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Measuring the knot of non-Hermitian 
degeneracies and non-commuting braids

Yogesh S. S. Patil1 ✉, Judith Höller1,2, Parker A. Henry3, Chitres Guria1, Yiming Zhang1, 
Luyao Jiang1, Nenad Kralj1,4, Nicholas Read1,3,5 & Jack G. E. Harris1,3,5 ✉

Any system of coupled oscillators may be characterized by its spectrum of resonance 
frequencies (or eigenfrequencies), which can be tuned by varying the system’s 
parameters. The relationship between control parameters and the eigenfrequency 
spectrum is central to a range of applications1–3. However, fundamental aspects of this 
relationship remain poorly understood. For example, if the controls are varied along a 
path that returns to its starting point (that is, around a ‘loop’), the system’s spectrum 
must return to itself. In systems that are Hermitian (that is, lossless and reciprocal), 
this process is trivial and each resonance frequency returns to its original value. 
However, in non-Hermitian systems, where the eigenfrequencies are complex, the 
spectrum may return to itself in a topologically non-trivial manner, a phenomenon 
known as spectral flow. The spectral flow is determined by how the control loop 
encircles degeneracies, and this relationship is well understood for N = 2 (where N  is 
the number of oscillators in the system)4,5. Here we extend this description to arbitrary N. 
We show that control loops generically produce braids of eigenfrequencies, and for 
N > 2 these braids form a non-Abelian group that reflects the non-trivial geometry of 
the space of degeneracies. We demonstrate these features experimentally for N = 3 
using a cavity optomechanical system.

A very wide range of physical systems are described by first-order dif-
ferential equations of motion that are linear in the system’s coordinates. 
This includes classical systems near to mechanical equilibrium (for 
example, coupled oscillators and linear wave systems), closed quantum 
systems and open quantum systems that can be brought to Lindblad 
form. In these descriptions, the system’s state is an N-dimensional 
complex vector whose time evolution is generated by an N N×  complex 
matrix H (which we take to be traceless without loss of generality). The 
qualitative behaviour of such a system depends on the form of H, which 
reflects the relevant symmetries and conservation laws. For example, 
in the quantum description of closed systems, H is Hermitian. On the 
other hand, Newtonian mechanics and Maxwellian electromagnetism 
both allow for linear elements having non-reciprocity, gain and loss, 
and so the classical equations of motion for N  coupled oscillators 
(whose positions and momenta are encoded as N complex numbers) 
may have H of any form.

Recent years have seen considerable interest in features that distin-
guish non-Hermitian systems from their Hermitian counterparts. These 
include non-orthogonal eigenvectors, complex eigenvalues and a type 
of degeneracy, known as an exceptional point (EP), at which H  is 
non-diagonalizable. In addition, non-Hermitian systems respond to 
perturbations of H in a qualitatively different manner than Hermitian 
systems do4,6,7. These differences offer practical routes to new forms 
of control, sensing and robustness, and have been explored in optics, 
microwaves, electronics, acoustics, optomechanics and qubits1–3,5,8–15.

Despite rapid progress, some fundamental aspects of non-Hermitian 
systems remain poorly understood. For example, when a system’s 
parameters are varied around a closed loop (with this ‘control loop’ 
chosen so that the spectrum is non-degenerate throughout), the 
eigenvalues may move around one another in the complex plane.  
The way in which they do so, viewed topologically, is what we will 
describe below as ‘spectral flow’. It is determined by the manner in 
which the control loop encloses degeneracies; however, the specific 
relationship between the loop, the degeneracies and the resulting 
spectral flow is well known only for N = 2. For N > 2, studies of spectral 
flow have focused on special cases in which H  is constrained or on 
numerical simulations of specific systems, rather than on a general 
description of the spectral flow16–24.

Control loops and spectral flow
For any N, the spectral flow can be described by regarding the spectrum 
of H  as an unordered set λ of N points in the complex plane. We take 
the parameters controlling λ to be the N − 1 complex coefficients in pH, 
the characteristic polynomial of H. These coefficients define the ‘con-
trol space’ ≅ CLN

N −1. They smoothly parameterize the space of spectra, 
and have simple expressions in terms of the elements of H. NL  can be 
partitioned into two subspaces NV  and NG , corresponding respectively 
to whether or not the spectrum is degenerate. NV  consists of the points 
where D, the discriminant of pH, vanishes (Methods).

https://doi.org/10.1038/s41586-022-04796-w

Received: 16 December 2021

Accepted: 25 April 2022

Published online: 13 July 2022

 Check for updates

1Department of Physics, Yale University, New Haven, CT, USA. 2Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA. 3Department of Applied Physics, Yale University, 
New Haven, CT, USA. 4Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark. 5Yale Quantum Institute, Yale University, New Haven, CT, USA. ✉e-mail: yogesh.patil@yale.edu; 
jack.harris@yale.edu

https://doi.org/10.1038/s41586-022-04796-w
mailto:yogesh.patil@yale.edu
mailto:jack.harris@yale.edu


