitations of the system. 
We demonstrate that such topological operations can transfer energy 
and that this energy transfer is non-reciprocal. When the control path 

is not adiabatic, the dynamics becomes more complicated; however, we 
find quantitative agreement between experimental data and numerical 
simulations over the full range of measurements.

The system studied here consists of a silicon nitride membrane 
placed inside a high-finesse optical cavity25. The dimensions of the 
membrane are 1 mm ×  1 mm ×  50 nm. Because it is almost perfectly 
square, the vibrational eigenmodes of the membrane include nearly 
degenerate pairs that are well-separated in frequency from all the other 
eigenmodes. We use this separation to focus on a nearly  degenerate 
pair with natural frequencies ω1/(2π) =  788.024 kHz and ω2/(2π)  
=  788.487 kHz. In the absence of laser light driving the optical  cavity, 
these two modes are essentially uncoupled and have very small 
 damping rates (γ1/(2π) =  0.6 Hz and γ2/(2π) =  1.4 Hz).

When a laser excites the cavity, the resultant intracavity field  
α drives the vibrations of the membrane via radiation pressure. At the 
same time, these vibrations detune the cavity and thereby modulate 
α (refs 25, 26). It is straightforward to integrate α(t) out of the full 
 optomechanical equations of motion (see Methods), resulting in an 
effective equation of motion for just c1 and c2, the displacements of the 
modes of the membrane:
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where C(t) =  [c1(t), c2(t)]T. The effective Hamiltonian is
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where g1,2 are the optomechanical coupling rates of the mechanical 
modes, and the complex mechanical susceptibility introduced by the 
intracavity field is
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Here P and ΩL are the power and frequency of the laser driving the 
cavity, Δ is the mean detuning between the laser and the cavity, 
ω0 =  (ω1 +  ω2)/2, and κ and κin are the linewidth and input coupling 
rate of the cavity, respectively. The experiment described here is 
 classical; the reduced Planck constant ħ appears in the expression for 
σ because g1,2 are given in terms of the single-photon rate.

The system will possess an EP if σ can be made to equal 
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this typically requires control over both Re(σ) and Im(σ). For 
 optomechanical devices in the resolved sideband regime (κ <  ω0), this 
control is provided by P and Δ. By contrast, when κ ω� 0 , P and Δ 
appear in σ in a linearly dependent fashion and so control only | σ| . The 
ability to access (and encircle) an EP using the detuning and power of 
a single laser is an important feature of the system presented here (and 
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in contrast with the more complicated arrangement proposed in  
ref. 27), because these parameters can be controlled in situ with a high 
degree of precision, timing accuracy, and dynamic range.

A detailed description of the optomechanical device and the 
 measurement set-up is given in Methods. The membrane and  optical 
cavity are maintained at T =  4.2 K. The motion of the membrane is 
monitored via a heterodyne measurement of a laser with constant 
power and detuning. Control over the optomechanical system is 

provided by a separate laser, whose detuning Δ and power P are set by 
an acousto-optic modulator.

To establish the presence of an EP in this system, we measured the 
mechanical spectrum of the membrane as a function of Δ and P. These 
spectra were acquired by driving the membrane and  monitoring its 
response via the heterodyne signal. As described in Methods, each 
spectrum was fitted to determine the two resonance frequencies 
ωa,b(Δ, P) and damping rates γa,b(Δ, P). (The subscripts ‘a’ and ‘b’ refer 
to the normal modes of the membrane in the presence of an optical 
field; the subscripts ‘1’ and ‘2’ used previously refer to these modes in 
the absence of an optical field.)

The results of these fits are summarized in Fig. 1, which shows the 
complex eigenvalues ξa,b =  ωa,b −  iγa,b/2 as Δ and P are varied. When 
P ≤  155 μ W, ξa and ξb each trace out a closed trajectory, completing a 
loop as Δ is varied from ω−� 0  to ω−� 0 . By contrast, when 
P ≥  265 μW, ξa and ξb both follow open trajectories, swapping their 
values as Δ is varied over the same range. This sharp transition in the 
topology of ξa,b(Δ) is characteristic of an EP9. The solid lines in Fig. 1 
are a global fit to the complex eigenvalues of H, which gives best-fit 
values of ω1,2 and γ1,2 as stated above, as well as g1/(2π ) =  1.03 Hz,  
g2/(2π ) =  1.14 Hz, κin/(2π ) =  70 kHz and κ/(2π ) =  177 kHz. These 
 values imply the  existence of an EP at ΔEP/(2π ) =  − 792.5 kHz, 
PEP =  223 μ W (or  equivalently ωEP/(2π ) =  788.2 kHz and γEP/(2π )  
=  460 Hz, indicated as the black cross in Fig. 1).

