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We analyze the optical resonances of a dielectric sphere the surface of which has been slightly deformed in
an arbitrary way. Setting up a perturbation series up to second order, we derive both the frequency shifts and the
modified linewidths. Our theory is applicable, for example, to freely levitated liquid drops or solid spheres, which
are deformed by thermal surface vibrations, centrifugal forces, or arbitrary surface waves. A dielectric sphere
is effectively an open system the description of which requires the introduction of non-Hermitian operators
characterized by complex eigenvalues and non-normalizable eigenfunctions. We avoid these difficulties using
the Kapur-Peierls formalism, which enables us to extend the popular Rayleigh-Schrödinger perturbation theory
to the case of electromagnetic Debye potentials describing the light fields inside and outside the near-spherical
dielectric object. We find analytical formulas, valid within certain limits, for the deformation-induced first- and
second-order corrections to the central frequency and bandwidth of a resonance. As an application of our method,
we compare our results with preexisting ones, finding full agreement.
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I. INTRODUCTION

In this paper we address the problem of determining the
optical resonances of slightly deformed dielectric spheres. In-
side an almost spherical dielectric body embedded in vacuum
or air, light is confined by near-total internal reflection and
propagates with little attenuation along the inner surface of
the body. This form of propagation is denoted as whispering
gallery modes, which are typically characterized by a high
quality factor Q [1]. For a perfect (ideal) dielectric sphere
in air or vacuum, with a radius of a few millimeters, the
predicted Q can easily exceed 1020 at optical frequencies.
However, several physical processes (among which scattering
from surface roughness can be the most prominent) limit the
effective value of Q to about 108 − 109 [2,3]. Our goal is to
develop a perturbation theory that allows us to calculate the
Q factors of the optical resonances of dielectric spheres the
surfaces of which are slightly deformed by various physical
processes.

The study of light interacting with spherical or near-
spherical dielectric bodies dates back to Aristotle, who first
described (although incorrectly) the rainbow as due to light
reflection from raindrops [4]. In much more recent times
microscopic glass spheres have been widely used as passive
and active optical resonators in linear and nonlinear optics
regimes for numerous physical, chemical, and biological ap-
plications (see, e.g., [5,6] and references therein). Recently,
dielectric optical resonators of many diverse shapes have
been regarded as optomechanical systems [7,8]. Even more
recently, optomechanical devices consisting of drops of var-
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ious liquid materials have been proposed and demonstrated
[9–11]. In these devices the near-spherical free surface of
the drop provides for both the optical and the mechanical
resonators. As an example thereof, we have suggested the
use of millimeter-scale drops of superfluid He magnetically
levitated in vacuum as a novel type of optomechanical device
[11]. The surface of a levitated drop may differ from a perfect
sphere for several reasons, as shown in Fig. 1. For example, a
rotating liquid drop is squeezed along the axis of rotation and
takes the form of an oblate spheroid. On top of this, thermally
excited capillary waves (ripplons) will result in corrugations
upon the droplet’s surface.

All these optical and optomechanical devices are describ-
able as open systems, that is, physical systems that leak energy
via the coupling with an external environment [12]. The math-
ematical description of either classical or quantum open sys-
tems requires the use of non-Hermitian operators, which are
characterized by complex-valued eigenvalues [13–15]. One
important challenge with non-Hermitian operators is that they
may not possess a set of orthonormal eigenfunctions. This
implies that the familiar Rayleigh-Schrödinger perturbation
theory is no longer applicable and different methods must be
used.

Among these methods, the quasi-stationary-states ap-
proach and the Kapur-Peierls (KP) formalism are quite
popular [16]. Quasistationary (Gamow or Siegert functions
[17,18]) states are solutions of a wave equation with purely
outgoing boundary conditions and can be used to build a
perturbation theory called “resonant-state expansion (RSE)”
[19]. In optics, the RSE technique has been put forward in [20]
and successfully applied to three-dimensional dielectric res-
onators in [21]. However, basically the same method was al-
ready used in [22] to find optical resonances in microdroplets
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FIG. 1. Cartoonlike representation of the cross-section of a di-
electric sphere with its deformations. The nondeformed sphere is
represented by a dark-blue disk of radius a. The irregular curve
represents a generic quasispherical corrugated surface and it is
characterized by the surface profile function g(r̂) (see Sec. IV A for
details).

within first-order perturbation theory. The main problem with
quasistationary states is that they are not orthonormal in the
conventional sense and the standard normalization integral
diverges [23,24].

Conversely, Kapur-Peierls theory is not affected by these
normalization problems [25,26] and automatically furnishes
a biorthogonal complete set of functions suitable for use in
perturbation theory. This formalism was originally developed
in the context of nuclear scattering theory and was recently
applied to the study of the resonances of one- and two-
dimensional open optical systems [27,28].

In this paper we use Kapur-Peierls formalism to develop a
perturbation theory of optical resonances of three-dimensional
open optical systems (near-spherical dielectric bodies), cor-
rect up to and including second-order terms. We find analytic
formulas for the characteristic values (complex wave num-
bers) of these resonances and we apply our theory to dielectric
spheres with various deformations.

The application we have in mind is a situation in which
the wavelength is much smaller than the sphere’s radius
(e.g., 100 or 1000 times). In this case, which is of great
experimental significance, the use of numerical techniques
[like the ones routinely used in commercially available finite
element method (FEM) solvers] becomes very challenging if
not prohibitive. For this reason, we do not present comparison
to FEM results in the present paper. However, we compare our
results with the analytical predictions (limited to first-order
perturbation theory) of previous works and find complete
agreement.

The paper is organized as follows. In Sec. II we briefly de-
scribe what we regard as “the unperturbed problem,” namely,
the determination of the optical resonances of a dielectric
sphere using the formalism of Debye potentials and scattering
theory. Then, in Sec. III we furnish a review of the Kapur-
Peierls formalism, which sets the basis for the remainder. In
Sec. IV we apply this formalism to develop a perturbation
theory for the Debye potentials. In Sec. V we use Rayleigh-

Schrödinger perturbation theory to achieve the main goal of
this paper, namely, finding the optical resonances of slightly
deformed dielectric spheres. In Sec. VI we show three differ-
ent applications of our theory. Finally, in Sec. VII we draw
some conclusions.

II. RESONANCES OF A DIELECTRIC SPHERE

The mathematical problem of the interaction of electro-
magnetic waves with dielectric spheres is more than one
century old and represents a vast literature. The standard
reference is still Stratton’s classic book [29]. However, a more
modern and thorough exposition can be found in [30]. In
this section we briefly review the so-called Debye potentials
approach and establish the basic notation that we shall use
throughout this paper.

A. Setting the problem

Consider a sphere of radius a made of a homogeneous
isotropic dielectric medium (medium 1) surrounded by air
or vacuum (medium 2). We use SI units with electric
permittivity ε0, magnetic permeability μ0, and speed of
light c = 1/(ε0μ0)1/2 in vacuum. Let E1, B1, D1, H1 and
E2, B2, D2, H2 denote the electromagnetic fields in medium
1 and medium 2, respectively. For our purposes it is sufficient
to presume that all fields vary as exp(−iωt ), where ω = kc, k
being the wave number of light in vacuum. These fields obey
the Maxwell equations

∇ · D j = 0, (1a)

∇ · B j = 0, (1b)

iωD j + ∇ × H j = 0, (1c)

−iωB j + ∇ × E j = 0 (1d)

(here and hereafter j = 1, 2, unless stated otherwise) and
the constitutive equations

D j = ε jε0E j, B j = μ jμ0H j, (2)

with μ1 = μ2 = 1 (we assume that both media are nonmag-
netic) and ε1 = n2

1, ε2 = n2
2, where n1 > 1 is the real-valued

refractive index of medium 1 and n2 = 1 is the refractive
index of air or vacuum. The assumption that the dielectric
is nonmagnetic implies that there is no physical difference
between the magnetic strength H and the magnetic induction
B, so in the remainder we shall consider B as the independent
field.

Following [31], we express the solutions of the set of
equations (1) in terms of the transverse electric (TE) and
transverse magnetic (TM) Debye scalar potentials � j (r) and
� j (r), respectively, as follows:

ETE
j = ik∇ × (r� j ),

cBTE
j = ∇ × [∇ × (r� j )]

(3)

and

ETM
j = i

n2
j

∇ × [∇ × (r� j )],

cBTM
j = k∇ × (r� j ).

(4)
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Equations (1) and (2) are automatically satisfied by the
fields (3) and (4) when the Debye potentials obey the scalar
Helmholtz equation

∇2U + k2n2
jU = 0, (5)

where U denotes either � j or � j . This equation must be com-
pleted by the interface conditions which require the continuity
of tangential components of E and H (or B) across the surface
of the sphere [32], that is,

r̂ × (E2 − E1)|r = a = 0,

r̂ × (B2 − B1)|r = a = 0,
(6)

where r = |r| and r̂ = r/r.
Because of the symmetry of the problem imposed by (6), it

is convenient to solve the Helmholtz equation (5) in spherical
coordinates (r, θ, φ). Following [31] we rewrite the Laplace
operator ∇2 as

∇2U = 1

r

∂2

∂r2
(rU ) − L̂2

r2
U, (7)

where L̂2 ≡ L̂ · L̂ with L̂ ≡ −i r × ∇. Now, we look for
solutions of (5) of the form

� j (r, θ, φ) = u j (r)

r
Ylm(θ, φ),

� j (r, θ, φ) = v j (r)

r
Ylm(θ, φ),

(8)

where Ylm(θ, φ) are the standard spherical harmonics [32]
satisfying L̂2Ylm = l (l + 1)Ylm, and u j (r) and v j (r) denote the
reduced radial Debye potentials. Substituting (8) into (5) and
using (7), we obtain the ordinary differential equation

−ψ ′′
j (r) +

[
l (l + 1)

r2
− k2n2

j

]
ψ j (r) = 0, (9)

where ψ j = u j for TE polarization, ψ j = v j for TM polar-
ization, and ψ ′′

j ≡ d2ψ j/dr2. This equation must be supplied
with the interface conditions for the reduced radial potentials
ψ j (r). Substituting (3) and (4) into (6) and using (8) we obtain

ψ1(a) = ψ2(a), ψ ′
1(a) = pψ ′

2(a), (10)

where ψ ′
j ≡ dψ j/dr and here and hereafter p = 1 for TE

polarization and p = n2
1/n2

2 for TM polarization. We remark
that in the literature Eq. (9) is often written in a “quantumlike”
form as

−ψ ′′
j (r) +

[
l (l + 1)

r2
+ Vj

]
ψ j (r) = E ψ j (r), (11)

where Vj = k2(1 − n2
j ) and E = k2 (see, e.g., [31,33]). We

shall exploit this quantum-classical analogy in the next
section.