272  |  Nature  |  Vol 607  |  14 July 2022

Article

Although LN is topologically trivial, this need not be the case for NG  
and VN. To describe these two subspaces, we note that varying the con-
trol parameters along a smooth curve GC ⊂ N  causes the N points in λ 
to be smoothly transported in the complex plane4. Throughout, we 
take C to be a closed curve (or ‘loop’); we also fix a basepoint in NG  and 
consider only loops starting and ending at that point. In this case, tra-
versing a loop C causes the initial spectrum to be smoothly transported 
back to itself. Such an evolution of N  distinct points in the complex 
plane is called a braid of N strands (for example, ref. 25). We will say that 
two braids are isotopic to one another if one of them can be continu-
ously deformed into the other, keeping its endpoints fixed and its 
strands non-intersecting during the deformation. We define the spec-
tral flow produced by a control loop C to be the isotopy equivalence 
class b of the corresponding braid of eigenvalues. Braids with the com-
mon basepoint can be concatenated to produce another such braid, 
and with that operation the bs form a group BN, the Artin braid group26.

Two isotopic braids arise from two control loops C1, C2 that can be 
continuously deformed into each other within GN, and hence each b 
corresponds to a homotopy class27 ℓ of based loops C ⊂ NG . Concatenat-
ing Cs gives a group operation on the ℓs, which thus form the funda-
mental group27 π1 of the space NG . It follows from this discussion that 

≅π B( )N N1 G  (refs. 28–30). Because NL  is topologically trivial, the non-trivial 
Gπ ( )N1  arises solely because NV  (consisting of the points at which the 

spectrum is degenerate) was removed from LN to produce GN, leaving 
a hole that control loops can wind around in various (non-homotopic) 
ways that correspond to the elements of π1.

To give a concrete picture of GN and NV  (and the ways in which loops in 
the former may encircle the latter), we note that for N = 2, the reasoning 
above returns the familiar result ≅ \{0}2 CG  (the complex plane  
without the origin). The fundamental group of this space, π ( )1 2G , is iso-
morphic to  Z≅B2  (the group of integers under addition), reflecting the 
fact that each loop in 2G  belongs to the ℓ determined by its winding num-

ber and concatenating loops results in a new loop whose winding num-
ber is the sum of the winding numbers of the concatenated loops.

For N = 3, we have −3
2

3≅ CG V  and Cπ B( − )1
2

3 3V ≅ . From the equa-
tion D = 0 we show in the Methods that 3V  is a connected hypersurface  
that includes a singular point at the origin (0,0) corresponding to 
threefold degeneracy; the rest of 3V  consists of the twofold degen-
eracies. The twofold degeneracies form the space R× >0K , where K 
is the trefoil knot and R>0 plays the role of the radial distance from 
the threefold degeneracy. Therefore, if we identify C2 with 4R , inter-
secting V3 with a real hypersphere 3S  centred at the origin gives K. 
This structure (which is shown in Extended Data Fig. 1) agrees with 
the fact that S K ≅π B( − )1

3
3.

This description highlights two important features common to all 
non-Hermitian systems with N > 2, but absent in the well-studied case 
N = 2. The first is that the subspace VN has a non-trivial geometry. The 
second is that this geometry makes loops in GN  non-commutative (as 
BN is non-Abelian for N > 2). This rich behaviour reflects the fact that λ 
consists of the roots of pH, and non-Hermitian systems can realize any 
complex polynomial as pH. In the mathematical context of complex 
polynomial equations, the braid and knot structures described here 
are well-known features of the relation between a polynomial’s coef-
ficients and its roots.

Here, we provide an experimental demonstration of these two fea-
tures. We use a three-mode mechanical system in which H  is tuned 
by control parameters ΨΨ that span 3L  and so provide access to a three-
fold degeneracy and all the spectra in its neighbourhood6. We meas-
ure spectra on a hypersurface surrounding the threefold degeneracy, 
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Fig. 1 | Experimental schematic and susceptibility measurement.  
a, Two lasers (red and blue paths) address two modes of an optical cavity 
(white) in a cryostat (grey). The cavity contains a Si3N4 membrane whose  
three mechanical modes are shown in the dashed box. AOM, acousto-optic 
modulator; LO, local oscillator; LIA, lock-in amplifier; AM-in, amplitude 
modulation input. b, The optical spectrum, showing the three control beams 
(green, light blue, orange) and the cavity mode (blue). The non-degeneracy of 
the bare modes in R is set by η π= −2 × 100 Hz. c, The complex response 

∼
V  

measured at frequencies ωAM͠  near ω͠ 1
(0) (top), ω͠ 2

(0) (centre) and ω 3
(0)͠  (bottom). 

