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Nonreciprocal control and cooling of phonon modes 
in an optomechanical system
H. Xu1,2, Luyao Jiang1, A. A. Clerk3 & J. G. e. Harris1,4*

Mechanical resonators are important components of devices that 
range from gravitational wave detectors to cellular telephones. 
They serve as high-performance transducers, sensors and filters 
by offering low dissipation, tunable coupling to diverse physical 
systems, and compatibility with a wide range of frequencies, 
materials and fabrication processes. Systems of mechanical 
resonators typically obey reciprocity, which ensures that the phonon 
transmission coefficient between any two resonators is independent 
of the direction of transmission1,2. Reciprocity must be broken 
to realize devices (such as isolators and circulators) that provide 
one-way propagation of acoustic energy between resonators. Such 
devices are crucial for protecting active elements, mitigating noise 
and operating full-duplex transceivers. Until now, nonreciprocal 
phononic devices3–11 have not simultaneously combined the 
features necessary for robust operation: strong nonreciprocity, in 
situ tunability, compact integration and continuous operation. 
Furthermore, they have been applied only to coherent signals (rather 
than fluctuations or noise), and have been realized exclusively in 
travelling-wave systems (rather than resonators). Here we describe 
a scheme that uses the standard cavity-optomechanical interaction 
to produce robust nonreciprocal coupling between phononic 
resonators. This scheme provides about 30 decibels of isolation 
in continuous operation and can be tuned in situ simply via the 
phases of the drive tones applied to the cavity. In addition, by 
directly monitoring the dynamics of the resonators we show that 
this nonreciprocity can control thermal fluctuations, and that this 
control represents a way to cool phononic resonators.

Reciprocity is a generic feature of linear, time-invariant oscillator 
systems. It may be broken in various ways, such as by introducing bias, 
nonlinearity or parametric time dependence1,2. In phononic systems, 
nonreciprocal bias can be introduced by imposing rotational motion9 
or a magnetic field3–5. However, the former is impractical in many  
settings, and the latter typically produces weak nonreciprocity. 
Likewise, nonlinearity-based approaches6–8 have required bulky com-
ponents and generally result in signal distortion. By contrast, paramet-
ric modulation can produce nonreciprocity with considerable flexibility 
(as demonstrated recently for electromagnetic waves12–18).

Parametric modulation of phononic resonators arises naturally in 
cavity optomechanical systems, which consist of an electromagnetic 
cavity that is detuned by the motion of mechanical oscillators19. In 
particular, electromagnetic drive tones applied to the cavity can tune 
the mechanical oscillators’ frequencies, dampings and couplings, an 
effect known as ‘dynamical backaction’19. This effect has been used to 
realize transient nonreciprocity (by adding a slow time dependence to 
the parametric modulation10,11); by contrast, the scheme described here 
uses stationary modulation and operates continuously.

The phononic resonators studied here are two normal modes of a 
SiN membrane20 with dimensions 1 mm × 1 mm × 50 nm. We focus 
on a pair of low-order drumhead-like modes with resonant frequen-
cies ω1 = 2π × 557.473 kHz and ω2 = 2π × 705.164 kHz and damping  
rates γ1 = 2π × 0.39 Hz and γ2 = 2π × 0.38 Hz. The membrane 

is positioned inside a cryogenic Fabry–Perot optical cavity with  
linewidth κ = 2π × 180 kHz and coupling rate κin = 2π × 70 kHz 
(for light with wavelength λ = 1,064 nm). The mechanical resonators  
couple to the cavity with rates g1  =   2π   ×   2.11  Hz and 
g2 = 2π × 2.12 Hz. The device construction and characterization are 
described in refs 10,11. The wide separation between ω1 and ω2 enables 
the motion of both modes to be inferred from a single record of the 
cavity detuning, which is provided by a probe laser that drives the 
cavity with fixed intensity and detuning.

