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Abstract
Presented in this paper are measurements of an optomechanical device in which various acoustic
modes of a sample of superfluid helium couple to a fiber-based optical cavity. In contrast with
recent work on the paraxial acoustic mode confined by the cavity mirrors (Kashkanova et al Nat.
Phys. 2016 (https://doi.org/10.1038/NPHYS3900)), we focus specifically on the acoustic
modes associated with the helium surrounding the cavity. This paper provides a framework for
understanding how the acoustic modes depend on device geometry. The acoustic modes are
observed using the technique of optomechanically induced transparency/amplification. The
optomechanical coupling to these modes is found to be predominantly photothermal.

Keywords: superfluid, liquid helium, optomechanics, fluid mechanics, optical cavities

(Some figures may appear in colour only in the online journal)

1. Introduction

Incorporating fluid into an optomechanical system can be
beneficial in a number of ways. First, it can provide new
avenues for studying the fluidʼs properties [2, 3]. Second, a
fluid with high thermal conductivity can be used to thermalize
a mechanical element, allowing higher optical powers to be
used [4]. Third, a fluid can be used as a mechanical element,
which simplifies the assembly process, as the fluid can con-
formally fill or coat an electromagnetic resonator [5, 6].

There are two distinct approaches to using fluid in an
optomechanical system: immersing a solid resonator into fluid
[6, 7], or filling a hollow resonator with fluid [1–3, 8]. If one
wishes to perform experiments at cryogenic temperature
(which is necessary to achieve quantum behavior in almost all
optomechanical systems), liquid helium is the only choice of
fluid, since it does not solidify under its own pressure. In
addition it has a variety of useful properties for optomecha-
nical applications, such as very low optical absorption [9],

high thermal conductivity [10], and acoustic loss proportional
to T4 [11], which becomes low at dilution refrigerator
temperatures.

In this paper we investigate the coupling between
superfluid helium and a fiber-based optical cavity. In contrast
with our previous work [1], we do not focus on the paraxial
acoustic modes confined by the cavity mirrors and co-located
with the optical modes, but rather study the lower frequency
modes defined by the fibers and the surrounding components.
We use the technique of optomechanically induced trans-
parency/amplification (OMIT/OMIA) to measure the
response of these modes to an optical drive. By comparing
these measurements to a theoretical model similar to the one
described in [1], we find that these modes’ optomechanical
coupling is partially electrostatic and partially photothermal.
The photothermal coupling appears to result from two distinct
mechanisms, one related to thermal transport within the
superfluid and the other related to thermal expansion of the
materials confining the superfluid. These results provide
insight into the various mechanisms by which photothermal

Journal of Optics

J. Opt. 19 (2017) 034001 (14pp) https://doi.org/10.1088/2040-8986/aa551e

5 Author to whom any correspondence should be addressed.

2040-8978/17/034001+14$33.00 © 2017 IOP Publishing Ltd Printed in the UK1

mailto:anna.kashkanova@yale.edu
https://doi.org/10.1088/2040-8986/aa551e
http://crossmark.crossref.org/dialog/?doi=10.1088/2040-8986/aa551e&domain=pdf&date_stamp=2017-02-01
http://crossmark.crossref.org/dialog/?doi=10.1088/2040-8986/aa551e&domain=pdf&date_stamp=2017-02-01


processes can lead to optomechanical coupling. They are also
important for characterizing superfluid-filled optical cavities.

2. Methods

The device, shown schematically in the figure 1(a), is
located in a cell made of brass. A glass ferrule with 133±5
μm diameter bore is epoxied inside the cell. The bore is
funneled on one end. An optical cavity is created by
inserting a pair of 125 μm diameter fibers into the bore [12].
Each fiber face (the cleaved end of the fiber) has an inden-
tation created by CO2 laser ablation [13, 14]. The depth of
the indentation is 1.5 μmand the radii of curvature are:

=R 2821 μmand =R 4092 μm. On each fiber end, a dis-
tributed Bragg reflector optical coating has been deposited
[15]. The optical transmission is 103 ppm for the input
mirror and 10 ppm for the back mirror, which results in a
single sided cavity. The mirror separation is L=84 μmand
the optical cavity linewidth is k p= ´2 54 MHz. The input
coupling is k p= ´2 27 MHzin .

The mounting of the cell is shown in figure 1(b). The cell
is mounted to the mixing chamber (MC) of a dilution
refrigerator, which is kept at temperature <T 100 mK. The
cell is filled through a 1.5 mm outer diameter (500 μm inner
diameter) stainless steel capillary. The capillary is wound

around copper bobbins at each stage of the refrigerator for
thermalization. At the MC, there is a sintered silver heat
exchanger which is used to thermalize the incoming helium to
the MC temperature.

The device is filled by adding small doses of helium. The
time when the dose is added and the amount of helium in each
dose are recorded. Using this information, the level of helium
in the cell can be calculated, as described in section 2.1.