Figure 2a, b shows measurements of Re(ξa,b) and − 2Im(ξa,b) over 
a narrow range of Δ and P centred on ΔEP and PEP. These measure-
ments show the characteristic features of an EP: ξa and ξb coalesce 
at a single value of the control parameters and, in the vicinity of this 
point, they exhibit the same structure as the Riemann sheets of the 
 complex square-root function z1/2. For comparison, Fig. 2c, d shows 
the  eigenvalues of H (see equation (2)), calculated using the best-fit 
values determined in Fig. 1.

The surfaces shown in Fig. 2a, b are such that if Δ and P were varied 
to execute a single closed loop, the resulting smooth evolution on the 
eigenvalue manifold would return to its starting point only if the loop 
did not enclose the EP. By contrast, a loop enclosing the EP would result 
in a trajectory starting on one sheet, but ending on the other.
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Figure 1 | The complex eigenvalues of the normal modes of the 
membrane. The resonance frequency (horizontal axis) and damping rate 
(vertical axis) of the two mechanical modes of the membrane as a function 
of the laser power P and detuning Δ. Data for one mode are shown as 
squares; data for the other mode are shown as circles. The statistical 
uncertainty in the measurements is smaller than the symbols. Colours 
indicate P, while the arrows indicate the variation of the eigenvalues as  
Δ is varied from − 1,200 kHz to − 400 kHz at fixed P. For the lower values 
of P, each eigenvalue follows a closed trajectory, beginning and ending 
at the same point. For the higher values of P, the eigenvalues follow 
open trajectories, each one ending at the starting point of the other. The 
solid lines are the global fit described in the text. The location of the EP 
predicted by this fit is shown as a black cross.
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Figure 2 | The exceptional point in the 
spectrum of mechanical modes. a, b, The 
resonance frequencies (a) and damping rates  
(b) of the two mechanical modes of the 
membrane as a function of laser power P and 
detuning Δ. Each grid point corresponds to a 
measurement; grid lines and surface colouring 
are guides to the eye. Colouring is chosen so that 
red (blue) corresponds to the mode with lower 
(higher) damping. c, d, Plots of the theoretically 
calculated real (c) and imaginary (d) parts of the 
eigenvalues of the effective Hamiltonian matrix H 
(equation (2)). All of the parameters appearing in 
this calculation are taken from the fit in  
Fig. 1. Note that the viewing angle in a and c 
differs from that in b and d.
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To observe this effect, we performed a series of measurements in 
which Δ and P were initially set to Δmax and Pmin, and one of the modes 
of the membrane (ca) was excited using a piezoelectric element. Once 
the system reached its steady state, the piezo drive was switched off, 
and Δ and P were varied to sweep out a closed rectangular loop. The 
loop was defined by the points (Δmax, Pmin), (Δmax, Pmax), (Δmin, Pmax) 
and (Δmin, Pmin), returning to (Δmax, Pmin) after a duration τ =  16 ms. 
This value of τ was chosen so that nearly all such control loops satisfy 
the requirement of conventional adiabaticity: τ ξ ξ/ −� 1 a b  (loops 
passing close to the EP do not satisfy this inequality). We describe the 
effect of varying τ below.

The heterodyne signal was recorded before, during and after  
the  control loop. This signal was demodulated at frequencies  
ωa(Δmax, Pmin) and ωb(Δmax, Pmin), with typical results shown in  
Fig. 3a, b. Before and after the control loop (that is, for t <  0 and t >  τ), 
this record corresponds to the amplitudes of the motion of the normal 
modes | ca(t)|  (red in Fig. 3a, b) and | cb(t)|  (blue). During the control 
loop (0 ≤  t ≤  τ) this correspondence does not hold, because the eigen-
frequencies of the membrane undergo rapid variations; data from this 
region do not play any role in our analysis. As shown in Fig. 3a, b, ca is 
initially excited to about 4 ×  10−12 m. There is also a small excitation of cb 

(owing to the non-zero overlap of the mechanical resonances);  however, 
this  unintentional excitation accounts for less than about 1% of the total 
energy, and does not qualitatively affect the results presented here.