Near-resonant coupling can be induced between these modes by 
modulating the dynamical backaction at a frequency close to 
δω ≡ ω1 − ω2. Such modulation arises from the intracavity beat note 
produced when the cavity is driven by two tones, the detunings of 
which (relative to the cavity resonance) are11,21,22: Δ1 = −ω1 + Δℓ and 
Δ2 = −ω2 + Δℓ. In this arrangement, a photon can scatter from one 
drive tone to the other by transferring a phonon between the modes. 
This process (illustrated by the red arrows in Fig. 1a, b) occurs via a 
virtual state in which the photon is at a mechanical sideband of the 
drive tones. The participation of the various mechanical sidebands can 
be enhanced or suppressed by the cavity’s resonance; for the detunings 
shown in Fig. 1a, the cavity ensures that the sideband with detuning Δℓ 
is the dominant path by which phonon transfer takes place.

This phonon transfer process has two crucial features. First, the 
transfer amplitude is proportional to the complex-valued cavity  
susceptibility χ(Δℓ) (where χ(ω) = (κ/2 − iω)−1) regardless of the 
direction of transfer, and so has both a dissipative and a coherent char-
acter. Second, the phase of the intracavity beat note appears explicitly 
in the transfer coefficient. While these features alone do not result in 
nonreciprocal energy transfer (for example, the beat note phase can be 
gauged away), interference between two such processes can break  
reciprocity12,23–27. To accomplish this, the experiments described here 
incorporate a second pair of drive tones (orange arrows in Fig. 1a). The 
detunings of the four tones Δ1, Δ2, Δ3 and Δ4 are chosen to provide 
two beat notes that each induce near-resonant coupling between the 
modes (that is, Δ1 − Δ2 = Δ3 − Δ4 ≈ δω) and hence two distinct 
copies of the phonon transfer process. The four detunings Δ1, Δ2, Δ3 
and Δ4 are also chosen so that the dominant mechanical sideband in 
each transfer process has a distinct detuning: Δℓ = Δ2 + ω2 ≈ Δ1 + ω1 
and Δu = Δ4 + ω2 ≈ Δ3 + ω1. As described below, interference 
between these two processes results in nonreciprocal energy transfer 
between the phonon modes. Moreover, this interference is controlled 
by the relative phase between the two beat notes (which cannot be 
gauged away).

This system can be described via the standard linearized optome-
chanical equations of motion for one cavity mode and two mechanical 
modes19 (see Methods). The cavity mode is subject to a drive of  
the form ∑ Δ φ

=
+P en n

i t
1

4 ( )n n  where Pn is the power of the nth tone.  
The detuning, power and phase (φn) of each tone is set by a microwave 
generator that produces the four tones from a single laser via an  
acousto-optic modulator. Adiabatically eliminating the cavity field 
leaves equations of motion for the two mechanical mode amplitudes 
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that correspond to the effective time-dependent Hamiltonian 
(see Methods):
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where t is time, Δ ≡ Δ1 − Δ2 and θℓ,u ≡ arg(−i(χ(Δℓ,u)). The diagonal 
elements of H represent the usual single-tone dynamical backaction: 

χ Δ χ Δ ω≈ − ∑ | | +=
−f i P g ħ ( ) ( )a n n a n n a1

4 2 1 2  where ∈a {1, 2} .  By  
contrast, the off-diagonal components of H describe the coupling 
between the two mechanical modes mediated by the intracavity 
beat notes. The phases of these beat notes are φ12 ≡ φ1 − φ2 and φ34 ≡ 
φ3 − φ4. The coefficients are χ Δ χ Δ χ Δ≈ − | |− ∗g i PP g g ħ ( ) ( ) ( )1 2 1 2

1
1 2 ℓ  

and χ Δ χ Δ χ Δ≈ − | |− ∗h i P P g g ħ ( ) ( ) ( )3 4 1 2
1

3 4 u . For clarity, the present 
discussion ignores smaller terms in f, g and h that are due to non- 
resonant mechanical sidebands (these terms are included in the  
analysis and fits presented below, and in the full description in 
Methods).