The resonant frequency of the optical cavity is monitored
in order to determine when the cavity is filled. Filling the
cavity changes its effective length by a factor of 1.028 (the
index of refraction of LHe) [16], changing the frequency of
the cavity modes correspondingly. Once the cavity is filled,
the optomechanically induced transparency (OMIT) [17] is
used to observe the acoustic modes. Using this technique, two
distinct families of acoustic modes are observed: low fre-
quency modes (20−300 KHz) and high frequency modes (2
−20 MHz). Some of the low frequency modes show strong
dependence on the helium level, from which we conclude that
the mode profiles extend beyond the cavity volume into the
helium sheath between the fiber and the ferrule, and into the
funnel. Those modes are referred to as ‘ferrule modes’. In
contrast, the high frequency modes are independent of the
helium level and have frequencies consistent with the radial
acoustic modes of a cylinder of helium. Those modes are
referred to as ‘radial modes’.

Figure 1. The experimental setup. (a) A schematic drawing of the device. The optical cavity is formed between two glass fibers (yellow),
aligned in a glass ferrule (yellow). The ferrule is epoxied into a brass cell (gray). The optical fibers are epoxied to the brass cell as well,
forming superfluid helium tight seals. The helium (blue) is delivered via the fill line shown at the top of the cell. The helium level in the cell is
measured from the bottom of the ferrule (dashed black line) and is shown with a dashed blue line. The helium level in the ferrule is higher due
to capillary action and is shown with a dashed red line. (b) A schematic drawing of the helium delivery system at the mixing chamber (MC)
of the dilution refrigerator. The helium (blue) enters through a capillary (shown on the right). It first condenses in a silver sinter (gray), and
then flows via Rollin film into the cell. The cell is attached to a gold-plated OFHC copper mounting bracket, which is attached to the MC.
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2.1. Filling the device

As described above, helium is added to the cell in discrete
doses. Each dose at room temperature contains  13.4 cm3

helium gas at a pressure of 1100 mbar. The doses are added
at a rate of approximately one every three minutes. The doses
are first released into a liquid nitrogen cold trap, then, after
one minute, are added to the cell. Due to the geometry of the
system (shown in figure 1(b)), helium first condenses inside
the volume containing the sintered silver heat exchanger
(which is a local gravitational minimum), and then ‘creeps’ as
a Rollin film [18] along the walls of a connecting capillary to
fill the cell. The film thickness d is given by [19]: h= -d h 1 3.
Here h = ´ -6.5 10 9 m4 3 and h is the height above the
helium level. Before helium starts to condense in the cell, all
parts of the system (the sintered silver heat exchanger, the
cell, the capillary connecting the sintered silver heat
exchanger to the cell) need to be covered by the superfluid
Rollin film. The surface area of the sintered silver heat
exchanger is specified to be  10 m2 [20] which is at least
two orders of magnitude larger than combined surface area of
other parts of the system. The volume of liquid helium
necessary to cover the sintered silver heat exchanger with the
Rollin film is estimated to be 0.16 cm < <V 0.383

film cm3.
Both upper and lower bounds are found by assuming constant
film thickness throughout the sinter. The lower bound results
from assuming the bulk helium level to be located in the
device (6 cm below the top of the sinter), while the upper
bound results from assuming the bulk helium level to be
located in the volume containing the sinter (0.5 cm below the
bottom of the sinter).

As soon as the amount of helium in the system exceeds
Vfilm, helium starts condensing at the bottom of the volume
containing the sintered silver heat exchanger and starts
flowing into the cell at a rate V̇ [19]:

˙ ( )p=V R d v2 . 1c thin crit

Here, Rc is the inner radius of the capillary, dthin is the film
thickness at its thinnest point, and  -v 30 cm scrit

1 is the
critical superfluid film velocity [19]. The highest point of the
capillary is located  20 cm above the minimum liquid level
in the sinter, resulting in the minimum film thickness
 14 nm. Therefore the rate of filling the device is
˙ = ´ -V 4 10 4 cm3 min–1. If, at any point, there is no helium
accumulated at the bottom of the sintered silver heat
exchanger volume, helium stops flowing into the device.

Using this model, we can describe the volume of liquid
helium accumulated in the device as a function of time. Using
a CAD model of the cell, the helium level in the cell can be
modeled as a function of the volume of helium accumulated
in the device. This is shown with a blue line on figure 2(a).

2.2. Capillary action

Since the cavity is located inside the ferrule, the helium level
in the ferrule is of interest. The helium level in the ferrule is
higher than the helium level in the cell due to capillary action
[21]. In what follows, we calculate the helium level in the
ferrule as a function of the helium level in the cell.

2.2.1. Hollow tube of constant radius. To understand
capillary action in the ferrule, consider first a simple model:
a thin tube of radius r submerged in a fluid bath. Assume that
the pressure above the bath is zero. The surface tension is σ
and the contact angle is qc, as shown in the inset of the
figure 2(b). The height *h to which the fluid rises can be
determined by balancing gravitational potential energy and
interfacial energy, which is done done by minimizing the free
energy. The free energy of the system is given by:

( ) ( )ò òr s q= -F h gz V Ad cos d . 2
V A

c

Here V is the volume of the fluid in the capillary above the
bath level, and A is the area over which helium is in contact
with glass above the bath level. The values ρ and g are the
density of the fluid and the gravitational constant. In the case
above, ignoring the meniscus, we arrive at the equation:

( )

( )

òr p s q p

r p s q p

= -

= -

F h g r z z rh

g r
h

rh

d cos 2

2
cos 2 . 3

h

c

c

2

0

2
2

The height of the fluid in the capillary is then:

( )*
s q
r

=h
gr

2 cos
. 4c

For a 133 μm diameter capillary submerged in superfluid
helium (r = 145 kg m–3 [16], q = 0c [22] and s = ´3.78

-10 4 J m–2 [22], the fluid rises by * =h 8 mm.