B. Scattering solutions

The general solution of (9) can be written as

ψ j (r) = C1 r jl (n jkr) + C2 r yl (n jkr), (12)

where jl (z) and yl (z) are spherical Bessel functions of the
first and second kind, respectively [34]. Using the spheri-
cal Hankel functions h(1)

l (z) = jl (z) + i yl (z) and h(2)
l (z) =

jl (z) − i yl (z), we can rewrite (12) as

ψ j (r) = C3 r h(1)
l (n jkr) + C4 r h(2)

l (n jkr), (13)

where C3 = (C1 − iC2)/2 and C4 = (C1 + iC2)/2. Since
jl (z) ∼ zl and nl (z) ∼ 1/zl+1 for z → 0, while h(1)

l (z) ∼
(−i)l+1eiz/z and h(2)

l (z) ∼ il+1e−iz/z for z → ∞, the every-
where regular solutions to (9) are

ψ1(r) = Al r jl (n1kr), r � a,

(14)
ψ2(r) = I r h(2)

l (kr) + Sl r h(1)
l (kr), r > a,

where I is the amplitude of the incident wave and Sl is that of
the scattered wave with azimuthal index l . Al is the amplitude
of the same wave inside the sphere. Assuming only outgoing
waves means setting I = 0. This choice leads to the so-called
resonant-state formulation of scattering theory [20,21]. These
states, also known in the quantum theory of scattering [16] as
decaying, metastable, Gamow [17], or Siegert [18] states, are
nonphysical because they are not normalizable in the standard
manner (that is, they are not square integrable). Here we
choose instead I = 1, which means assuming an incident wave
of unit amplitude.

Substituting (14) into (10) we determine the interior wave
amplitude

Al (k) = 2 ip

ka

1

fl (ka)
(15)

and the scattering amplitude

Sl (k) = − fl (−ka)

fl (ka)
, (16)

where we have defined the Jost function [35]:

fl (z) = p jl (n1z)
[
z h(1)

l (z)
]′ − h(1)

l (z)[(n1z) jl (n1z)]′, (17)

with the prime symbol (′) denoting the derivative with re-
spect to the argument of the function, e.g., [ f (x)g(x)]′ =
(df /dx)g(x) + f (x)(dg/dx). Using (A4) it is straightforward
to show that for k real fl (−ka) = f ∗

l (ka) and we can write

Sl (k) = exp [2iδl (k)], (18)

where δl (k) denotes the phase shift of the scattered wave
[30]. In the absence of the dielectric sphere n1 = n2 = 1 and
evidently scattering does not occur. In this case the equations
above give δl = 0, Sl = 1, and Al = 2.

C. Resonances and Q factors

In Eqs. (15) and (16) k is the real-valued wave number
of the ingoing wave. However, the resonances of the sphere
are associated with the poles of the analytical continuation of
Sl (k) into the entire complex plane: k ∈ R → k = k′ + ik′′ ∈
C, where here and hereafter k′ = Re k and k′′ = Im k. The
continuation of Sl (k) is meromorphic, that is, analytic except
at its poles. The latter are characterized by Im k < 0 and
coincide with the roots of the transcendental equation

fl (ka) = 0. (19)

This equation, where l is a fixed number, has a denumerably
infinite set of solutions denoted {k1l , k2l , . . . , knl , . . .} the de-
termination of which is detailed in Appendix B. From (A4)
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FIG. 2. Spectrum of the TE modes of a dielectric sphere of radius
a and refractive index n1 = 1.5. The values of knl for 1 � n � 11 and
0 � l � 10 are shown as orange bands. The vertical position of the
center of each band is equal to Re(knl a) and the thickness is equal
to Im(knl a). For the first radial mode n = 1 (darkest orange bands)
the imaginary part of knl quickly decreases as l increases from left to
right, while it decreases slowly for n > 1 radial modes. Each mode
characterized by the pair of radial and azimuthal numbers (n, l ) is
2l + 1 times degenerate (see Sec. IV).

it follows that f ∗
l (z) = fl (−z∗), that is, the resonance poles

are located in the complex k plane in pairs symmetric with
respect to the imaginary axis. Therefore, if knl is a solution
of (19), then −k∗

nl is also a solution. We label the poles
with Re k < 0 by the negative index −n, so that k−nl = −k∗

nl .
A “central” pole labeled with n = 0 and characterized by
Re k0l = 0, Im k0l < 0, exists only for l odd (even) and TE
(TM) polarization. A portion of the spectrum of TE reso-
nances of a dielectric sphere with refractive index n1 = 1.5
is shown in Fig. 2.

Each resonance k = k1l , k2l , . . . , can be characterized by
the quality factor Q defined by

Q(k′, k′′) ≡ −1

2

Re k

Im k
= −1

2

k′

k′′ . (20)

From this equation it follows that

∂Q

∂k′′ = 2 Q
∂Q

∂k′ . (21)

This means that Q is more sensitive to variations of losses
(∝ k′′) than of frequency (∝ k′), by a factor 2Q. This is why
also a tiny perturbation of k′′ may cause a relevant variation of
Q. This feature is relevant for the estimation of the variation
of Q due to a small perturbation of the shape of the dielectric
sphere.

The quality factor depends dramatically upon the value
of l . For example, solving Eq. (19) numerically for a
4He sphere with refractive index n1 ≈ 1.03 (superfluid
He), p = 1 (TE polarization), l = 4000, and l = 1000, we
have found k1,4000a ≈ 4000/n1 − i (2 × 10−10) and k1,1000a ≈
1000/n1 − i (1 × 10−1), respectively, where we have chosen
in both cases the first resonance labeled by n = 1. These
values yield

Q(4000) = −1

2

Re(k1,4000a)

Im(k1,4000a)
≈ 1013, (22)

for l = 4000, and

Q(1000) = −1

2

Re(k1,1000a)

Im(k1,1000a)
≈ 5 × 103, (23)

for l = 1000. Thus, although l changes only by a factor
of 4, the corresponding Q changes by about nine orders of
magnitude. This huge variation in Q is largely determined by
the imaginary parts of the resonances, because

Q(4000)

Q(1000)
= Re(k1,4000a)

Re(k1,1000a)
× Im(k1,1000a)

Im(k1,4000a)

≈ 4000

1000
× (2 × 109). (24)

III. KAPUR-PEIERLS FORMALISM

In the previous section we have presented the standard
theory of scattering from a piecewise constant spherically
symmetric potential (dielectric sphere) and we have written
Eq. (19) determining the resonances of the system [34]. This
approach, based on the continuous (with respect to k) set of
functions (14), is not very convenient for perturbation theory
where it is desirable to deal with a denumerable set (a basis)
of normalizable functions. The KP formalism, originally de-
veloped in the context of nuclear physics [25] and recently
adapted to optical resonator theory [28,36], naturally yields a
complete set of biorthogonal functions [37].

A. Preliminaries on the Kapur-Peierls formalism

Before starting our discussion, it is useful to briefly
outline the general approach of KP perturbation theory. In
the standard quantum-mechanics Rayleigh-Schrödinger time-
independent perturbation theory, one first finds the full set
of eigenstates of the Hamiltonian of the unperturbed system.
Afterwards, the perturbative corrections to any one eigenstate
can be expressed generically as sums over these eigenstates.
In KP perturbation theory, the setting is slightly changed: One
first solves an auxiliary eigenproblem the eigenvalues λ(k) of
which are functions of a continuous parameter, the complex
scattering frequency (here represented by the complex wave
number k). One then determines the discrete set of resonances
in k by imposing λ(k) = k2. Finally, the perturbative cor-
rection for a given resonance is obtained by summing over
the previously obtained set of eigenstates that belongs to
the resonance’s particular value of k. This makes the whole
procedure more involved than Rayleigh-Schrödinger theory,
since for each resonance we are dealing with a different set of
infinitely many eigenstates (which are still loosely related to
the whole set of resonances, but not identical to those).

Kapur-Peierls dispersion theory is well known within nu-
clear physics [38]. However, this formalism is much less
known in the optics community. A useful purpose may
therefore be served by shortly reviewing the Kapur-Peierls
approach to scattering theory [39]. As in the previous section,
we consider again the scattering of a scalar wave (any of
the two Debye potentials) by a dielectric sphere; this sim-
ple example illustrates the main features of the theory and
provides for the Kapur-Peierls eigenvalues and eigenfunctions
characterizing the “unperturbed problem.” When the scatterer
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is not perfectly spherical the simple theory presented in this
section is no longer applicable and the use of perturbation
theory becomes necessary. This will be presented in the next
section.

We begin by rewriting (9) as

(D̂ j − k2)ψ j (r) = 0, ( j = 1, 2), (25)

where we have defined the differential operator

D̂ j ≡ 1

n2
j

[
− d2

dr2
+ l (l + 1)

r2

]
, (26)

associated with the boundary conditions (10), that we
rewrite as

ψ ′
1(a)

ψ1(a)
= p

ψ ′
2(a)

ψ2(a)
, (27)

where p = 1 for TE polarization and p = n2
1/n2

2 for TM polar-
ization. We know from the previous section that the solution
of (25) can be written for r > a as

ψ2(r) = I r h(2)
l (kr) + Sl r h(1)

l (kr), (28)

which implies

ψ ′
2(r) = I

[
(kr) h(2)

l (kr)
]′ + Sl

[
(kr) h(1)

l (kr)
]′
, (29)

where the prime symbol (′) denotes the derivative with respect
to the argument of the function.