Comparing | ca,b(0)|  with | ca,b(τ)|  in Fig. 3a, b, it is clear that energy is 
lost from the system during the control loop. This reflects the fact that 
the damping here is always positive. To distinguish this overall energy 
loss from effects related to the topological operation, we focus on the 
relative energy of the two modes before and after the loop.

The data in Fig. 3a were taken for a control loop that did not enclose 
the EP (Δmax =  − 1,440 kHz, Pmax =  750 μ W; for all data, Δmin =   
− 1,890 kHz, Pmin =  2 μ W). As a result, the nearly adiabatic transit 
around the control loop results in negligible energy transfer at the end 
of the control loop. This can be seen qualitatively in Fig. 3a by noting 
that approximately 99% of the energy is in ca both immediately before 
and immediately after the control loop.

By contrast, Fig. 3b shows a measurement in which the control loop 
does enclose the EP (Δmax =  − 300 kHz, Pmax =  750 μ W). The effect on 
the dynamics is readily visible: before the loop more than 99% of the 
energy is in ca, whereas after the loop more than 99% of the (remaining) 
energy is in cb.

To quantify the transfer of energy from one mode to another, we 
define the efficiency E =  | cb(τ)| 2/[| ca(τ)| 2 +  | cb(τ)| 2] (this definition 
makes use of the fact that, before the loop, nearly all the energy is in ca). 
The values of | ca,b(τ)|  are determined by fitting decaying exponentials 
to | ca,b(t)|  for t >  τ +  20 ms and extrapolating these fits to t =  τ.

Figure 3c shows E(Δmax) for fixed Pmax =  750 μ W; Fig. 3d shows 
E(Pmax) for fixed Δmax =  − 290 kHz. The limiting behaviour in both 
cases (that is, for large or small Pmax and Δmax) agrees with the 
 prediction that adiabatic paths enclosing the EP will result in energy 
transfer, whereas adiabatic paths not enclosing the EP will not. The 
solid lines in Fig. 3c, d are the results of numerically integrating 
 equations (1) and (2), and are not fits; rather, they use the P(t) and 
Δ(t) used in the measurements, and the values of g1,2, ω1,2, γ1,2, κin and 
κ determined from the data in Fig. 1. These simulations show good 
agreement with the measurements irrespective of whether the loop 
encloses the EP and of whether the loop satisfies adiabaticity.

The measurements shown in Fig. 3 were all made by applying the 
 initial drive to the ‘a’ mode and then executing a control loop in the 
counter-clockwise sense. In this case, the adiabatic  trajectories  enclosing 
the EP correspond to the less-damped eigenmode (red regions of the 
surfaces in Fig. 2) for the majority of the loop. By  contrast, executing the 
same loop in the clockwise sense would result in an  adiabatic  trajectory 
corresponding primarily to the more-damped eigenmode (blue regions 
in Fig. 2). As described in refs 12–14, 28, adiabatic  behaviour is expected 
while the system is in the less-damped eigenmode; however, when the 
system is in the more-damped mode, competition between the non- 
adiabatic transfer (which is exponentially small in τ) and the effect of 
differential loss (which is  exponentially large in τ) leads to a breakdown 
of adiabaticity, causing the  system to eventually relax to the less-damped 
mode. This process may also be understood as a consequence of the 
Stokes phenomenon of asymptotics12.

This behaviour is demonstrated in Fig. 4, which shows E(τ) when the 
EP is encircled in the counter-clockwise or clockwise sense, and with 
the initial excitation in the ‘a’ mode (for which E is as defined above) 
or the ‘b’ mode (for which E is as defined above, but with the subscripts 
reversed). The same loop was used in all four cases: Δmin =  − 1,890 kHz, 
Pmin =  2 μ W, Δmax =  − 290 kHz and Pmax =  750 μ W. In all four cases, 
executing the loop very quickly results in negligible energy transfer 
(E →  0 as τ →  0), consistent with the conventional expectation for a 
sudden perturbation.