Isolation between the two mechanical modes (corresponding to 
|H1,2| � |H2,1| or |H2,1| � |H1,2|) can be achieved by first choosing Pn 
and Δn so that |g| and |h| are nearly equal. For the present device, this 
is realized with all the Pn = 5 μW and Δn = {−ω1 + Δℓ + ζ, −ω2 + Δℓ, 
−ω1 + Δu + ζ, −ω2 + Δu} where Δℓ = −2π ×  60 kHz and 
Δu = 2π × 150 kHz. The constant ζ is the detuning of the beat notes 

relative to δω, and is set to 2π × 100 Hz. With the condition |g| ≈ |h| 
satisfied, φ12 and φ34 may be adjusted via the microwave generator to 
ensure that one off-diagonal element of H nearly vanishes while the 
other does not. This is shown in Fig. 1c, which plots H1,2 and H2,1 as a 
function of φ ≡ φ12 − φ34. For φ ≈ π/2, H allows energy to flow from 
mode 1 to mode 2 but not vice versa. The situation is reversed when 
φ ≈ −π/2. By contrast, φ ≈ 0 gives H1,2 ≈ H2,1. This tunability between 
isolation, reciprocity and reversed isolation occurs while keeping the 
Pn and Δn fixed, and varying only the φn. This avoids cross-talk 
between the nonreciprocity and other device parameters (such as the 
mechanical frequencies, which depend only weakly on φn).

To demonstrate the tunability of the nonreciprocity, we measured 
the transfer of energy between the two modes for various choices of 
φ. Two measurements with φ = π/2 are shown in Fig. 1d, which plots 
ε1(t) and ε2(t): the energy in each mode (as inferred from the probe 
beam). For t < 0 the control tones are off, and one mode is driven to 
an average energy of about 10−18 J (corresponding to an amplitude of 
about 5 × 10−11 m). The other mode is undriven, except by thermal 
fluctuations consistent with the bath temperature Tbath = 4.2 K. At 
t = 0 the drive is turned off and the control tones are turned on for a 
duration τ = 3 ms. For t > τ the control tones are off again. Figure 1d 
demonstrates the isolation described above: under the influence of con-
trol tones with φ = π/2, an excitation prepared in mode 1 is transferred 
to mode 2 (upper panel) while an excitation prepared in mode 2 is not 
transferred to mode 1 (lower panel).
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Fig. 1 | Optically induced mechanical nonreciprocity. a, Frequency-
domain illustration of the optomechanical control scheme. The black 
curve is the cavity lineshape. The thin coloured arrows are control tones 
with detunings (relative to the cavity resonance) Δ1, Δ2, Δ3 and Δ4. 
Dashed lines are negative detunings equal to the frequencies of the phonon 
modes (ω1,ω2). The thick coloured arrows are motional sidebands that 
dominate the phonon transfer process (and which occur at detunings Δℓ 
and Δu). The horizontal axis shows detuning from cavity resonance.  
b, The energy-domain illustration of the same scheme. The solid 
horizontal lines are states labelled by the number of phonons in each mode 
(n1,n2) and the number of cavity photons (nc). The dashed horizontal lines 
are virtual states through which the transfer process occurs. The cavity 

linewidth is indicated by the grey shading. The absolute frequency of the 
ith control tone is Ωi. c, The off-diagonal matrix elements of the effective 
Hamiltonian H as a function of the phase φ. The control beam powers and 
detunings are given in the main text. d, Measurement of the mechanical 
energy in each mode as a function of time. In the upper (lower) panel, 
mode 1 (2) is initially excited. The control beams are on only during the 
grey region (0 ms ≤ t ≤ 3 ms). Data for t > 3 ms is fitted to a decaying 
exponential (black curves) and this fit is extrapolated to t = 3 ms to find 
ε1(τ) and ε2(τ), the energies in each mode at the end of the control pulse 
(black dots). Identical control beams (with φ = π/2) are used in both 
panels, but energy is transferred only from mode 1 to mode 2.
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Figure 2 shows the energy transmission coefficients T↑ ≡ ε2(τ)/ε1(0) 
and T↓ ≡ ε1(τ)/ε2(0) (corresponding to transfer from mode 1 to mode 
2 and vice versa) as a function of τ and φ. Both T↑ and T↓ decrease 
with τ, owing primarily to the damping induced by the single-tone 
backaction (all four control tones are red-detuned from the cavity res-
onance). However, the isolation ratio I ≡ T↑/T↓ is nearly independent 
of τ, as shown in Fig. 3a. We emphasize that while the measurements 
in Figs. 1–3 are carried out on excitations that are transient (owing to 
the modes’ damping), the nonreciprocity is stationary. This is demon-
strated explicitly in Fig. 3a and Fig. 4 (discussed below).