Kapur-Peierls theory is based upon the observation that
using (28) and (29) we can express Sl and I via ψ2(a) and
ψ ′

2(a) to obtain

Sl

I
= −h(2)

l (ka)

h(1)
l (ka)

ψ ′
2(a) + c l (−ka)ψ2(a)

ψ ′
2(a) − c l (ka)ψ2(a)

, (30)

where

c l (ka) ≡ 1

a

[
(ka) h(1)

l (ka)
]′

h(1)
l (ka)

. (31)

In Secs. II B and II C we have shown that the poles of
the analytic continuation of Sl (k), with k = k′ + ik′′, deter-
mine the resonances of the systems. From (30) it follows
that these poles occur when the denominator vanishes, that
is, when ψ ′

2(a) − c l (ka)ψ2(a) = 0. Evidently, this happens
when there is no incident wave, that is, I = 0, and the ratio
Sl/I becomes singular. Using the boundary conditions (27)
we can transform the relation ψ ′

2(a) − c l (ka)ψ2(a) = 0 into
the equivalent one:

ψ ′
1(a) − p c l (ka)ψ1(a) = 0. (32)

This implies that we can determine the resonances of the
system by knowing the solutions ψ1(r) of the interior problem
(D̂1 − k2)ψ1(r) = 0 with boundary conditions (32). We shall
give a constructive proof of this statement in Sec. III C by
deriving the so-called dispersion formula for the scattering
amplitude Sl (k). However, first we need to prove some basic
results.

B. The Kapur-Peierls eigenfunctions

Let us consider the auxiliary eigenvalue problem

(D̂1 − λnl (k))φnl (k, r) = 0, r � a, (33)

with boundary conditions

φnl (k, 0) = 0, φ′
nl (k, a) − p c l (ka)φnl (k, a) = 0, (34)

where n is a discrete numerical index, φnl (k, r) are the so-
called Kapur-Peierls (right) eigenfunctions with φ′

nl (k, a) ≡
[dφnl (k, r)/dr]r=a, and c l (ka) is given by (31). The (right)
eigenvalues λnl (k) depend on the parameter k via the bound-
ary conditions (34). Here and hereafter k must be regarded as a
fixed constant, the same for all eigenvalues λ1l (k), λ2l (k), . . .,
which are complex numbers on account of the boundary
condition (34). The normalized solutions of (33) are

φnl (k, r) = 1√
Znl

r jl (n1qnl r), (35)

where qnl = √
λnl (k) and

Znl = a3

2

[
j 2
l (n1qnl a) − jl−1(n1qnl a) jl+1(n1qnl a)

]
. (36)

The eigenvalues are given by λnl (k) = z2
nl/(n1a)2, where

{z1l , z2l , . . . , znl , . . .} are the complex roots of the k-dependent
transcendental equation Fl (z, ka) = 0, where

Fl (z,w) = p jl (z)
[
w h(1)

l (w)
]′ − h(1)

l (w)[z jl (z)]′. (37)

From (A2) it follows that if znl is a solution of (37) then −znl is
also a solution and both znl and −znl yield the same eigenvalue
λnl (k). Different values of k produce different eigenvalues;
typically λnl (k) 
= λnl (k′) for k 
= k′.

The operator defined by (33) and (34) is not self-adjoint
because c l (ka) is a complex number. This implies that there
exist left eigenfunctions φ̃n(k, r) and left eigenvalues λ̃nl (k)
defined by the so-called adjoint equation

(D̂1 − λ̃nl (k))φ̃nl (k, r) = 0, r � a (38)

and the adjoint boundary conditions

φ̃nl (k, 0) = 0, φ̃′
nl (k, a) − p c∗

l (ka)φ̃nl (k, a) = 0. (39)

It is not difficult to show that λ̃nl (k) = λnl (k) = [λnl (−k∗)]∗

and φ̃nl (k, r) = φ∗
nl (k, r) = φnl (−k∗, r) [37]. Moreover, our

normalization (36) yields∫ a

0
φ̃∗

n′l (k, r)φnl (k, r)dr =
∫ a

0
φn′l (k, r)φnl (k, r)dr

= δnn′ . (40)

This equation shows that the normalized Kapur-Peierls eigen-
functions φnl (k, r) belong to a biorthogonal set of functions.

Typically the functions φnl (k, r) form a complete set
[26,40], that is,∑

n

φnl (k, r)φ̃∗
nl (k, r′) =

∑
n

φnl (k, r)φnl (k, r′)

= δ(r − r′), (41)

but usually this is not easy to prove (see, e.g., [41] for a
discussion). For our functions (35) we have not been able
to evaluate the left side of this equation analytically, but
numerical evaluation for some values of l and k confirmed the
validity of (41). Therefore, we assume without demonstration
the completeness of the Kapur-Peierls functions (35).
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C. The Kapur-Peierls dispersion formula

From (27)–(29) it follows that the interior function ψ1(r)
obeys the boundary conditions

ψ ′
1(a) − p c l (ka)ψ1(a) = I

2 p

i ξ l (ka)
, (42)

where we have introduced the Riccati-Bessel functions
ξ l (x) ≡ x h(1)

l (x) and ζ l (x) ≡ x h(2)
l (x) [42]. These conditions

reduce to (32) when no incident wave is present and I =
0. Consider then the auxiliary functions ϕ1(r) and ϕ2(r)
defined by

ϕ j (r) ≡ ψ j (r) − X (r), ( j = 1, 2), (43)

where X (r) is any function satisfying the constraint

X ′(a) − p c l (ka)X (a) = I
2 p

i ξ l (ka)
. (44)

It is then evident that ϕ1(a) obeys the same boundary condi-
tions (34) satisfied by the Kapur-Peierls functions, that is,

ϕ′
1(a) − p c l (ka)ϕ1(a) = 0. (45)

Therefore, using (41) and (43) we can write

ϕ1(r) =
∑

n

an φnl (k, r), (46)

where

an =
∫ a

0
φnl (k, r)[ψ1(r) − X (r)]dr

≡ bn − cn. (47)

From (25) and (26) and using ψ1(0) = 0 = φnl (k, 0), we
obtain

bn =
∫ a

0
φnl (k, r) ψ1(r)dr

=
∫ a

0

[D̂1φnl (k, r)]ψ1(r) − φnl (k, r)[D̂1ψ1(r)]

λnl (k) − k2
dr

= 1

n2
1

φnl (k, a)

λnl (k) − k2
[ψ ′

1(a) − p c l (ka)ψ1(a)]. (48)

Subtracting X (a) from both sides of the matching condition
ψ2(a) = ψ1(a) we obtain ϕ2(a) = ϕ1(a). Using (28), (46),
and (47) we can rewrite this equation as

1

k
[I ζ l (ka) + Sl ξ l (ka)] − X (a)

=
∑

n

bnφnl (k, a) −
∑

n

cnφnl (k, a). (49)

Substituting (48) into (49) and using (42) gives

1

k
[I ζ l (ka) + Sl ξ l (ka)] = − I

p

n2
1

2i

ξ l (ka)

∑
n

φnl (k, a)

λnl (k) − k2

+
[

X (a)−
∑

n

cnφnl (k, a)

]
. (50)

Since X (r) is arbitrary and the condition (44) involves both
X (a) and X ′(a), we can always choose X (r) such that X (a) =∑

n cnφnl (k, a) to cancel the last term in (50), and X ′(a) in a

manner that (44) becomes an identity. Then, solving (50) for
Sl , we obtain

Sl

I
= −ζ l (ka)

ξ l (ka)
[1 + 2 i kR l (k)], (51)

where

R l (k) = p

n2
1

1

ξ l (ka)ζ l (ka)

∑
n

φ2
nl (k, a)

λnl (k) − k2
, (52)

and p = 1 for TE polarization and p = n2
1/n2

2 for TM polariza-
tion. It should be noticed that the sum in (52) is simply equal
to −1 times the Green’s function Gl (k, r′, r) for the internal
problem r′, r � a, evaluated at r′ = r = a [37]. We shall use
this property later in Sec. V.

Equations (51) and (52) are an example of what is usually
called a “dispersion formula” in nuclear physics. They give
an explicit expression of the scattering amplitude Sl in terms
of its singularities (poles). In particular, (52) provides for
a practical recipe to find resonances: first we calculate the
Kapur-Peierls eigenvalues λnl (k) by solving (often numeri-
cally) the transcendental equation Fl (n1a

√
λnl (k), ka) = 0 to

determine
√

λnl (k). Then, we look for the roots of the fixed-
point equation √

λnl (k) = k. (53)

It is understood that the only physically acceptable branch
of the multivalued function

√
λnl (k) is the one with

Im
√

λnl (k) < 0. It is evident that (53) reproduces the res-
onance equation (19). To show this we must simply sub-
stitute, consistently with (53), n1a

√
λnl (k) with n1a k in

Fl (n1a
√

λnl (k), ka) = 0. This makes (37) coincident with
(19), that is, Fl (z, z) = fl (z).

We remark that for a fixed value of the index n there
may be several different solutions k1l , k2l , . . . , ksl , . . ., of (53)
such that λnl (ksl ) = k2

sl . An example thereof is reported in
[37]. However, in our case we found via numerical evaluation
of (53) that there is only one solution for fixed n; this is
illustrated in Fig. 3 for two particular cases. Therefore, in the
remainder we choose the natural numeration of the resonances
so that s = n and λnl (knl ) = k2

nl .