2.2.2. Hollow axissymmetric tube of arbitrary shape. The
ferrule is a hollow axissymmetric tube of arbitrary shape:

( )=r r z . Here r is the distance from the axis of the ferrule
and z is the distance from the bottom of the ferrule. The free
energy is:

( ) ( )

( ) ( )

ò

ò

r p s q p= -

´ +
⎛
⎝⎜

⎞
⎠⎟

F h g r z z z

r z
r

z
z

d cos 2

1
d

d
d . 5

h

c

h

z

0

2

0

2

In addition, there is a fiber in the center of the ferrule, which is
modeled as a solid cylinder of constant radius rfib. The free
energy then is:

( ) [ ( ) ]
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ò
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The derivative of the free energy with respect to h, evaluated
at *h is:

[ ( ) ]
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Equation (7) can be used to find the height of the capillary rise
for the ferrule with a fiber, provided the ferrule profile is
known.

A photo of the ferrule is shown in the figure 2(c). The
ferrule is made of borosilicate glass with index of refraction
=n 1.52. The length and diameter of the ferrule are 9 mm

and 3 mm respectively. This information can be used to
correct the image and extract the profile of the ferrule bore.
The extracted profile is shown in figure 2(d) with blue circles.
In order to evaluate equation (7) analytically, the profile is fit
to the function:

( ) ( )=
-

+⎜ ⎟⎛
⎝

⎞
⎠r z A

x B

C
Dtanh . 8

The following values are found for the fit parameters:
A=284 μm, =B 6739.5 μm, =C 890.4 μm, D=347
μm. The fit is shown in figure 2(d) with a red line.

In addition, helium forms a meniscus in the ferrule,
which is shown in figure 2(b). Its shape is calculated
following [23]. The shape of the interface is described in
parametric form by the slope angle f:

( ) ( ) ( )f f= =r R z Z, . 9

Two differential equations describe the shape of the
meniscus:

( )
( )

( )
( )

( )f
f

f
f

f
f

f
f

= =
R

Q

Z

Q

d

d

cos
and

d

d

sin
, 10

Figure 2. Helium level in the ferrule. (a) Helium level in the cell (blue) and in the ferrule (red) as a function of the volume of helium
accumulated in the device (blue). Zero on the vertical axis corresponds to the bottom of the ferrule. As more helium is added to the cell, the
helium level in the cell changes nonlinearly, due to cell geometry. A CAD model of the cell geometry was used to calculate helium level
inside the cell, given the volume of added helium. Helium level in the ferrule was calculated using the blue points and the results from panel
(e). (b) Inset: A schematic drawing of a cylindrical capillary (yellow) of radius r, submerged in liquid. The contact angle is θ. Due to capillary
action the liquid rises to height *h . Main figure: A plot of the superfluid helium meniscus (blue) formed in the space between the fiber
(yellow) and the ferrule (yellow), calculated using the procedure described in section 2.2. The fiber has constant radius rfib. The ferrule profile
is described by ( )r z . The ferrule profile makes an angle ( )x z with the vertical. The angle f is the slope angle of the liquid. (c) A
photograph of the ferrule. Yellow shading indicates the funnel and the bore. (d) The ferrule profile extracted from the photograph (c) is shown
using blue dots. The red line is a fit of equation (8) to the profile. (e) The helium level in the ferrule plotted as a function of helium level in the
cell (red solid line). The blue dashed line illustrates unity slope. As soon as helium touches the bottom of the ferrule, it gets sucked in by the
capillary action to a height of 6 mm, which is where the bore starts to widen into the funnel.
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where ( )fQ is given by

( ) ( )
( )

( )f
f f

f
= -Q

Z

l R

sin
. 11

2

Here, l is the capillary length: s r=l g . For a constant-
radius hollow capillary, equations (10) are solved subject to
the following boundary conditions:

( ) ( ) ( )*= =R Z h0 0 and 0 . 12m

Here, *hm is the height of the lowest point of the meniscus. The
height *hm that satisfies the condition ( )q =R rc is then found.

For the system used in the experiment (a ferrule whose
profile is described by a function ( )r z with a fiber with radius
rfib in the center), the initial conditions become:

( ) ( )
( )
*p q p q- + = - + =R r Z h2 and 2 ,

13
c c mfib

*hm is then found to satisfy the two conditions below:

( ( )) ( ( ( )))
( ( ( ( )))) ( ) ( )

p q x p q x
p q x x

- - = - -
¢ - - =

R z r Z z

r Z z z

2 2

and arctan 2 . 14
c c

c

/

Here, ( )x z is the angle of the ferrule profile, as shown in
figure 2(b). The solution to equation (7) is used an the initial
guess for *hm .

The helium level in the ferrule, calculated using the
procedure outlined above, is shown in figure 2(e) with a red
line. The blue dashed line is a line with unity slope. From
figure 2(e) it is clear that as soon as superfluid helium reaches
the bottom of the ferrule, the helium level inside of the ferrule
goes up to 6 mm, filling the optical cavity and making it
possible to observe the acoustic modes. The relationship
between the helium level in the cell and helium level in the
ferrule allows us to plot the helium level in the ferrule as a
function of liquid helium volume in the cell (shown in
figure 2(a) with a red line).