The adiabatic limit (τ� 1 ms) is quite different. Efficient energy 
transfer is achieved (E →  1) for an initial excitation in the ‘a’ mode and 
a counter-clockwise loop (and for an initial excitation in the ‘b’ mode 
and a clockwise loop), consistent with the discussion of Fig. 3, and with 
the fact that these conditions correspond to adiabatic paths almost 
entirely in the less-damped mode. By contrast, E →  0 when τ� 1 ms 
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Figure 3 | Topological energy transfer. a, b, The energies of mode ‘a’ 
(red) and mode ‘b’ (blue) as a function of time t. A drive is applied to 
the ‘a’ mode for t <  0. At t =  0 the drive is turned off and the control loop 
described in the text is implemented. The control loop ends at t =  16 ms; 
the grey shaded region corresponds to the time during which the 
control loop is implemented. For t >  16 ms the system relaxes to thermal 
equilibrium. The black lines are fits to a decaying exponential (due to the 
mechanical damping) with a constant offset (reflecting the thermal motion 
of the mode). The black dot shows the extrapolation of this fit to t =  16 ms. 
The loop used in a does not enclose the EP, whereas the loop used in  
b does. c, The fraction of the (remaining) energy in the ‘b’ mode after the 
control loop has been completed as a function of the maximum detuning 
of the loop, Δmax. The left (right) point shown as a solid circle corresponds 
to the data in a (b). d, The corresponding measurement as a function of 
the maximum power of the loop, Pmax. In c and d, the statistical errors are 
comparable to or smaller than the size of the symbols. The solid lines are 
numerical simulations of the dynamics and are completely constrained by 
the parameters from the fit in Fig. 1. The insets are schematics showing 
how the loop varies along the horizontal axis of each panel; the location  
of the EP is indicated by the black cross.
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for an initial excitation in the ‘b’ mode and a counter-clockwise loop 
(and for an initial excitation in the ‘a’ mode and a clockwise loop).

The behaviour described above may be summarized by describing 
an adiabatic control loop around an EP as a matrix that transforms the 
initial state C(0) =  [c1(0), c2(0)]T to the final state C(τ) =  [c1(τ), c2(τ)]T 
with the form:

↺ ↻
↺ ↻ ↺ ↻

↺ ↻ ↺ ↻
τ

τ τ
τ τ

( )=





( ) ( )
( ) ( )






( )U
a b
c d

4,
, ,

, ,

where ↺ and ↻ denote a counter-clockwise and clockwise loop, 
 respectively. Because H is a symmetric matrix, it is straightforward to 
show that if ↺ τ( )U  and ↻ τ( )U  represent identical but time-reversed 
 control loops, then ↺ ↻=U U T . Along with this relationship, the four data-
sets in Fig. 4 demonstrate the non-reciprocity of these operations, that 
is, that ↺ ↻ ↺ ↻τ τ( )≠ ( )b c, ,  for τ� 1 ms (ref. 29). This inequality is also 
evident in direct measurements of ↺ ↻ τ( )b ,  and ↺ ↻ τ( )c ,  (see Methods).

We have demonstrated a new form of adiabatic topological operation 
that allows for non-reciprocal energy transfer between two eigenmodes 
of a mechanical system. This transfer exploits the presence of an EP 
in the spectrum of the two modes. The square membrane used here 
also offers threefold and fourfold near-degeneracies, opening up the 
possibility of studying dynamics in the vicinity of higher-order EPs15,16. 
Furthermore, the cryogenic optomechanical device used here is subject 
to both thermal and quantum fluctuations30; it is an open question 
whether non-reciprocal topological effects will allow for new forms of 
control over these fluctuations.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Note that we have dropped counter-rotating ⁎c1 and ⁎c2 terms. We have also dropped 
the mechanical drive terms η1,2. These are not necessary for our model, because 
we drive the system to a particular initial state, turn off the drive and then focus 
on the evolution of the system without any mechanical drive applied.

In the traditional optomechanical system, one defines the (single-mode) 
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where σ is defined in equation (3).
Writing our mechanical modes as a vector C(t) =  [c1(t), c2(t)]T, we can write the 

following matrix equation:
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Before we move back to the time domain, we note that Σ(ω) varies on the scale of 
κ, whereas the mechanical modes are susceptible to drives only within their 
 linewidth, which is substantially smaller than κ, by assumption. Therefore, it is 
sufficient to consider Σ(ω) ≈  Σ(ω1) ≈  Σ(ω2) ≡  Σ. (The mechanical modes are also 
assumed to be nearly degenerate.) Now that Σ  is not a function of ω, we can easily 
move back to the time domain to obtain equation (1) (reprinted here for  
convenience):
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Here Σ is a complex quantity, which depends (via α1 and α2) on P and Δ. This is 
the tunability that allows us to access an EP in the spectrum of the two mechanical 
modes.