Figures 2d, 3b both show that reciprocity is restored (corresponding 
to |H1,2| = |H2,1|) for a value of φ that is very close to, but not exactly, 
zero, reflecting the fact that the nonreciprocity of H is determined by 
the phases θℓ and θu as well as by φ. The data in Fig. 3 show that this 
system achieves I ≥ 30 dB from mode 1 to mode 2 and I ≤ −25 dB in 
the opposite direction. It also shows that I can be tuned over this entire 
range (including through 0 dB) by varying φn while all other parameters 
are held fixed. The solid lines in Figs. 2, 3 are not fits, but rather the time 
evolution predicted by the matrix exponential of H.

Experiments on nonreciprocal devices (in the phononic as well as 
other domains) typically measure the scattering matrix that describes 
propagating waves incident on and emanating from the device. By con-
trast, the measurements described here directly probe the device’s inter-
nal degrees of freedom. This opens up the possibility of controlling the 
state of the resonators via their nonreciprocal interactions. To demon-
strate this, we use the nonreciprocity described above to modify the 
thermal fluctuations of the resonators and to realize a form of cooling 
with no equivalent in reciprocal systems.

To describe the system’s steady-state fluctuations, we note that both 
modes couple to the thermal bath (Tbath = 4.2 K) and to the cavity field 
(the effective temperature of which can be approximated as zero for the 
present discussion19,28). In the absence of coupling between the phonon 

modes, these two ‘baths’ would cause each mode to equilibrate to a 
temperature Ta = (γa/2Im[fa])Tbath where ∈a {1, 2} and we assume the 
single-tone optical damping Im[fa] � γa. This reduction of Ta with 
respect to Tbath is the well-known effect of ‘cold damping’ or ‘laser  
cooling’.19 However, in the present system the modes also couple to each 
other. When the resulting energy transport is reciprocal (|H1,2| = |H2,1|) 
thermal phonons are exchanged between the modes, tending to bring 
T1 and T2 closer together. By contrast, if H is chosen to give unidirec-
tional energy transport (for example, for φ = ±π/2), then the isolated 
mode emits thermal phonons into the other mode but not vice versa. 
This leads to cooling of the isolated mode and heating of the other 
mode, even if the former is initially the colder of the two.

To realize this isolation-based cooling we use the same Δn as above 
and Pn = 2.5 μW (resulting in H1,2 and H2,1 as in Fig. 1c but reduced 
by a factor of two). No external drive is applied to the phonon modes, 
and their undriven motion is recorded by the probe laser. Figure 4a 
shows the spectral density of each oscillator’s energy SE1

 and SE2
 for 

φ = −π/2, 0 and +π/2. For all values of φ, the mechanical linewidth 
is dominated by Im[fa] (which is independent of φ). Asymmetric line-
shapes are commonly observed in coupled damped oscillators with 
nearly degenerate modes;29,30 however, in the present system the 
modes are non-degenerate and the lineshapes reflect interference 
between the two paths by which the thermal bath drives a given mode. 
For example, mode 1 is driven directly by bath fluctuations at frequen-
cies near 557 kHz, but also by bath fluctuations near 705 kHz, which 
are first filtered by the response of mode 2 and then transferred to 
frequencies near 557 kHz by H. The solid lines in Fig. 4a are fits to the 
expected form (a constant background plus the square modulus of the 
sum of two Lorentzians).

To measure the effect of nonreciprocity on the mode temperatures, 
T1 and T2 are determined from the area under the peaks in SE1

 and SE2
 

at several values of φ (see Methods and Extended Data Fig. 1). The 
result is plotted in Fig. 4b as the normalized temperature difference 
Θ(φ) ≡  ⟨ ⟩φ φ− / / /T T T T1 ( ( ) ( ))2 1 2 1  where ⟨ ⟩…  denotes the average 
over φ. Maximizing the isolation between the modes (that is, setting 
φ = ±π/2) results in the most extreme values of Θ. We emphasize that 
changing the sign of Θ is equivalent to reversing the direction of heat 
flow between the modes. As ⟨ ⟩/T T2 1  = 1.79 > 1 in these measurements, 
heat is transported from the colder mode to the hotter mode when 
Θ < 0.