3. Mode shapes

3.1. Optical modes

The intensity of the TEM00 optical cavity mode employed in
the experiment is approximately proportional to:

( ) ( )p
l

µ -
⎛
⎝⎜

⎞
⎠⎟I r z

z
, sin

2
e . 15

r
w

opt

2
2 2

2

Here l = 1, 504 nmopt is the optical wavelength in liquid
helium and w 7 μm is the mode field radius [24]. Since the
indentations on the fiber faces are not always centered on the
fibers, and the fibers are possibly not centered in the ferrule,
the optical mode (confined by the indentations) can be
slightly offset from the center of the radial acoustic mode
(confined by the inner walls of the ferrule). Assuming the
existence of such an offset, x0, the intensity profile can be

modeled in the following manner:

( ) ( )
(( ) )p

l
µ -

- +⎛
⎝⎜

⎞
⎠⎟I x y z

z
, , sin

2
e . 16

x x y

w
opt

2 2 0
2 2

2

The offset of the indentation from the fiber centers was
measured to be –x 1 30 μm.

3.2. Radial acoustic modes

The acoustic radial modes in the liquid helium can be mod-
eled as solutions of the time independent wave equation in a
cylinder of radius R with zero flux on all surfaces and with
zero longitudinal number, that is independent of z [25]:

( ) ( ) ( )f q a q=r J r R m, cos . 17mn m mn

Here f is the velocity potential, Jm is the mth Bessel function
of the first kind, amn is the nth zero of the derivative of Jm.
The frequencies of the modes are:

( )w
a

=
v

R
. 18mn

mn

The frequencies of the modes are shown in the figure 3(a)
with red dashed lines (m=0) and blue dashed lines (m=1).

To check if deviations of the geometry from an ideal
cylinder have noticeable effect, the frequencies of the radial
modes are also calculated by using finite element modeling
software (COMSOL) to solve the wave equation for a
cylinder of helium with length L=84 μmand radius R=67
μm with the 1.5 μm deep indentations for the mirrors with
appropriate radii of curvature. The wave equation is solved
for both m=0 and m=1 cases. The boundary condition is
‘zero flux’ on all the boundaries. The frequencies obtained via
COMSOL simulations are in good agreement with fre-
quencies calculated for a perfect cylinder, as can be seen by
comparing red (m=0) and blue (m=1) lines in the
figure 3(b) with the corresponding lines found analytically
and shown in figure 3(a). The profiles for some of the modes
are shown in figure 3(c).

3.3. Ferrule acoustic modes

The frequencies of the ferrule modes are found by imple-
menting the whole geometry of the ferrule, described by
equation (8), fibers and meniscus in COMSOL and solving
the wave equation for this geometry. All of the helium-glass
boundaries are set to be ‘zero flux’ boundaries. The bottom
end of the ferrule is open, so it requires zero-pressure
boundary condition (‘Dirichlet boundary condition’) and the
top surface of the helium (helium-vacuum boundary), which
has the meniscus shape as shown in figure 2(b), is described
by a ‘free surface’ boundary condition.

Since it was experimentally observed that the frequencies
of some of the ferrule modes change with the level of helium,
we simulate the mode frequencies versus the helium level in
the ferrule. Figure 4(a) shows the profiles of the modes when
the helium level in the ferrule is 6.8 mm. The solid lines in
figure 4(b) show the mode frequencies obtained via COM-
SOL simulations for different volumes of helium accumulated
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in the device. The color of each line indicates the relative
amount of energy stored in the sheath to the energy stored in
the funnel. The modes with a large fraction of energy stored

in the funnel show dependence on the helium level,
decreasing in frequency as the helium level increases.

4. Electrostrictive coupling

In this section the electrostrictive coupling between the
optical cavity and the acoustic modes of the liquid helium is
described. The coupling arises because the effective cavity
length depends on the density of helium that the optical mode
overlaps with. Overlap with regions of higher helium density
(higher index of refraction) increases the effective length and
overlap with the regions of lower helium density (lower index
of refraction) decreases the effective length. The expression
for the electrostrictive coupling is derived as follows.

Changes in pressure in liquid helium can change the
index of refraction locally as seen from the Clausius–Mossotti
relation [26]:

( )pra-
+

=
n

n M

1

2

4

3
. 19

2

2
M

Here, n is the refractive index, ρ is the density, aM is the
molar polarizability and M is the molar mass. For =n 1.028,
the left side of the equation is approximately ( )-n2 1 3, and
hence ( )r µ -n 1 ; therefore

( )dr
r

d
=

-
n

n 1
. 20

Given the spacial profile of the relative change in the
refractive index ( )dn r , we can find optomechanical coupling
as:
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V
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Here ( )I r is the optical intensity profile and wc is the optical
cavity resonant frequency. The relative change in density for a
liquid is equivalent to strain ( ) r . From the continuity
equation the relative change in density is proportional to the
velocity potential ( )f r . Therefore we can express relative
change in density as:

( ) ( ) ( ) ( )
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 
dr
r

º º
r

r p r , 221

where 1 is a constant and ( )p r is a normalized mode profile.
This leads to the following expression for g0:
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. 23V
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3

3

In the equation (23) the values for all quantities except for 1
are known. To find the value of 1, we write the energy stored
in the fluctuations of the mode in terms of the elastic potential
energy:

( ) ( ) ( )   
 ò òr= =E K r r v p r r

1

2
d

1

2
d . 24

V V
1

2 3 2
1
2 2 3

Figure 3. The radial modes. (a) The electrostrictive coupling rate g0
to the radial modes of different frequencies. The red dashed and blue
dashed vertical lines show the frequencies of the radial modes with
m=0 and m=1 respectively, calculated using equation (18). The
faint red (blue) line connecting the red circles (blue triangles) shows
the coupling to m=0 (m=1) radial modes, calculated using
methods in section 4, assuming the optical and acoustic modes are
perfectly aligned. The bright red (blue) line connecting the red
circles (blue triangles) shows the coupling to m=0 (m=1) radial
modes, assuming the optical and acoustic modes are offset by 3 μm.
The misalignment leads to decrease in coupling to m=0 mode and
to emergence of coupling to m=1 mode. (b) The red dashed and
blue dashed vertical lines show the frequencies of the radial modes
with m=0 and m=1 respectively, found using COMSOL
simulations. They match with the lines of panel (a), demonstrating
that the deviations of the shape of the space between the fibers from
the ideal cylinder do not influence the frequencies of the modes
significantly. The OMIT/OMIA signal for the intracavity beatnote
frequency in range 1–20 MHz is shown with a thick black line. The
overall downward slope is due to the cavity filtering. The measured
mode frequencies match well with the predicted frequencies for
m=0 and m=1 modes. (c) The mode profiles for some of the
modes, calculated using COMSOL.
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Here, r=K v2 is the bulk modulus, v is the speed of sound.
To calculate the single photon coupling g0, we equate E1

to the energy stored in a zero point fluctuation:

( )w
=E

4
. 25m

0

Combining equations (24) and (25), we solve for the nor-
malization constant 1:

( )
( ) 



ò
w

r
=

v p r r2 d
. 26m

V

1 2 2 3

Figure 4. The ferrule modes. (a) Several mode profiles of the helium in the ferrule when the helium level is 6.8 mm, calculated using
COMSOL. The color indicates the normalized velocity potential. Some of the modes (e.g. 10,12,14,16) are mostly localized in the sheath of
helium surrounding the fibers in the bore below the cavity. Some other modes (e.g. 9,11,13,15) are mostly localized in the helium above the
cavity. The gray line shows the position of the cavity. (b) Solid lines: the frequencies of the modes as a function of the volume of helium
accumulated in the device. The color indicates the ratio of energy stored in the sheath to the energy stored in the funnel. The modes that are
mostly confined in the sheath do not change in frequency as the more helium accumulates in the cell. The modes that extend into the funnel
show a decrease in frequency as the helium level rises. The light blue line is at 0.182 cm3 (which corresponds to 6.8 mm of helium in the
ferrule and hence the simulations is panel (a)). The black numbers are located at the intersections of the light blue line with the colored lines
correspond to the numbers in panel (a). Density plot: the measurements also shown in (c). (c) Density plot of the OMIT/OMIA signal for
intracavity beatnote frequencies in range 10–300 kHz as a function of the volume of helium condensed in the device.
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Using equation (26), the electrostrictive single phonon cou-
pling can be calculated from equation (23), given the optical
and acoustic mode profiles.

The calculated values of electrostrictive coupling to the
radial modes with m=0 (red circles) and m=1 (blue tri-
angles) versus the frequencies of the modes obtained using
equation (18) are shown in figure 3(a). The faint solid lines
show the electrostrictive coupling in the case of the optical
mode being aligned perfectly with the axis of the cylinder
(optical intensity described by equation (15)). The bright solid
lines show the coupling for the case of optical mode being
offset from the axis of the cylinder by 3 μm (optical intensity
described by equation (16)). As can be seen from figure 3(a),
the misalignment results in coupling to m=1 mode.

5. Measurement setup and fits to the data

The measurement setup is shown in figure 5(a). The light leaves
a tunable laser and passes through a frequency shifter. The
frequency shifter is used to lock the laser frequency to the
experimental cavity, as described below. The light then passes
through a phase modulator. The phase modulator is used to add
three pairs of sidebands: a control beam generated by a Voltage
Controlled Oscillator (VCO2) at w p= ´2 926 MHzcontrol and
two probe beams, which are AM sidebands of the control beam
and are generated by a microwave amplitude modulator driven
at a frequency wprobe by a lock-in. The carrier beam serves as a
local oscillator (LO). The light is delivered to and returned from
the cryostat via an optical circulator. Returning light lands on a
photodiode. The photocurrent has beatnotes at wcontrol as well as
at w wcontrol probe. The photocurrent is sent into an IQ demo-
dulator, where it is demodulated at wcontrol. Both quadratures on
the output of the IQ demodulator have a DC component which
carries information about the offset of the control beam from the
cavity, and a component at frequency wprobe, which carries

information about the upper and lower sidebands generated by
the motion of the acoustic mode. The DC component is then
used to generate a feedback signal to control the frequency
shifter via VCO1. Additionally, both quadratures are sent into
the lock-in and demodulated at wprobe to gain information about
the acoustic response at that frequency. For the OMIT mea-
surements the frequency wprobe is swept through the resonant
frequency of the acoustic mode of interest. Examples of these
measurements are shown in figures 6(a) and (b).