We note that equation (6) is identical to equation (2); the apparent difference is 
due to the fact that in equation (2) the matrix Σ  is expressed using the right-most 
form in equation (5).
Measuring the mechanical eigenvalue spectrum. In Figs 1 and 2, we show the 
presence of an EP in the complex eigenvalue spectrum (frequencies and decay rates) 
of the mechanical modes. At each point (P, Δ), the eigenvalues were  measured by 
optically driving the mechanical modes and measuring their driven response. We 
measure the mechanical sidebands using the heterodyne  measurement laser, locked 
to the cavity resonance. We set a certain P and Δ for the control laser, then apply 
amplitude modulation at a frequency near ω1 and ω2, thus creating an optical beat 
note that drives the mechanical modes. This modulation frequency is swept over 
ω1 and ω2, and we use a lock-in amplifier to measure the complex response of the 
heterodyne signal to this drive.

Two examples of these measurements are shown here. Extended Data Fig. 2  
shows a sweep over the two modes when the control-beam power is low and 
there is minimal hybridization of the two modes. In Extended Data Fig. 3, the 
 control-beam power is large and detuned near − ω1,2 such that the modes hybridize 
substantially, resulting in modes with nearly degenerate frequencies, but different 
linewidths. The relative phase of the driven response of the two modes is such that 
we see destructive interference in Extended Data Fig. 3. By fitting the complex 
response to a sum of complex Lorentzians with an arbitrary phase offset, we extract 
ω1, ω2, γ1 and γ2. The solid lines in Extended Data Figs 2 and 3 are these fits, from 
which we extract the eigenvalues plotted in Figs 1 and 2.

MethOds
Measurement set-up. A schematic illustration of the experiment is shown in 
Extended Data Fig. 1. The optomechanical device and much of the measurement 
set-up are described in ref. 30. The membrane and optical cavity are mounted in 
a cryostat that is maintained at T =  4.2 K. The motion of the membrane is 
 monitored via a heterodyne measurement using a probe beam and a local  oscillator, 
both produced from a single laser (‘ML’ in Extended Data Fig. 1a). The probe-beam 
frequency is shifted by an acousto-optical modulator (AOM1 in Extended Data 
Fig. 1a) driven at 80 MHz. Pound–Drever–Hall locking is used to keep the probe 
beam nearly resonant with one mode of the cavity; as a result its detuning ∆ κ�p , 
resulting in a negligible contribution to σ. Likewise, the large detuning of the local 
oscillator (∆ κ≈ �80 MHzLO ) also results in a negligible contribution to σ. 
Control over the optomechanical system is provided by a separate laser (‘CL’ in 
Extended Data Fig. 1a), whose detuning Δ and power P are controlled by an 
 additional acousto-optic modulator (AOM3 in Extended Data Fig. 1a). The 
 frequencies of the various beams are illustrated in Extended Data Fig. 1b. The 
cavity is approximately single-sided and all measurements are performed in 
 reflection. The reflected beams are incident on a single photodiode, and 
 demodulation circuits are used to monitor multiple Fourier components of the 
heterodyne signal, each with a bandwidth equal to 50 Hz.
Optically mediated mechanical coupling. We consider a system consisting of two 
mechanical modes, each coupled linearly to a common optical mode. We show 
that the optical field generates a tunable effective coupling between the mechanical 
modes, which can be exploited to produce an EP, as described in the main text. The 
model closely follows the one presented in ref. 31.

In a standard optomechanical system, one considers an optical cavity mode with 
a frequency that is linearly coupled to the position of a mechanical oscillator. An 
input–output approach to this system yields a pair of coupled differential equations 
for the two modes, which can be easily treated in the Fourier domain to understand 
the optical modification of the mechanical susceptibility. Here we consider a simple 
extension of this model in which there are two mechanical modes, each coupled 
to the same optical mode. This yields the following equations of motion for the 
mechanical/optical modes:
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where a is the optical mode amplitude with resonant frequency ωc, total dissipation 
rate κ and input coupling rate κin. The ith mechanical mode is described by 
 position ⁎= +z c ci i i , where ci is the complex mode amplitude and the asterisks 
indicate complex conjugation. Each mechanical mode has resonant frequency ωi, 
dissipation rate γi, and is coupled to the optical mode with a single-photon coupling 
rate gi. The optical and mechanical modes are driven by input fields ain and ηi, 
respectively.