The solid line in Fig. 4b shows Θ as calculated from the optome-
chanical equations of motion (Methods). The agreement between the 
measured and predicted cooling extends over a wide range of parame-
ters, as illustrated in Fig. 4b–e, which shows Θ(φ) for various Δn. The 
main effect of varying Δn is to increase the difference between |g| and 
|h|, which results in weakened isolation and suppression of Θ.

We also emphasize that the data in each panel of Fig. 4b–e were taken 
with fixed Pn and Δn, and that the additional cooling of one mode is 
accomplished just by varying the phases of the control tones. Because 
conventional laser cooling techniques (for example, those using the 
single-tone dynamical backaction) are independent of these phases, 
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this shows that the nonreciprocity demonstrated here represents an 
additional resource for controlling the thermal fluctuations of phon-
onic resonators.

In conclusion, we have demonstrated a robust, compact, stationary 
and tunable scheme for inducing nonreciprocity between phononic 
resonators. We have applied this nonreciprocal control to external sig-
nals as well as to the resonators’ thermal motion. The nonreciprocity is 
produced by a cavity optomechanical interaction, but the same scheme 
may be realized in other multimode oscillator systems with parametric  
controls, including those in the electrical, mechanical and optical 
domains31–33.
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MEthods
Theoretical model. We consider two phonon modes coupled to a single optical 
mode34 via the usual optomechanical interaction described by the Hamiltonian 

= ∑ +=H ħg c c a a( )n nOM
†

n n1
2 † . Here ħ is the reduced Planck’s constant, gn is the 

single-photon coupling strength between the nth phonon mode and the optical 
mode, a is the optical mode’s annihilation operator, and cn is the annihilation 
operator for the nth phonon mode19,34. The equations of motion for the modes are 
then:

˙
γ

ω γ η= − + − +c i c ig a a(
2

) (1)1
1

1 1 1
†

1 1

˙
γ

ω γ η= − + − +c i c ig a a(
2

) (2)2
2

2 2 2
†

2 2

˙ κ κ= − + Ω − + + + +a i a i g c c g c c a a(
2

) ( ( ) ( )) (3)c 1 1 2 2 in in1
†

2
†

where Ωc is the cavity resonance frequency, and ηi and ain are the drives for, respec-
tively, the phonon modes and the optical mode.

The cavity is driven by two pairs of control lasers to induce nonreciprocity 
between the phonon modes. The control lasers’ detunings (with respect to the 
cavity resonance) are: Δ1 = −ω1 + Δℓ + ζ, Δ2 = −ω2 + Δℓ, Δ3 = −ω1 + Δu + 
ζ, Δ4 = −ω2 + Δu. Numerical values for these detunings are given in the main text 
(note that ζ � ω1, ω2, Δℓ and Δu).

Stokes and anti-Stokes scattering of these control lasers can convert a phonon 
from one mechanical mode to the other. To describe this process quantitatively, 
we first linearize the optical field by the displacement a = α + d, where α is the 
coherent amplitude of the optical mode and d is the mode’s fluctuations. The line-
arized optomechanical interaction is then α α= ∑ + +=

∗H ħg c c d d( )( )n n nOM,lin 1
2 †

n
†  

where α α= ∑ Δ−
= ek

i t
k 1
4 k  and αk is the coherent amplitude contributed by the kth 

control laser.
The parameters of the experiment are such that the mechanical resonance fre-

quencies and the separation between the motional sidebands are always much 
greater than the mechanical linewidths. As a result, the cavity field can be adia-
batically eliminated to obtain the effective Hamiltonian for the mechanical modes:

∑ ω γ σ σ σ= − / + + +Δ Δ

=

−H ħ i c c c c c c( 2 ) e e (4)
n

n n n n n
i t i t

1

2

, 1,2 2 2,1 1n
†

1
†

2
†

where

∑σ α χ ω Δ χ ω Δ= | | − − +
=

iħg ( ( ) ( )) (5)n n
k

k n k n k,
1

4
2

n
2

∑σ α α χ ω Δ χ ω Δ= − − +φ

=

−
−−

∗iħg g e ( ( ) ( )) (6)
k

k
i k

k k1,2
1

2

1 2 2
( 1)