The data obtained in the manner described above are fit to
extract the linewidth and frequency of the acoustic modes, as
well the amplitude and phase of the OMIT/OMIA response. All
those quantities are fit simultaneously with the OMIT/OMIA
theory [1, 17] to extract the electrostrictive and photothermal
coupling. Since the amplitude modulation scheme is employed,
the theory described in [1] needs to be modified to include the
second probe beam. This modification is described below.

5.1. OMIT/OMIA theory with two probe beams

We start the derivation with the expressions for the optical
and acoustic amplitudes ˆ [ ]d wa and ˆ [ ]d wb derived in [1]:

ˆ [ ] [ ]( ( ˆ [ ] ˆ [ ]) [ ])
( )

†d w c w d w d w k d w= - + +a g b b si ,

27
cav in in

ˆ [ ]
( [ ] [ ] [ ] [ ] )

( ) [ ]
( )

* * *
d w

k c w d w c w d w

w w w
=

- -

- - + + Sgb
G s g s g

i i
.

28

m

in cav in cav in

2
m

Here kin is the input coupling, [ ]d ws is the amplitude of a
probe beam at frequency ω away from the control beam, g is
the multiphoton electrostrictive coupling defined as:

¯ ( )k
=

-
- D + kg g

si

i
. 290

in in

2

Figure 5. The measurement setup. (a) Schematic of the measurement setup. The optical components are shown in red, electronic components
are shown in green. For detailed description see section 5. (b) Illustration of the laser beams incident on the cavity. The LO, control, and both
probe beams are shown (red), along with the cavity resonance (black).
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[ ]c wcav is the cavity susceptibility at frequency ω defined as:

[ ] ¯ ( )c w
w

=
- - D + k

1

i i
. 30cav

2

D̄ is the effective detuning of control beam from the cavity
and sin is the amplitude of the control beam. [ ]wS is
optomechanical self-energy defined as:

[ ] ∣ ∣ ( [ ] [ ]) ( )*w c w c wS = - -G gi . 312
cav cav

The G is derived in [1] and defined as:

( )
w k

= +
-

= +G
g

g

g

g
1

1

1 i
1 , 321

0 Th

1,filt

0

where we now define a complex quantity:

( )
w k

=
-

g
g

1 i
. 331,filt

1

Th

The second term in the definition of G is due to the
photothermal coupling. The photothermal force has coupling
strength g1; kTh is photothermal bandwidth which is inversely
proportional to the relaxation time for the photothermal pro-
cess. The complex quantity g1,filt represents the photothermal
coupling, as filtered by the photothermal bandwidth.

The optical spring and damping are then defined as:

[ [ ]] [ [ ]]
( )

( ) ( )w w g wD = S = - SRe and 2 Im .

34
m mopt opt

Since an amplitude modulation scheme is employed, the
laser has two sidebands: at positive and negative Ω. The
expression for ( )ds tin is:

( ) ( ) ( )d = +- W Ws t s e e . 35t t
in p

i i

Taking the Fourier transform and assuming sp is real:

[ ] [ ] ( ( ) ( )) ( )*d w d w p d w d w= = - W + + Ws s s2 . 36in in p

Putting this back into the equation (28):

In the time domain:

ˆ ( ) [ ] [ ] ( )d = W + W+
- W

-
Wb t b s b se e , 38t t
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where
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Figure 6. OMIT measurements. The teal points are the normalized amplitude (a) and phase (ψ) of the OMIT signal as a function of the
intracavity beat note frequency ∣ ∣w w p- 2control probe . The data is taken by sweeping the frequency difference between the control and probe
beams. Shown are the sweeps of the probe beam, which is blue-detuned from the control beam. The data is normalized so that far from the
resonance a=1 and y = 0. The solid blue line is fit to a complex Lorentzian. The fit parameters are +A and Y+ (the overall amplitude and
phase of the OMIT effect), wm (the acoustic frequency), and gm (the acoustic damping rate). (a) The sweep over one of the radial modes. The
intracavity beat note frequency is varied between 7.46 and 7.58 MHz. The control beam is detuned from the cavity resonance by 52 MHz. (b)
The sweep over one of the ferrule modes. The intracavity beat note frequency is varied between 23.0 and 23.1 kHz. The control beam is
detuned from the cavity resonance by 108 MHz.
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The expression for +b gives us the motion of the acoustic
oscillator; -b oscillates at-W, and so is far off resonance and
therefore small. Writing the acoustic mode amplitude in the
time domain and neglecting -b yields:

( ˆ ( ) ˆ ( )) ( )

(( [ ] ) ( [ ] ) )
( )

†

*

d d k d

k k

+ +

= W + + W ++
- W

+
W

g b t b t s t

gb gb se e .
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in in

in
i

in
i

p

Combining equations (27) and (41), we express the cavity
mode amplitude as:

ˆ ( ) [ ] [ ] ( )d = W + W+
- W

-
Wa t a ae e , 42t ti i
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The expression for -a gives the signal measured at the lower
probe beam frequency and the expression for +a gives the
signal measured at the upper probe beam frequency. In
figures 6(a) and (b), we plot one of the sidebands +a
normalized with respect to the background. The normalized
signals ¢-a and ¢+a are given by:
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The normalized signals ¢-a and ¢+a have Lorentzian shape. The
values of amplitude ( +A ) and phase (Y+) of the OMIT/OMIA
response at the upper probe beam frequency are defined as the
magnitude and phase of [ ]w¢ -+a 1m , and the values of
amplitude ( -A ) and phase (Y-) of the OMIT/OMIA response
at the lower probe beam frequency are defined as the
magnitude and phase of [ ]w¢ - --a 1m .