IV. PERTURBATION THEORY FOR THE DEBYE
POTENTIALS

In the previous section we have described the Kapur-
Peierls formalism. This yields a biorthogonal and complete
set of basis functions defined in the interior region of the
dielectric sphere. The goal of this section is to develop a
perturbation theory for the Helmholtz equation (5) using these
functions.

A. Description of the deformations of the surface
of a dielectric sphere

We assume that the sphere’s free surface can be described
in spherical coordinates (r, θ, φ) ≡ (r, r̂) by the equation
r − g(r̂) = 0, where

g(r̂) ≡ a + ah(r̂) (54)
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FIG. 3. Resonances k of an unperturbed sphere, and discrete
eigenvalues of the Kapur-Peierls equation for two different values of
k. The top plot displays the location of the roots {knl} of (19) (open
black circles) and (37) {√λnl (k1l )} (filled blue circles) for k = k1l .
The root denoted k1l (k0l is the central root with Re k0l = 0, k1l is the
right nearest root with Re k1l > 0, k−1l is the left nearest root with
Re k−1l < 0, etc.) is indicated by a blue open circle. It is evident that√

λnl (k1l ) = k1l for only one value of n. Similarly, the bottom plot
displays the location of the roots of (19) (open black circles) and
(37) {√λnl (k5l )} (filled red circles) for k = k5l . The root denoted k5l

is marked by a red open circle. Also here
√

λnl (k5l ) = k5l for only
one value of n. In both plots the field has TM polarization, n1 = 1.5
and l = 10.

is the surface profile function and a|h(r̂)| describes the dis-
tance, in the direction r̂, of the deformed sphere surface from a
reference unperturbed sphere of radius a. We suppose that for
a given fixed direction r̂ the equation r − g(r̂) = 0 has only
one solution. By definition, for a perfect sphere of radius a
the profile function is constant, namely, g(r̂) = a and h(r̂) =
0. Conversely, the surface profile function of the deformed
sphere is effectively determined by

h(r̂) =
∞∑

L=2

L∑
M=−L

hLMYLM (r̂), (55)

where

hLM =
∫ 2π

0
dφ

∫ π

0
dθ sin θ Y ∗

LM (r̂) h(r̂). (56)

The relative permittivity εr (r) of the deformed sphere can
be evidently described by the piecewise constant function

εr (r) = n2
1H[g(r̂) − r] + n2

2H[r − g(r̂)], (57)

where H (x) denotes the Heaviside step function [43]. For
a perfect sphere of radius a we define εr (r) ≡ ε(0)

r (r) =
n2

1 H (a − r) + n2
2H (r − a). From H (x) + H (−x) = 1 it fol-

lows that we can rewrite εr (r) as the sum of the unperturbed
permittivity ε(0)

r (r) and a perturbation term �εr (r):

εr (r) = ε(0)
r (r) + �εr (r), (58)

where

�εr (r) = − (n2
1 − n2

2

)
(59)

{H[r − a + a h(r̂)] − H (r − a)}. (60)

In the case of small deviations |h(r̂)| � 1 from the reference
spherical surface, we can approximate (59) with

�εr (r) ∼= (n2
1 − n2

2

)
(61)

ah(r̂)

[
δ(r − a) − ah(r̂)

2
δ′(r − a)

]
, (62)

where δ′(r − a) = dδ(r − a)/dr and we have expanded
�εr (r) to second order because we plan to calculate quadratic
corrections to the resonant wave numbers. Evidently, there is
a freedom in attributing the singular local terms in (61) to
either the internal (r � a) or the external (r > a) region [36].
We choose to define �εr (r) in the internal region solely. This
implies that we can define an effective potential V (ε, r) as

V (ε, r) = �εr (r)

n2
1

≡ ε V (1)(r) + ε2 V (2)(r), (63)

where ε � 0 is a formal parameter serving to build a pertur-
bation series with V (0, r) = 0, and we have defined

V (1)(r) ≡ − v(k) a h(r̂)δ(r − a),

V (2)(r) ≡ v(k)
a2h2(r̂)

2
δ′(r − a),

(64)

with

v(k) ≡ k2
(
n2

1 − n2
2

)
/n2

1. (65)

A caveat is in order here. The Debye potentials repre-
sentation presented in Sec. II A is valid for electromagnetic
fields in uniform dielectric media. This condition is certainly
satisfied by the physical dielectric bodies considered in this
paper. However, the use of the potential (63) introduces an
effective inhomogeneity at r = a. As the Debye potentials
representation is still valid inside the dielectric body (r < a),
in the spirit of perturbation theory it is reasonable to extend
this representation to the whole region r � a, keeping in mind
that this is an approximation.

B. Kapur-Peierls perturbation theory

According to the previous discussion, we consider now a
perfect sphere the refractive index of which is modified by
a small perturbation V (ε, r) defined for r � a only. It must
be put equal to 1 at the end of the calculations. Because of the
both radial and angular dependence of V we have to generalize
the radial equation (25) to

(D̂ − k2)�(r) = 0, (66)

where

D̂ = 1

n2
1

(
− ∂2

∂r2
+ L̂2

r2

)
+ V (ε, r)

≡ D̂0 + V (ε, r). (67)
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As we deal with fields in the interior region only, in the
remainder the index j will be omitted. The Kapur-Peierls
eigenvalue equation for the unperturbed operator D̂0 reads as

[D̂0 − λnl (k)]�nlm(k, r) = 0, (68)

where

�nlm(k, r) = φnl (k, r)Ylm(θ, φ), (69)

and �̃nlm(k, r) = φ̃nl (k, r)Ylm(θ, φ), with n, l , and m being
the so-called radial, azimuthal, and magnetic numbers. The
radial eigenfunctions φnl (k, r) are defined as before by (33)–
(35). Since the boundary conditions (34) are independent of
the magnetic number m, each eigenvalue λnl (k) is 2l + 1 times
degenerate.

Now, suppose that ε 
= 0. In this case when a wave with
given radial, azimuthal, and magnetic numbers n, l , and m
impinges upon the inhomogeneous dielectric sphere, it is
scattered into many (possibly infinitely many) waves with
different numbers n′, l ′, and m′. This occurs because the
nonspherically symmetric potential V (ε, r) couples differ-
ent modes of the field [44]. Therefore, the “single-channel”
Kapur-Peierls theory developed in the previous section is not
directly applicable and the theory must be generalized (see,
e.g., [25,38]). However, because of the spherically symmetric
surface of the inhomogeneous dielectric body, we still have
well-defined internal and external scattering regions charac-
terized by r � a and r > a, respectively. In this case it is not
difficult to show [27] that the original Kapur-Peierls equation
(33) can be replaced by the new eigenvalue equation

[D̂ − �nlm(k)]�nlm(k, r) = 0, (70)

and the fixed-point equation (53) becomes

K2
nlm = �nlm(Knlm), (71)

which must reduce to k2
nl = λnl (knl ) for ε = 0. However, it

is important to keep in mind that while (53) is an exact
relation Eq. (71) rests upon the approximation of replacing
a near-spherical homogeneous dielectric body with an inho-
mogeneous spherical one.

Now, according to Rayleigh-Schrödinger perturbation the-
ory suitably adapted to the case of a biorthogonal basis
[13,15], we assume that �nlm(k, r) and �nlm(k) can be ex-
panded in powers of ε:

�nlm(k, r) = �
(0)
nlm(k, r)+ ε �

(1)
nlm(k, r)+ ε2�

(2)
nlm(k, r) + . . . ,

(72)

�nlm(k) = �
(0)
nlm(k) + ε �

(1)
nlm(k) + ε2�

(2)
nlm(k) + . . . , (73)

where �
(0)
nlm(k) = λnl (k). Similarly, we write

Knlm = K (0)
nlm + ε K (1)

nlm + ε2K (2)
nlm + . . . , (74)

with K (0)
nlm = knl . Suppose that by using standard techniques

we have calculated the first two terms of the expansion (73).

Substituting (74) into (71) and using (73), we obtain(
knl + ε K (1)

nlm + ε2K (2)
nlm + . . .

)2
= λnl

(
knl + ε K (1)

nlm + ε2K (2)
nlm + . . .

)
+ ε �

(1)
nlm

(
knl + ε K (1)

nlm + ε2K (2)
nlm + . . .

)
+ ε2�

(2)
nlm

(
knl + ε K (1)

nlm + ε2K (2)
nlm + . . .

)+ . . . . (75)

Expanding the functions on the right side of this equation in
Taylor series around ε = 0 and equating the terms with the
same powers of ε on both sides we find, up to and including
second-order terms,

k2
nl = λnl (knl ), (76a)

K (1)
nlm = �

(1)
nlm(knl )

2knl − dλnl (k)
dk

∣∣
k=knl

, (76b)

K (2)
nlm = 1

2knl − dλnl (k)
dk

∣∣
k=knl

×
{
�

(2)
nlm(knl ) + K (1)

nlm

d�
(1)
nlm(k)

dk

∣∣∣∣
k=knl

−(K (1)
nlm

)2[
1 − 1

2

d2λnl (k)

dk2

∣∣∣∣
k=knl

]}
. (76c)

The two terms

dλnl (k)

dk

∣∣∣∣
k=knl

and
1

2

d2λnl (k)

dk2

∣∣∣∣
k=knl

(77)

can be calculated substituting the Taylor expansion of λnl (k)
around k = knl , into Fl (n1

√
λ(k) a, ka) = 0, and equating to

zero the terms with the same power of (k − knl ). After a
straightforward calculation we find

dλnl (k)

dk

∣∣∣∣
k=knl

= − 2knl

n1
ρ(knl ), (78)

and

1

2

d2λnl (k)

dk2

∣∣∣∣
k=knl

= ρ2(knl )

n2
1

− knla

n1

1
∂Fl (z,knl a)

∂z

∣∣
z=n1knl a

×
[
∂2Fl (z,w)

∂w2
− 2

∂2Fl (z,w)

∂z ∂w
ρ(knl )

+ ∂2Fl (z,w)

∂z2
ρ2(knl )

]
z = n1knl a
w = knl a

, (79)

where

ρ(knl ) ≡
∂Fl (n1knl a,w)

∂w

∣∣
w=knl a

∂Fl (z,knl a)
∂z

∣∣
z=n1knl a

. (80)

Incidentally, we note that iterating this procedure it is possible
to calculate the function λnl (k) in the neighborhood of any
point knl with the desired degree of accuracy.