1 2 1 2 1k2 1

∑σ α α χ ω Δ χ ω Δ= − − +φ

=
−

− −
−

∗iħg g e ( ( ) ( )) (7)
k

k
i k

k k2,1
1

2

1 2 2 1
( 1)

2 2 1 2 2k2

and χ ω κ ω= / − −i( ) ( 2 ) 1 . As described in the main text, φ is the relative phase 
between the two beat notes whose frequencies are nearly equal to δω.
Temperature measurement. As with any driven optomechanical system, our sys-
tem is not strictly in thermal equilibrium, and so one needs to specify exactly what 
is meant by the effective temperature of each mechanical mode. We recap here 
the standard approach to this problem (see, for example, ref. 28 for a pedagogical 
review).

For a stationary, non-equilibrium system, one can define at each frequency an 
effective temperature by considering the ratio of fluctuations to dissipation at that 
frequency. Letting –χxx[ω] denote the full mechanical force susceptibility of the 

mode of interest (that is, χxx[ω] is the retarded position–position Green’s function 
of the mode), we have:

¯ω
ω

ω
χ ω
















≡

−
ħ

k T
S

ħ
coth

2 [ ]
[ ]

Im [ ]
(8)xx

xxB eff

For a system in thermal equilibrium, Teff[ω] would be equal to the physical tem-
perature T at all frequencies. In the classical regime of interest here, where effec-
tive temperatures are much larger than the frequencies of interest, this relation 
becomes:

¯
ω

ω
χ ω ω

≡
− /

k T S[ ] [ ]
2Im [ ] (9)xx

xx
B eff

It follows that the position fluctuations ⟨ ⟩x 2  are essentially a weighted integral of 
Teff[ω]:

⟨ ⟩ ∫ ∫
ω ω ω χ ω

ω
ω=

π
=

π






− 




x S k Td
2

[ ] d
2

2Im [ ]
[ ] (10)xx

xx2
B eff

We can thus use ⟨ ⟩x 2  to define a single effective temperature T  to describe the 
mode, which will be a weighted average of the frequency-dependent effective tem-
perature Teff[ω]:

⟨ ⟩=k T k x (11)B eff
2

where the effective spring constant is defined as

∫
ω χ ω

ω
=

π






− 


k

1 d
2

2Im [ ]
(12)xx

eff

Using the Kramers–Kronig relation, we obtain

χ ω= − =
k
1 [ 0] (13)xx
eff

We use the above definition of T  to define the effective temperature for each 
mechanical mode in the main text.

We make some important remarks on this procedure. First, if our oscillator was 
truly in thermal equilibrium at a temperature T, then (via the fluctuation dissipa-
tion theorem) T  = T, irrespective of the particular shape of χxx[ω]. Thus our 
definition does not require the mechanical mode to have a simple Lorentzian 
resonance. Second, for a standard damped mechanical harmonic oscillator of mass 
m, spring constant k0 and damping rate γ, the susceptibility takes the usual form:

χ ω
ω Ω ωγ

= ×
− +m i

[ ] 1 1
(14)xx 2 2

with Ω = (k/m)1/2. In this case, keff = k0 (that is, it is just the spring constant of the 
mode), recovering the usual equipartition theorem.

For application to our system, we note that the modification of the mechanical 
susceptibility of each mode due to optomechanical interactions implies that keff 
could in principle deviate from k0. By explicitly calculating χxx[ω] from H (which 
is defined in the main text) and using equation (13), we find that k0 and keff differ 
by about 10−4, which is insignificant. We thus use equation (11) to define the 
effective temperature T  of each mode from the measured position fluctuation 
spectral density, using the bare spring constant, that is, with keff → k0.
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Extended Data Fig. 1 | Temperature of each phononic mode as a function of the control tone phase. This data was used to calculate the normalized 
temperature ratio shown in Fig. 4b. The error bars show the standard error of the mean.
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