6. Results and discussion

In figure 3(b) the thick black line shows a typical measure-
ment of the OMIT/OMIA response for the intracavity beat-
note frequency in the range 1–20 MHz. The sharp features are
the radial modes. The dashed lines are the predicted fre-
quencies for the radial indices m=0 (red) and m=1 (blue),
obtained using COMSOL simulations. The frequencies
obtained from COMSOL show good agreement with the
frequencies calculated using an analytical expression shown
in figure 3(a) and with the frequencies obtained experimen-
tally. The features associated with the m=0 modes are
dominant, but there is also clearly coupling to the m=1
modes, which confirms that the optical mode is not perfectly
aligned with the axis of the cylinder.

Figures 4(b) and (c) shows a density plot of the OMIT/
OMIA response for intracavity beatnote frequencies in the
range 20–300 kHz (the frequency range of the ferrule modes).

The vertical axis is the amount of helium accumulated in the
device.

Figure 4(b) additionally shows the overlaid COMSOL
simulation of the frequencies of the modes. In order for the
data to agree with the COMSOL simulations, we need to take
the volume of the helium film to be =V 0.22film cm3, which is
within the predicted bounds. The rate at which helium accu-
mulates in the device is found to be ˙ = ´ -V 6.5 10 4

cm3 min–1, which is larger than the original prediction of
´ -4 10 4 cm3 min–1, obtained using equation (1). The dis-

crepancy can be attributed to the roughness of the inner
surface of the capillary, which increases its surface area.

In order to understand the optomechanical coupling to
the modes, we measured the OMIT/OMIA feature for the
7.5 MHz radial mode and the 23 kHz ferrule mode. These
modes clearly showed the familiar optical spring and optical
damping [27], however the sign and relative magnitude of
these effects were inconsistent with coupling via electro-
striction. Figure 7 shows the linewidth, frequency, amplitude,
and phase of the OMIT feature relative to the background as a
function of the control beam detuning for the 7.5 MHz mode.
The data is fit with the OMIT/OMIA theory described in
section 6, using the theoretical value of electrostrictive cou-
pling  p ´g 2 3000 Hz (calculated from equation (23)) and
assuming the acoustic mode profile ( ) ( )q a=p r J r R, 0 05 .
From this fit, we extract the intrinsic linewidth of the mode to
be 11.7 kHz (corresponding to a quality factor Q = 642), and
k p= ´ 2 1.1 0.2Th MHz

Figure 8 shows the corresponding measurements for the
23 kHz ferrule mode. The intrinsic linewidth of this mode is
19 Hz, corresponding to a quality factor =Q 1, 200. The
value of electrostrictive coupling to the ferrule modes is not
known a priori, so the fits are underconstrained. However
large values of kTh result in almost perfect cancellation of g1
and g0. For example, for k p> ´2 30 kHzTh , the ratio
∣ ∣+ <g g 1 0.051 0 . Since there is no physical mechanism that
would cause the coupling rates to almost cancel, we limit
k p< ´2 30 kHzTh . This allows us to put bounds on g0 to be
between p ´2 230 Hz and p ´2 600 Hz.

The findings are summarized in table 1, where the real
and imaginary parts of g1,filt are calculated as well to ease the
comparison with [1].

We note that for the paraxial mode, studied in [1], we
used the assumption that the photothermal bandwidth is much
smaller than the driving frequency, which allowed us to set
the real part of g1,filt to zero. This assumption was justified for
the large driving frequency w 317 MHzm . We are not
making the same assumption for the modes studied here,
which allows us to extract the value of kTh. We note that kTh

differs greatly between ferrule and radial modes, from which
we can infer that there are at least two different photothermal
coupling mechanisms.

The photothermal coupling to the 23 kHz ferrule mode
could result from helium counterflow [28, 29]. Although the
device operates at temperatures where the simple two-fluid
model is not valid, we note that thermal phonons radiated
from the mirror hot spot will result in a net transport of
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helium, which must be balanced by the flow of superfluid
towards the hot spot. This can lead to optomechanical cou-
pling in the following way: scattering may prevent the ther-
mal phonons from traveling efficiently through the thin sheath
between the ferrule and the fiber, while the superfluid
component travels easily through this sheath. This can create
a temporary imbalance in which more helium is accumulated
close to the hot mirrors, thereby driving the acoustic mode.
The bandwidth for this effect is set by the thermal equili-
bration time inside the cavity, which was measured in [1] to
be t » 350 μs, corresponding to bandwidth of 0.5kHz, which

is consistent with the range of kTh found for this mode
( p< ´2 30 kHz).