Equations (76) are the main result of this section; they
formally solve completely our problem. The zeroth-order
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Eq. (76a) simply reproduces the resonances of the unperturbed
system. The other two equations give first- and second-order
corrections in terms of the two functions �

(1)
nlm(k) and �

(2)
nlm(k)

that will be explicitly calculated in the next section. The
physical meaning of the denominator in (76b) is explained in
[37]; it amounts to a renormalization factor connecting Kapur-
Peierls eigenmodes with Gamow (i.e., decaying) modes. The
second and third term within the curly brackets in (76c)
represent second-order corrections that, in general, should not
be neglected with respect to �

(2)
nlm(knl ).

V. RAYLEIGH-SCHRÖDINGER PERTURBATION THEORY

In this section we use Rayleigh-Schrödinger perturbation
theory to find the optical resonances of a deformed dielectric
sphere. The only (trivial) difference with respect to familiar
quantum perturbation theory is the use of biorthogonal bases
[13,15].

Let us consider a specific unperturbed resonant wave num-
ber knl where n and l have now fixed values. The correspond-
ing unperturbed Kapur-Peierls eigenvalue is λnl (k), which we
assume to be nondegenerate at the interesting values of k.
Here, with “nondegenerate” we mean that there is a single
radial wave function φnl (k, r) defined by (69) and associated
with the eigenvalue λnl (k) via the eigenproblem (68) [37].
However, there are 2l + 1 different solutions of (68) associ-
ated with the same eigenvalue λnl (k), which are obtained by
multiplying the unique radial wave function φnl (k, r) by the
2l + 1 angular-dependent spherical harmonics Ylm(r̂):

{�nlm(k, r)} = {φnl (k, r)Yl,−l (r̂), . . . , φnl (k, r)Yll (r̂)}. (81)

These solutions span a (2l + 1)-dimensional degenerate sub-
space, which we call Dnl . According to degenerate per-
turbation theory, we build the new set of eigenfunctions
{�D

nlm(k, r)} ∈ Dnl , defined by

{�D
nlm(k, r)} = {φnl (k, r)Yl,−l (r̂), . . . , φnl (k, r)Yll (r̂)}, (82)

where

Ylm(r̂) ≡
l∑

m′=−l

Cm′
lmYlm′ (r̂). (83)

As usual, the coefficients Cm′
lm can be determined solving the

eigenvalue equation
l∑

m′′=−l

(�̃nlm′ ,V (1)(r) �nlm′′ )rC
m′′
lm = �

(1)
nlm(k)Cm′

lm, (84)

where here and hereafter we use the shorthand notation

(u,w)r ≡
∫ a

0
dr
∫ 2π

0
dφ

∫ π

0
dθ sin θ u∗(r, θ, φ)w(r, θ, φ),

(u,w)r̂ ≡
∫ 2π

0
dφ

∫ π

0
dθ sin θ u∗(θ, φ)w(θ, φ) (85)

(note that the radial differential is dr and not r2dr). Substi-
tuting (69) and (64) into (84) and solving it for �

(1)
nlm(k), we

obtain the first-order correction to knl :

�
(1)
nlm(k) = −a v(k) φ2

nl (k, a) �lm, (86)

where v(k) = k2(n2
1 − n2

2)/n2
1 and

�lm ≡ (Ylm, h(r̂)Ylm)r̂, (87)

with m = −l,−l + 1, . . . , l . This result allows us to find the
first-order corrections K (1)

nlm by substituting (86), evaluated at
k = knl , into (76b).

It should be noted that although �lm is real by definition
�

(1)
νlm(k) may not be, because φ2

nl (k, a) is, in general, a com-
plex number. However, using (19) and (35) it is not difficult to
show that, for TE polarization,

−a v(knl ) φ2
nl (knl , a)

2knl − dλnl (k)
dk

∣∣
k=knl

= −knl , (88)

and (76b) becomes

K (1)
nlm(knl ) = −knl �lm. (89)

Since �lm is a real number, from (89) and (20) it follows that
the Q factor of TE waves is not affected by first-order correc-
tions. However, for TM polarization a simple expression such
as (89) does not exist because the left side of (88) displays
a complicated functional dependence on knl that will not be
reported here. This implies that the Q factor of TM waves may
be affected by first-order corrections.

The independence of �lm from the wave number k, the
polarization p, the refractive index n1, and the radial part of
the radial function φnl (k, r) is a surprising result of first-order
perturbation theory, which was discovered in the 1990s [2,22].

A. Discussion of the first-order corrections

From the definition (87) and (55) it follows that �lm is
a real number independent of k and coincides with the mth
eigenvalue of the (2l + 1) × (2l + 1) Hermitian matrix Hl

defined by

[Hl ]mm′ = (Ylm, h(r̂)Ylm′ )r̂, (m, m′ = −l, . . . , l ). (90)

Moreover, for fixed l and m the coefficients Cm′
lm in (83)

coincide with the components (C−l
lm ,C−l+1

lm , . . . ,Cl
lm) of the

mth eigenvector Clm associated with �lm, namely, HlClm =
�lmClm.

The matrix elements (90) can be calculated from (55) and
expressed in terms of the Wigner 3 j symbols [45] as

(Ylm, h(r̂)Ylm′ )r̂ = (−1)m(2l + 1)
∞∑

L=2

√
2L + 1

4π

(
l l L
0 0 0

) L∑
M=−L

hLM

(
l l L

−m m′ M

)

= (−1)m(2l + 1)
l∑

l ′=1

h2l ′,m−m′

√
4l ′ + 1

4π

(
l l 2l ′
0 0 0

)(
l l 2l ′

−m m′ m − m′

)
, (91)
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where the second expression follows from the properties of
the 3 j symbols requiring that only terms with L even, L �
2l , and M = m − m′ contribute to [Hl ]mm′ . This means that at
first-order level the resonance knl is not affected by “rapid”
surface fluctuations characterized by L > 2l .

The matrix Hl can be huge. For a 4He droplet of radius a =
1 mm, refractive index n1 ≈ 1.03, and illuminated by light of
wavelength λ = 1 μm in vacuum, the value of l is around l ≈
2πan1/λ ≈ 6500 [1]. Diagonalizing a matrix of dimension

∼104 × 104 with sufficient accuracy may be a serious task
depending on the distribution of the matrix elements and
on available computational resources. We discuss a way to
circumvent these problems in Appendix C.

B. Second-order corrections

Because of the form (63) of the perturbation, the second-
order correction �

(2)
nlm(k) contains two terms:

�
(2)
nlm(k) = (

�̃D
nlm,V (2)(r)�D

nlm

)
r +

∑
n′,l ′,m′ /∈Dnl

(
�̃D

nlm,V (1)(r)�n′l ′m′
)

r

(
�̃n′l ′m′ ,V (1)(r)�D

nlm

)
r

λnl (k) − λn′l ′ (k)

≡ Am(k) + Bm(k). (92)

Using (64) and (82) we can rewrite the first term in the equation above as

Am(k) = −a2v(k)φnl (k, a)φ′
nl (k, a) Tlm, (93)

where we have defined

Tlm ≡ (Ylm, h2(r̂)Ylm)r̂, (94)

and φ′
nl (k, a) = dφnl (k, r)/dr|r=a. Similarly, after a straightforward calculation we obtain, for the second term,

Bm(k) = a2v2(k)φ2
nl (k, a)

∑
l ′

′
[∑

n′

′ φ2
n′l ′ (k, a)

λnl (k) − λn′l ′ (k)
T l ′

lm

]
, (95)

where

T l ′
lm ≡

l ′∑
m′=−l ′

|(Yl ′m′ , h(r̂)Ylm)r̂|2, (96)

and the prime symbols above the sums in l ′ and n′ dictate the exclusion of the term with (n′, l ′) = (n, l ). These sums are really
formidable and, for high values of l , represent a hard numerical challenge. However, a huge simplification can be made by
noticing that after replacing everywhere k with knl the sum with respect to n′ with l ′ 
= l in (95) can be rewritten as

∑
n′

φ2
n′l ′ (knl , a)

k2
nl − λn′l ′ (knl )

= Gl ′ (knl , a, a), (97)

where (76a) has been used and Gl ′ (knl , a, a) ≡ Gl ′ (knl ) is the Green’s function defined in Sec. III C. Comparing this equation
with (51) and (52) we obtain a closed expression for the infinite sum (97):

Gl ′ (knl ) = a n2
1 jl ′ (n1knl a) h(1)

l ′ (knla)

fl ′ (knla)
, (98)

where fl ′ (knla) is the Jost function defined by (17). Therefore, we can eventually rewrite (95) as

Bm = a2v2(k)φ2
nl (k, a)

⎡
⎢⎣∑

n′ 
=n

φ2
n′l (knl , a)

k2
nl − λn′l (knl )

T l
lm +

∑
l ′ 
=l

Gl ′ (knl ) T l ′
lm

⎤
⎥⎦. (99)

Eventually, the awkward double sum in (95) was split into
two simpler single sums, one with respect to n′ 
= n and the
other with respect to l ′ 
= l .

VI. APPLICATIONS

Our results are in agreement with previous works where
first-order perturbation theory for leaking electromagnetic
modes in open systems was developed [2,22]. This is shown in
the first two following examples. In the third and last example

we apply our perturbation theory to the case of a dielectric
sphere (glass) with surface roughness.