We now suppose that the cavity is driven by a beam with power P and frequency 
ΩL, detuned from the cavity resonance by Δ =  ΩL −  ωc. By doing so, we can express 
the optical field as fluctuations d(t) around a mean intracavity field given by

ħ
κ
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=κa
i

a a P;in

2
in in

L

Making these substitutions in the original system of equations yields the linearized 
equations of motion:
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where we have defined α = agi i. Moving to the Fourier domain, and defining the 
cavity susceptibility χc(ω) =  [κ/2 −  i(ω +  Δ)]−1, we solve for d(ω) and d*(ω) and 
substitute these into the equations for c1,2(ω) to find a reduced system of two 
 equations describing the mechanical modes:
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EPs have also been observed in many other systems, including atom–cavity 
composites32, microwave cavities23,24, optical systems33–36, electronic circuits37 
and an exciton–polariton system38, and are predicted to exist in Bose–Einstein 
condensates39,40, quantum dots41, acoustic systems42, magnetohydrodynamic 
dynamos43 and nuclei44.
Measurement of propagator matrix elements. Figure 4 shows the non- reciprocity 
of the topological operations as parameterized by their energy transfer efficiency 
E. The non-reciprocity of these operations can also be seen from direct measure-
ments of the magnitudes of the matrix elements defined in equation (4). These 
measurements are carried out by, for example, initially driving the ‘a’ mode and 
then performing a clockwise loop about the EP; in this case ↻ τ τ( ) = ( )/ ( )a c c 0a a  
and ↻ τ τ( ) = ( )/ ( ) .c c c 0b a  Similarly, repeating this process, but with the ‘b’  
mode initially driven, gives ↻ τ( )b  and ↻ τ( )d . In Extended Data Fig. 4, we plot 
the magnitudes of these propagator matrix elements as a function of the loop 
duration τ. The points in Extended Data Fig. 4 are extracted from the same data 
as shown in Fig. 4. For sufficiently large τ, we see that ↺ ↻ ↺ ↻τ τ( ) ≠ ( )b c, , , as 
stated in the main text, which implies ↺ ↻ ↺ ↻τ τ( ) ≠ ( )U U, ,

T .
The real-time dynamics studied here can be connected to the propagation of 

light through an optical crystal with properties that vary along the beam path12,45. 
An encircling around an EP is also mapped onto the propagation through a two-
mode waveguide in a concurrent experiment46.
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Extended Data Figure 1 | Experimental schematics. a, Illustration of 
the optical and electronic components. The measurement laser (‘ML’) is 
split into a local oscillator (‘LO’ in b) and a probe beam (‘Probe’ in b). The 
probe-beam frequency is shifted by an acousto-optic modulator (‘AOM1’), 
and is locked to the cavity using a Pound–Drever–Hall (PDH) scheme 
and modulation produced by an electro-optic modulator (‘EOM’). The 
control laser (‘CL’; ‘Control’ in b) is locked to the measurement laser with 
a frequency offset that is approximately double the free spectral range of 
the cavity. The control parameters used to access the EP are the power 
P and detuning Δ of the control laser. P and Δ are set by the amplitude 
and frequency of a signal generator (‘SG’), which drives another acousto-
optic modulator (‘AOM3’). The PDH error signal is used to control the 
frequency of yet another acousto-optic modulator (‘AOM2’), ensuring  
that all beams track fluctuations of the cavity. Light is delivered to  
(and collected from) the cryostat via an optical circulator. Coloured lines, 
hollow lines and thick black lines show free-space laser beams, optical 
fibres and electrical circuits, respectively. Triangles, ovals and semicircles 
show electronics, fibre couplers and photodiodes, respectively. ‘DAQ’ 
indicates the data acquisition system. The silicon nitride membrane is 
shown in purple. b, Illustration of the optical frequency domain. Lasers are 
indicated by coloured arrows and cavity modes by black curves.
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Extended Data Figure 2 | Lock-in signal at low laser power (Δ = −780 kHz, P = 73 μW). Left, amplitude (top, red) and phase angle (bottom, blue)  
of the lock-in signal as a function of drive frequency. Right, the same data shown as a parametric plot of the in-phase and out-of-phase components  
of the lock-in signal as a function of drive frequency.
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Extended Data Figure 3 | Lock-in signal at high laser power (Δ = −780 kHz, P = 380 μW). Left, amplitude (top, red) and phase angle (bottom, blue) 
of the lock-in signal as a function of drive frequency. Right, the same data shown as a parametric plot of the in-phase and out-of-phase components  
of the lock-in signal as a function of drive frequency.
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Extended Data Figure 4 | Magnitudes of propagator matrix elements. 
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