The photothermal coupling to the 7.5MHz radial mode
can be explained in terms of the thermal expansion of the
fiber mirrors due to laser heating. This expansion moves the
glass/LHe boundary, and so drives the acoustic mode. The
value of kTh found for this mode ( p ´ 2 1.1 0.2 MHz) is
consistent with the results of [30], where the bandwidth for
the expansion of similar mirrors was measured at room
temperature. The rough agreement between our results (for
which <T 1 K) and the room temperature results of [30] may

Figure 7. Optomechanical effects for the 7.5 MHz radial mode. Plotted with blue (red) points are the values of the fit parameters for the
OMIT/OMIA response at upper (lower) probe beam frequencies extracted from data sweeps such as shown in figure 6(a) for various
detunings of the control beam. The power in the control beam is 0.6 μW. The horizontal axis is the detuning of the control beam from the
cavity in units of κ. The solid lines are the fits discussed in the text, using the measured values of κ, kin, sin and D̄. The fits to the acoustic
linewidth, acoustic frequency, amplitude and phase of the OMIT/OMIT response relative to the background are all done simultaneously,
assuming the theoretical value of electrostrictive coupling p= ´g 2 300 Hz0 . The values of k p= ´ 2 1.1 0.2 MHzTh , as well as the the
intrinsic linewidth g p= ´2 11.7 kHzm and the intrinsic frequency w p= ´2 7.52 MHzm are the fit parameters extracted from the fit. (a)
The acoustic linewidth. The solid line is the fit to: ( )( )g g p+ 2m m opt . (b) The acoustic frequency. The solid line is the fit to:
( )( )w w p+ D 2m m opt . (c) The amplitude of the OMIT/OMIA response relative to the background. The solid line is the fit to +A and -A which
are the same in the case of amplitude modulation. (d) The phase of the OMIT/OMIA response relative to the background. The solid blue
(red) line is the fit to Y+ (Y-).
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reflect an approximate cancellation of the temperature
dependence of thermal conductivities and heat capacities for
the relevant materials.

While both mechanisms are always present in the system,
our analysis assumes that one of them dominates for each
mode family. This makes sense intuitively: the counterflow

Figure 8. Optomechanical effects for the 23 kHz ferrule mode. Plotted with blue (red) points are the values of the fit parameters for the
OMIT/OMIA response at upper (lower) probe beam frequencies extracted from data sweeps such as shown in figure 6(b) for various
detunings of the control beam. The power in the control beam is 0.6 μW. The detuning of the control beam is plotted on the x-axis in units of
κ. The solid lines are the theory fits, using the measured values of κ, kin, sin and D̄. The fits to the acoustic linewidth, acoustic frequency,
amplitude and phase of the OMIT/OMIA response relative to the background are all done simultaneously. The intrinsic linewidth
g p= ´2 19 Hzm and the intrinsic frequency w p= ´2 23.061 kHzm are the fit parameters extracted from the fit. Additionally the value of
kTh is less than p ´2 30 kHz and the electrostrictive coupling rate g0 is between p ´2 230 Hz and p ´2 600 Hz as described in the text. (a)
The acoustic linewidth. The solid line is the fit to: ( )( )g g p+ 2m m opt . (b) The acoustic frequency. The solid line is the fit to:
( )( )w w p+ D 2m m opt . (c) The amplitude of the OMIT/OMIA response relative to the background. The solid line is the fit to +A and -A which
are the same in the case of amplitude modulation. (d) The phase of the OMIT/OMIA response relative to the background. The solid blue
(red) line is the fit to Y+ (Y-).

Table 1. Properties of the two types of mode (ferrule and radial) studied here, as well as the corresponding properties of the paraxial modes
studied in [1].

Mode ( )w p2m ( )pg 20 ( )k p2Th [ ] ( )pgRe 21,filt [ ] ( )pgIm 21,filt

Ferrule 23 kHz 0.23∼ 0.6 kHz <30 kHz ~ -0 0.5 kHz - ~ -0.5 0.16 kHz
Radial 7.5 MHz 0.3 kHz 1.1±0.2 MHz −1.1±0.4 kHz −7.5±1.7 kHz
Paraxial 317 MHz 3.18±0.2 kHz 317 MHz set to 0 Hz 0.97±0.05 kHz
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mechanism results in larger helium density in the region
between the fibers but with little variation within that region,
and so should not couple efficiently to the radial modes.
Additionally, the bandwidth of the counterflow mechanism is
low, so the coupling of this mechanism to the radial modes is
strongly filtered. In contrast, the expansion mechanism cou-
ples efficiently to modes whose wavelength is on the order of
the hot spot (»10 μm), resulting in stronger coupling to radial
modes.

7. Conclusion

We have studied two families of acoustic modes that exist in a
superfluid-filled optical cavity. In contrast to [1], these families
are associated with the overall geometry of the device and its
surroundings, rather than the with the cavityʼs paraxial modes.
The frequencies of the modes and their dependence on the
amount of helium added to the cell were understood. Addi-
tionally, the modes’ optical spring and optical damping were
measured, and these results were analyzed using a model that
includes an instantaneous electrostricitve coupling as well as a
non-instantaneous photothermal coupling. Both types of mode
show a significant photothermal coupling. However they show
widely divergent time scales for this coupling. We attribute this
to the presence of two different microscopic mechanisms for
photothermal coupling in this system. The first is the thermal
expansion of the materials confining the superfluid. The second
is the different rate of mass transport via superfluid flow and
thermal excitations. These two mechanisms are associated with
different time scales and also with different spatial profiles,
which tends to ensure that each one couples to only one type of
acoustic mode. These results highlight the wide range of
microscopic mechanisms that can give rise to optomechanical
coupling [27, 31, 32] and provide insight into the behavior of
superfluid-filled optical cavities
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