A. Equatorial bulge

Consider a TE excitation of the droplet; this sets p = 1.
Suppose that h(r̂) describes an ellipsoid of revolution with
polar and equatorial radii aP and aE > aP, respectively, with
aP a2

E = a3. The ellipticity (or eccentricity) of this ellipsoid is
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denoted e and defined by

e =
√

1 − a2
P

a2
E

. (100)

The surface profile function of the ellipsoid of revolution is

a + a h(r̂) = aP aE√
a2

E cos2 θ + a2
P sin2 θ

, (101)

which, when e � 1, can be approximated by

h(r̂) ∼= − e2

12
[1 + 3 cos(2θ )] = −2

3

√
π

5
e2Y20(r̂). (102)

Then, from this equation and (91) it follows that

(Ylm, h(r̂)Ylm′ )r̂ = δmm′
e2

3

l (l + 1) − 3m2

4l (l + 1) − 3
. (103)

Substituting (103) into (89) we obtain, for l � 1,

K (1)
nlm(knl )

knl
= − e2

12

[
1 − 3m2

l (l + 1)

]
, (104)

which is in perfect agreement with [22] (note: because of a
different definition, the parameter e used in [22] is equal to
our e2/2).

B. Shrinking sphere

As a second example, consider as a perturbation the change
of the radius of the sphere from a to b < a, such that a − b ≡
δa � a. Let znl be a root of the equation (19) fl (z) = 0 with
p = 1 (TE polarization) and denote with knl (a) ≡ znl/a and
knl (b) ≡ znl/b the two corresponding resonances of the bigger
and smaller cavity. Then, trivially,

knl (b) = knl (a)

1 − δa

a

∼= knl (a)

(
1 + δa

a
+ δa2

a2
+ . . .

)

≡ knl (a) + K (1)
nlm + K (2)

nlm + . . . . (105)

The surface profile function (54) of the sphere of radius b is
evidently g(r̂) = b. This implies that h(r̂) = −δa/a. The ma-
trix Hl has elements [Hl ]mm′ = −(δa/a)δmm′ and, therefore,
�lm = −δa/a. A straightforward calculation shows that

Tlm = (δa/a)2 and T l ′
lm = (δa/a)2 δll ′ . (106)

Then, (87) yields

K (1)
nlm = knl (a)

δa

a
, (107)

in perfect agreement with (105). From (76) we obtain

knl (b) ∼= knl (a)

(
1 + δa

a
+ Nnl

δa2

a2

)
, (108)

where Nnl is a finite complex-valued numerical coefficient that
can be calculated explicitly once n and l have been fixed.
Equation (108) is in agrement with (105) up to O(δa2/a2)
corrections.

C. Surface roughness

As we remarked in the introduction, typical systems to
which our theory can be applied are drops of different kinds of
liquids ranging from water at room temperature (think of, e.g.,
raindrops) to liquid helium at few hundreds of millikelvin.
As a matter of fact, raindrops or any other kind of droplets
are only approximately spherical. For example, the shape
of the millimeter-size drops of liquid helium magnetically
levitated in vacuum that we considered in [11] deviates from
the spherical one because of two different physical processes.
First, rotation of the droplet leads to an equatorial bulge; this
changes the droplet’s free surface from spherical to oblate.
The effects of this kind of deformation upon the optical reso-
nances of a dielectric sphere have been already extensively in-
vestigated in [22]. Second, thermally excited capillary waves
(ripplons) result in an effective stochastic surface roughness
of the droplet. Therefore, to further illustrate our theory in
this part we study the effects of surface roughness upon the
resonances of a dielectric sphere immersed in vacuum.

To begin with, let us consider the deviation of a dielec-
tric particle from the spherical shape caused by a surface
roughness which is described by (54) and (55) with ran-
dom coefficients hLM . These are generated as detailed in
Appendix D, with

gL = g
1

L(L + 1) − 2
, (109)

where g determines the “strength” of the roughness. In our
numerical calculations we take g = 10−6 (according to (D4)
for a He droplet of radius a = 500 nm, the value g = 10−6

corresponds to a temperature of about 7 Kelvin). However, as
with �

(1)
nml ∝ g and �

(2)
nml ∝ g2, we have the freedom to adjust

the value of g at our will after numerical evaluations (we shall
use this feature later). For the sake of definiteness, we con-
sider a single realization of surface randomness obtained by
generating one set of (LMax − 1)(LMax + 3) random complex
numbers {hLM}. From (D1) it follows that the simplest de-
formation which breaks all rotational symmetries is achieved
taking Lmax = 3. This is just enough to split the degenerate
wave number knl into (2l + 1) distinct values: knl → Knlm =
{Knl,−l , Knl,−l+1, . . . , Knll}. However, as we shall show later,
some wave numbers remain close in pairs, that is, Knlm

∼=
Knl,m+1 for some values of m. Numerical explorations show
that once the “optical” l is fixed we must take the “acoustic”
Lmax � 2l to further split the remaining quasidegenerate pairs
of wave numbers.

The flow of calculations goes as follows: first, using (90)
and (91) we evaluate the (2l + 1) × (2l + 1) Hermitian ma-
trix Hl , the elements of which are determined by the previ-
ously generated random set {hLM}, and we diagonalize it:

Hlui = λiui, (i = 1, . . . , 2l + 1). (110)
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To perform this operation we write Hl according to (90) as

Hl =

⎡
⎢⎢⎢⎢⎣

[Hl ]−l,−l [Hl ]−l,−l+1 · · · [Hl ]−l,l

[Hl ]−l+1,−l [Hl ]−l+1,−l+1 · · · [Hl ]−l+1,l

...
...

. . .
...

[Hl ]l,−l [Hl ]l,−l+1 · · · [Hl ]l,l

⎤
⎥⎥⎥⎥⎦ ≡

⎡
⎢⎢⎢⎢⎣

[Hl ]11 [Hl ]12 · · · [Hl ]1,2l+1

[Hl ]21 [Hl ]22 · · · [Hl ]2,2l+1

...
...

. . .
...

[Hl ]2l+1,1 [Hl ]2l+1,2 · · · [Hl ]2l+1,2l+1

⎤
⎥⎥⎥⎥⎦. (111)

The above identification [Hl ]mm′ ≡ [Hl ]i j automatically fixes
the following invertible relations between the two sets of
indices {m, m′} and {i, j}:

{
i = m + l + 1,

j = m′ + l + 1,

{
m = i − l − 1,

m′ = j − l − 1.
(112)

Then, from this result and (83) it follows that the new basis
functions Ylm for the degenerate subspace can be written as

Ylm(r̂) ≡
l∑

m′=−l

[um+l+1]m′+l+1Ylm′ (r̂), (113)

where m = −l, . . . , l and [ui] j denotes the jth compo-
nent of the ith eigenvector of Hl . Of course the (arbi-
trary) sorting of these functions {Yl,−l ,Yl,−l+1, . . . ,Yll} =
{Yl,1,Yl,2, . . . ,Yl,2l+1} is uniquely determined by the way we
sort the eigenvalues of Hl . In our calculations we fix λ1 <

λ2 < · · · < λ2l+1. The eigenvalue λi determines the first-order

correction {K (1)
nlm} according to (76b) and (86), where

�
(1)
nlm(knl ) = −a v(knl ) φ2

nl (knl , a)λm+l+1, (114)

with m = −l,−l + 1, . . . , l . So, the net result of first-order
perturbation is to split the (2l + 1)-fold degenerate wave
number knl into 2l + 1 distinct values:

knl → {
knl + K (1)

nl,−l , . . . , knl + K (1)
nl,l

}
. (115)

The successive step is the calculation of the 2l + 1 coeffi-
cients Tlm given by (94). Substituting (113) into (94) we obtain

Tlm =
l∑

m′=−l

l∑
m′′=−l

[u∗
m+l+1]m′+l+1[um+l+1]m′′+l+1

× (Ylm′ , h2(r̂)Ylm′′ )r̂. (116)

The calculation of the last factor involves the integral over
the unit sphere of the product of four spherical harmonics and
can be quite time consuming. So, we found it convenient to
evaluate such an expression analytically using the Wigner 3 j
symbols [45]:

(Ylm′ , h2(r̂)Ylm′′ )r̂ = (−1)m′′ 2l + 1

4π

LMax∑
L=2

√
2L + 1

LMax∑
L′=2

√
2L′ + 1

L∑
M=−L

L′∑
M ′=−L′

{
hLMhL′M ′

2l∑
l ′=0

× (2l ′ + 1)

(
l l l ′
0 0 0

)(
l l l ′

−m′ m′′ m′ − m′′

)(
l ′ L L′
0 0 0

)(
l ′ L L′

m′′ − m′ M M ′

)}
. (117)

The last coefficients to calculate are the T l ′
lms given by (96):

T l ′
lm =

l ′∑
m′=−l ′

|(Yl ′m′ , h(r̂)Ylm)r̂|2, (118)

where

(Yl ′m′ , h(r̂)Ylm)r̂

=
l∑

m′′=−l

[um+l+1]m′′+l+1(Yl ′m′ , h(r̂)Ylm′′ )r̂. (119)

The calculation of the term (Yl ′m′ , h(r̂)Ylm′′ )r̂ may look non-
trivial because, in principle, l ′ can take any non-negative
integer value besides l ′ = l . However, substituting (55) into

the expression above we find

(Yl ′m′ , h(r̂)Ylm′′ )r̂

= (−1)m′
√

(2l + 1)(2l ′ + 1)

4π

LMax∑
L=2

hL,m′−m′′
√

2L + 1

×
(

l ′ L l
0 0 0

)(
l ′ L l

−m′ m′ − m′′ m′′

)
. (120)

From this equation and the symmetry properties of the Wigner
3 j symbols, it follows that |L − l| � l ′ � L + l . Therefore, in
(95) the sum

∑
l ′

′ can be replaced by

∞∑
l ′=0

′
→

L+l∑
l ′=|L−l|

′

, (121)

where the prime symbol in both sums denotes l ′ 
= l .
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FIG. 4. (a) Diagram showing the 11 eigenvalues of the (2l +
1) × (2l + 1) matrix Hl , with l = 5, averaged over 102 realizations
of the random coefficients hLM , for Lmax = 3. These eigenvalues are
calculated according to (110). Such diagonalization in the (2l +
1)-fold degenerate subspace associated with the unperturbed wave
number knl leads, via (114), to the first-order splitting of knl . Inset:
Ten different realizations of the eigenvalues of Hl illustrating their
statistical variance. The random coefficients hLM are generated as
described in Appendix D with g = 10−6. (b) Same as in panel (a) but
for Lmax = 10. When Lmax substantially exceeds l the degeneracy is
completely removed.

Having calculated the coefficients Tlm we can straightfor-
wardly obtain Am(knl ) from (93) evaluated at k = knl . Next,
the knowledge of T l ′

lm permits us to evaluate Bm(knl ) from (99).
For practical purposes it is convenient to rewrite

Bm(knl ) = B0(knl )[Bm1(knl ) + Bm2(knl )], (122)

where B0 ≡ a2v2(knl )φ2
nl (knl , a), and

Bm1(knl ) ≡ T l
lm

∑
n′ 
=n

φ2
n′l (knl , a)

k2
nl − λn′l (knl )

, (123)

Bm2(knl ) ≡
L+l∑

l ′=|L−l|

′

Gl ′ (knl ) T l ′
lm, (124)

FIG. 5. (a) Light blue circles: Perturbed wave numbers Knlm for
TE polarization, l = 5, and surface roughness strength g = 10−6. In
this figure ω = c Re Knlm, ωnl = c Re knl , κ = −2c Im Knlm, κnl =
−2c Im knl , and the wave number knl of the unperturbed sphere
is located at the origin of the coordinate system. The diagonal
orange line divides the upper region, characterized by Q > Qnl , from
the lower one where Q < Qnl , where Q = ω/κ and Qnl = ωnl/κnl .
(b) Light blue circles, as in panel (a); dark blue circles, as in panel
(a) but for surface roughness strength g = 25 × 10−6; continuous
green lines, the “motion” of the perturbed wave numbers when g
increases by a factor 25.

with m = −l,−l + 1, . . . , l . The calculation of Bm2(knl ) is
straightforward, but the sum in (123) requires numerical eval-
uation of λn′l (knl ). These quantities are obtained by solving
numerically with respect to z the transcendental equation

n1z jl+1(n1)h(1)
l (x) − x jl (n1z)h(1)

l+1(x) = 0, (125)

for TE polarization, and

n1z jl+1(n1)h(1)
l (x) + jl (n1z)

× [(l + 1)
(
n2

1 − 1
)
h(1)

l (x) − n2
1 x h(1)

l+1(x)
] = 0, (126)
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(a)

(b)

FIG. 6. As in Fig. 5 but for TM polarization.

for TM polarization. In these two equations x = aknl . Let
zn′ be a solution of one of these equations. Then λn′l (knl ) is
simply determined from zn′ = a

√
λn′l (knl ). In principle the

sum in (123) is extended to all the infinite integer values of
n′, which is the label for the solutions of either (125) and
(126). However, in practice, we must truncate the sum to
some finite value of n′. For our calculations we have chosen
max{n′} = 104 to guarantee a good accuracy.

Finally, to calculate Bm1(knl ) we need also to evaluate
φn′l (knl , a). From (35) and (36) it straightforwardly follows
that

φn′l (knl , a) = 1√
Zn′l

a jl (n1zn′ ), (127)

where

Zn′l = a3

2

[
j 2
l (n1zn′ ) − jl−1(n1zn′ ) jl+1(n1zn′ )

]
, (128)

and, as previously defined, zn′ = a
√

λn′l (knl ).

FIG. 7. As in Fig. 5 but for l = 10.

Numerical results and plots

For illustration we study here the effects of surface rough-
ness upon two optical modes with l = 5, l = 10, and both
TE and TM polarizations, of a glass sphere of refractive index
n1 = 1.5, in vacuum.

A key step in the perturbation theory illustrated above is
the calculation of the eigenvalues of Hl . In Fig. 4 we show
the 11 eigenvalues of H5 averaged over 102 realizations of
the random coefficients hLM , with Lmax = 3 [Fig. 4(a)] and
Lmax = 10 [Fig. 4(b)]. Figure 4(a) shows that for Lmax � l the
pairs of eigenvalues (λ1, λ2), (λ3, λ4), (λ8, λ9), and (λ10, λ11)
are almost degenerate, that is, very close in value but still un-
ambiguously distinct within the numerical precision. There-
fore, we treat these eigenvalues as nondegenerate. However, as
shown in Fig. 4(b), when Lmax > l all the eigenvalues become
well distinct.

The perturbed wave numbers Knlm calculated from (74) and
(76a)–(76c) are shown in Figs. 5 and 6 for l = 5 and TE and
TM polarization, respectively. Similarly, Figs. 7 and 8 depict
the values of Knlm for l = 10 and TE and TM polarization,
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FIG. 8. As in Fig. 6 but for l = 10.

respectively. Here and hereafter ω = c Re Knlm, ωnl =
c Re knl and κ = −2c Im Knlm, κnl = −2c Im knl . In these
figures the diagonal orange lines divide the complex plane
into two regions: the upper part consists of points for
which Q > Qnl , where Q = ω/κ and Qnl = ωnl/κnl , and
the lower part consists of points such that Q < Qnl . For TE
polarization all the perturbed wave numbers give Q < Qnl .
However, for TM polarization the values below the diagonal
correspond to modes with Q < Qnl , but the values located
above the diagonal give Q > Qnl . The origin of such different
wave-number distributions for TE and TM waves is due to the
different values taken by the left side of (88). In the TE case,
(88) is simply equal to −knl , which implies that Q = Qnl at
first-order perturbation theory, as shown by (89). However,
in the TM case the left side of (88) is a complex number
different from −knl :

−a v(knl ) φ2
nl (knl , a)

2knl − dλnl (k)
dk

∣∣
k=knl

�
{

5.68 exp(i π 0.94), l = 5,

5.89 exp(−i π 0.97), l = 10.
(129)

In panels (b) of Figs. 5–8 we show the evolution of the
resonant wave numbers when the strength of the surface
roughness increases from g to 25g. The light blue circles at
the beginning of the continuous green curves mark the wave
numbers evaluated at g [as in panels (a) of the figures]. The
dark blue circles at the end of the same curves mark the
wave numbers evaluated at 25g. These figures show that, as
expected, when g increases, the separation between adjacent
wave numbers grows.

VII. SUMMARY

In this paper we have used the Kapur-Peierls formalism,
originally developed in the context of nuclear scattering
theory, to find the optical resonances of almost spherical
dielectric objects, such as liquid drops. This permitted us to
develop a second-order perturbation theory for the electro-
magnetic Debye potentials describing the light fields. We have
thus found analytical formulas for the complex characteristic
values of the resonances, the real and imaginary parts of
which are proportional to, respectively, the central frequency
and the bandwidth of the optical resonance. When limited
to first-order perturbation theory, our results are in perfect
agreement with older results [22]. The present paper provides
the basis for applications of our technique to various optical
and optomechanical systems.

ACKNOWLEDGMENTS

A.A. and F.M. were supported by the European Union’s
Horizon 2020 Research and Innovation program under Grant
No. 732894, Future and Emerging Technologies (FET)-
Proactive Hybrid Optomechanical Technologies (HOT). A.A.
is grateful to Carlos Viviescas for useful discussions. J.H. ac-
knowledges Charles Brown for his contribution and support,
W. M. Keck Foundation Grant No. DT121914, AFOSR Grant
No. FA9550-15-1-0270, Defense Advanced Research Project
Agency Grant No. W911NF-14-1-0354, and NSF Grant No.
1205861. This project was made possible through the support
of a grant from the John Templeton Foundation.

APPENDIX A: SPHERICAL BESSEL AND HANKEL
FUNCTIONS

Spherical Bessel and Hankel functions are frequently en-
countered in scattering theory. Many of their properties can
be found in Appendix A of [30] and in Appendix A.9 of [46].
Some properties utilized in this paper are as follows.

(1) Recurrence:

jl−1(z) = 2l + 1

z
jl (z) − jl+1(z). (A1)

(2) Differentiation:

z jl+1(z) = (l + 1) jl (z) − d

dz
[z jl (z)]. (A2)

(3) Parity:

jl (−z) = (−1)l jl (z), (A3a)

yl (−z) = (−1)l+1yl (z), (A3b)

h(1)
l (−z) = (−1)l h(2)

l (z). (A3c)
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(4) Analytic continuation:

[ jl (z)]∗ = jl (z
∗), (A4a)

[yl (z)]∗ = yl (z
∗), (A4b)

jl (−z∗) = (−1)l [ jl (z)]∗, (A4c)

yl (−z∗) = (−1)l+1[yl (z)]∗, (A4d)

h(α)
l (−z∗) = (−1)l

[
h(α)

l (z)
]∗

, (α = 1, 2), (A4e)[
h(1)

l (z)
]∗ = h(2)

l (z∗). (A4f)

(5) Integrals:∫ a

0
jl (x r) jl (y r) r2dr

= a2

x2 − y2
[y jl (xa) jl−1(ya) − x jl−1(xa) jl (ya)], (A5a)

∫ a

0
j2
l (x r) r2dr

= a3

2

[
j 2
l (xa) − jl−1(xa) jl+1(xa)

]
. (A5b)

Relations 1 and 2 also hold for yl (z), h(1)
l (z), and h(2)

l (z).

APPENDIX B: TE AND TM RESONANCES OF A
DIELECTRIC SPHERE

The complex-valued resonances of the sphere are generally
associated with the poles of the scattering amplitudes (16).
These poles are found by solving with respect to the complex
variable z = a(k′ + ik′′) ≡ x + iy the transcendental equation

fl (z) = p jl (n1z)
[
zh(1)

l (z)
]′ − h(1)

l (z)[(n1z) jl (n1z)]′

= 0, (B1)

where p = 1 for TE polarization and p = n2
1/n2

2 for
TM polarization. Equation (19) admits solutions only
for certain characteristic values of the complex variable
z. These characteristic values form a denumerable set
{z0l , z±1l , z±2l , . . . , z±nl , . . .}, where Re znl = − Re z−nl > 0
and Im znl < 0, for all n. We label the poles with Re k < 0 by
the negative index −n, so that k−nl = −k∗

nl . For l odd (even)
and TE (TM) polarization there exists a pole denoted k0l such
that Re k0l = 0 and Im k0l < 0. Figure 9 shows two typical
distributions, symmetric with respect to the vertical axis, for
TE and TM polarization, of the roots of fl (z) in the complex k
plane for a glass sphere of radius a, refractive index n1 = 1.5,
and azimuthal number l = 10. Filled and open black circles
mark, respectively, characteristic values zR and zNR associated
with resonant and nonresonant modes of the field. The latter
are very leaky modes that are sometimes called external
whispering gallery modes [47]. Grandy [30] suggested that to
distinguish between resonant and nonresonant characteristic
values one should evaluate (i) the phase shift δl , (ii) the
scattering strength sin2 δl , (iii) the interior wave amplitude
|Al |, and (iv) the specific time delay

τl ≡ 1

a

dδl

dk
= 1

2 i

d

d (ka)
log Sl . (B2)

FIG. 9. Contour plots in the complex k plane of the zeros of fl (z)
for TE (top) and TM (bottom) polarization. Points on the red curves
are solutions of the equation Re fl (z) = 0 and points on the blue
curves are solutions of Im fl (z) = 0. The characteristic values znl are
those points where red and blue lines cross each other. Filled circles
mark resonant values zR; open circles indicate nonresonant values
zNR. In this figure, n1 = 1.5 and l = 10. Values of k with larger real
part correspond to higher radial quantum number, where one expects
the modes to become more lossy.

However, it is possible to show that these conditions are
almost equivalent [48] and that, for example, it is sufficient
to verify the presence of a sharp peak in τl per each value
of ka = Re zR, as shown in Fig. 10. In practice, we wish zR

1l
to be the pole with Re zR

1l ∼ l/n1 and the smallest imaginary
part (the subsequent resonant values will be ordered according
to Re zR

1l < Re zR
2l < . . ., etc.). Therefore, the resonant zR

nl can
be found by comparing the solutions of (19) with the charac-
teristic values of TE and TM modes of the same dielectric
sphere but embedded in a medium of infinite conductivity
(closed sphere), these values having null imaginary parts.
They are the real-valued solutions {x1l , x2l , . . . , xnl , . . .}, with
x1l < x2l < . . ., of [29]:{

jl (n1x) = 0, TE polarization,

[(n1x) jl (n1x)]′ = 0, TM polarization.
(B3)

Thus, we define zR
1l as the solution of fl (z) = 0 closest to the

smaller root x1l of (B3), namely,

zR
1l = {z ∈ C| fl (z) = 0, Re z > 0, |z − x1l | = min}. (B4)

Then, given a solution z of fl (z) = 0, z = zR if either Re z >

Re zR
1l or Re z < − Re zR

1l , because z and −z∗ are solutions
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FIG. 10. Plot of the specific time delay (B2) for a glass sphere
of radius a, refractive index n1 = 1.5, and azimuthal number l = 10.
Red curve, TE polarization; blue curve, TM polarization. The peaks
of these curves are located at ka = Re zR, where zR denotes a solution
of (19) associated with a resonant mode of the field.

of the same equation. This empirical rule is illustrated in
Fig. 11, which shows the location in the complex k plane of
a few solutions of (B1) (filled and open red circles) and (B3)
(blue squares on the real axis) for a glass sphere of radius a,
refractive index n1 = 1.5, and azimuthal number l = 10.

APPENDIX C: PERTURBATIVE DIAGONALIZATION
OF Hl

In many cases of practical interest (as, e.g., in He droplets
[11]), the “deformation” function h(r̂) is made of two con-
tributions. The first one is deterministic and describes an
equatorial bulge due to, for example, the rotation of the droplet
and is denoted with hrot(r̂). The second contribution may
be stochastic and generated by surface waves (ripplons) on
the droplet. Let us denote with hrip(r̂) this second term. As
typically |hrip(r̂)| � |hrot(r̂)|, we can diagonalize Hl using
perturbation theory after defining

Hl = H (0)
l + H (1)

l , (C1)

where [
H (0)

l

]
mm′ = (Ylm, hrot(r̂)Ylm′ )r̂ = δmm′ �

(0)
l|m|,[

H (1)
l

]
mm′ = (Ylm, hrip(r̂)Ylm′ )r̂,

(C2)

with �
(0)
l|m| defined by (103). If m 
= 0 each eigenvalue of

H (0)
l is doubly degenerate and (87) can be approximately

rewritten as

�lm ≈ �
(0)
l|m| + �

(1)
l,±|m|, (C3)

where �
(1)
l,+|m| and �

(1)
l,−|m| denote the eigenvalues of the 2 × 2

matrix H (1)
lm defined by

H (1)
lm ≡

[
(Ylm, hrip(r̂)Ylm)r̂ (Ylm, hrip(r̂)Yl,−m)r̂

(Yl,−m, hrip(r̂)Ylm)r̂ (Yl,−m, hrip(r̂)Yl,−m)r̂

]
,

(C4)

FIG. 11. Characteristic values for (B1) (filled and open red cir-
cles) and (B3) (blue squares on the real axis) as given in Fig. 9 for
Re(ka) > 0. Top, TE polarization; bottom, TM polarization. The first
two resonances of an open (zR

1l and zR
2l ) and a closed (x1l and x2l )

sphere are marked. In this figure we have chosen the same parameters
as in Fig. 9, that is, n1 = 1.5 and l = 10. For the sake of clarity we
have omitted the index l in the plots.

with m = 1, 2, . . . , l . Explicitly,

�
(1)
l,±|m| = 1

2 (H11 + H22 ± �), (C5)

where here and hereafter we use the shorthand notation
[H (1)

lm ]i j ≡ Hi j, (i, j = 1, 2), and

� =
√

(H11 − H22)2 + 4|H12|2. (C6)

If m = 0 we can apply nondegenerate perturbation theory to
obtain

�l0 ≈ �
(0)
l0 + (Yl0, hrip(r̂)Yl0)r̂. (C7)

Similarly, the functions Ylm(r̂) spanning the degenerate sub-
space Dnl can be approximated by

Ylm(r̂) ≈ Ylm(r̂) + (1 − δm0)Y (0)
l,±|m|(r̂), (C8)

where

Y (0)
l,±|m|(r̂) = C1±Yl|m|(r̂) + C2±Yl,−|m|(r̂), (C9)
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with the superscript “(0)” marking the zeroth-order character
of these corrections, and

C1± =
√

H12

2|H12|
(

1 ± H11 − H22

�

)
,

(C10)

C2± = ±
√

H21

2|H21|
(

1 ∓ H11 − H22

�

)
.

APPENDIX D: DESCRIPTION OF THE EFFECTIVE
STOCHASTIC SURFACE ROUGHNESS

We describe the surface roughness of the sphere by the
random function

h(r̂) =
LMax∑
L=2

L∑
M=−L

hLMYLM (r̂), (D1)

where the reality constraint h(r̂) = h∗(r̂) entails h∗
LM =

(−1)MhL,−M . The value of LMax is determined by the physical
process generating the roughness. For example, the rough-
ness could be caused by a stationary, stochastic process,
characterized by

h(r̂) = 0, (D2a)

h(r̂)h(r̂′) =
LMax∑
L=2

gLPL(cos γ ), (D2b)

where the overbar denotes the statistical average over the
ensemble of realizations of the surface profile, PL(cos γ ) is the
L-degree Legendre polynomial, and cos γ = r̂ · r̂′ [49]. From
(D2b) and PL(1) = 1, it follows that the coefficients gL obey
the sum rule:

h2(r̂) =
∞∑

L=2

gL ≡ �2, (D3)

where � denotes the standard deviation and quantifies the
magnitude of the surface roughness. The coefficients gL ac-
tually determine the properties of the rough surface and must
be such that the sum (D3) converges to a finite value. For
example, if the dielectric sphere represents a 4He droplet at

temperature T with random deformation induced by thermally
excited ripplons we have, according to [2],

gL = kBT

γS a2

1

L(L + 1) − 2
, (D4)

where γS the surface tension of the liquid and kB is the
Boltzmann constant. In this case a straightforward calculation
shows that

∞∑
L=2

gL = kBT

γS a2

11

18
. (D5)

Substituting (D1) into (D2) we determine the statistical
properties of the real random variables ULM = Re (hLM ) and
VLM = Im (hLM ). After a straightforward calculation we ob-
tain ULM = 0 = VLM , and

ULMUL′M ′ = 2π

2L + 1
gL(1 + δM0) δLL′ δMM ′ , (D6a)

VLMVL′M ′ = 2π

2L + 1
gL δLL′ δMM ′ , (D6b)

ULMVL′M ′ = 0. (D6c)

For numerical simulations, we found it convenient to
model ULM and VLM as Gaussian random variables distributed
according to the probability density function

f (x; μ, σ ) = 1√
2πσ

exp

[
− (x − μ)2

2σ 2

]
, (D7)

with μ = 0 and

σ 2 =
⎧⎨
⎩

U 2
LM, if x = ULM,

V 2
LM, if x = VLM,

(D8)

where (D6) have been used. Once these numbers have been
generated we write

hLM =

⎧⎪⎪⎨
⎪⎪⎩

ULM + iVLM, M > 0,

UL0, M = 0,

(−1)M (UL,−M − iVL,−M ), M < 0.

(D9)
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