Here π μ μ μΨΨ = (2 × 50 kHz, 125 W, 364 W, 426 W). The left column shows 
V ω| ( )|AM͠∼

 and the right column shows a parametric plot of V ω( )AM͠∼
. The data 

points are coloured by ωAM͠  (the 1 − σ  confidence intervals are smaller than the 
plotted points). A global fit (black lines) gives the system’s eigenvalues. The 
magnitude of each mode’s contribution (determined from the fit) is shown as 
the orange, light blue and green curves in the left column.
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Fig. 2 | Locating EP2 points on the hypersurface S . The complex-valued 
quantities D and E measured on a typical 2D sheet in the hypersurface S. Abs 
and Arg denote the magnitude and argument of a complex number. The units 
of D are π10 × (2 Hz)10 6. For this sheet, P = 78 μ3 W and δ π= 2 × 60 kHz. Left 
column, raw data. Middle column, data after outlier rejection and smoothing 
(Supplementary Information). Cyan circles show algorithmically identified 
ΨΨEP2. Right column, D and E calculated from optomechanics theory. Cyan 
squares, ΨΨEP2 determined from this calculation. Data from the other 60 sheets 
are shown in the Supplementary Information.
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and find the trefoil knot K formed by the twofold degeneracies. We show 
that varying ΨΨ around a loop produces an eigenvalue braid whose spec-
tral flow is determined by how the loop encircles K. We demonstrate 
braids that can be concatenated to produce any element of B3, and show 
the non-commutation of these braids. These features are demonstrated 
using a cavity optomechanical system, although we emphasize that they 
are generic to oscillators realized in any physical domain.

Experimental system
The experiment is shown schematically in Fig. 1a. It uses three vibra-
tional modes of a Si3N4 membrane. The dynamical matrix H governing 
these modes is controlled by placing the membrane in an optical cav-
ity and using the dynamical back-action (DBA) effect of cavity opto-
mechanics31. In the absence of DBA, the three modes have resonance 
frequencies ∼ ∼ ∼ω ω ω( , , ) = 2π × (352, 557, 705)1

(0)
2
(0)

3
(0)  kHz and optome-

chanical coupling rates g g g= ( , , ) = 2π × (0.198, 0.304, 0.300)1 2 3g   Hz. 
The cavity linewidth κ= 2π × 190 kHz. Three tones produced from a 
single laser (‘control’ in Fig. 1a) drive the cavity with powers P1,2,3. The 
tones’ relative detunings are fixed (Fig. 1b), and their beatnotes define 
a rotating frame R in which the three modes’ eigenvalues are almost 
degenerate for P = 0i . Within R, the control parameters δ P P PΨΨ = ( , , , )1 2 3  
(where δ is the tones’ common detuning, Fig. 1b) can tune the system 
to a threefold degeneracy. They also provide linearly independent 
control of the coefficients of pH (Methods and Supplementary Infor-
mation), and hence span L3. H  is otherwise unconstrained, so it 
accesses degeneracies of the most generic type (for a given order): 
that is, at an m-order degeneracy, the Jordan normal form of H contains 
a Jordan block of dimension m (we call such a point EPm).

The modes’ eigenvalue spectrum λ is determined by measuring the 
membrane’s mechanical susceptibility. This is accomplished using a 
second laser (‘probe’ in Fig. 1a) to exert an oscillatory force on the mem-
brane (at frequency ∼ωAM), and to record a heterodyne signal V

∼
 propor-

tional to the membrane’s response. Figure  1c shows a typical 
measurement of ∼ ∼V ω( )AM , along with a fit of these data to standard  
optomechanics theory. This fit returns the complex eigenvalues λi, as 
well as the amplitudes si j,  (denoting the contribution of the jth mode 
to the peak near ∼ωi

(0)). In the remainder of this paper, λ is determined 
from data and fits as in Fig. 1c.

Locating degeneracies
The system’s EP3 is identified by measuring λ(ΨΨ) and converting  
each λ  to d = |λ − λ | + |λ − λ | + |λ − λ |1 2 2 3 3 1  (Methods). As shown in 
Extended Data Figs.  2 and 3, measurements of d ΨΨ( ) give ΨΨ =EP3
(2π × 54(7) kHz, 128(8) μW, 428(3) μW, 304(15) μW),  in good agree-
ment with the value calculated from the independently measured 
device parameters (Methods).

To study the spectrum on a hypersurface surrounding ΨΨEP3 ,  
we measured λ on the boundary of a four-dimensional (4D) hyper-
rectangle S  centred close to ΨΨEP3 . Specifically, S  bounds the  
region: δ−10 kHz ≤ /2π ≤ 106 kHz,  P22 μW ≤ ≤ 240 μW1 , P289 μW ≤ 2 
≤675 μW, P78 μW ≤ ≤ 702 μW3 . It consists of eight three-dimensional 
(3D) ‘faces’, each corresponding to fixing the value of one control 
parameter. ΨΨ was densely rastered over 61 distinct two-dimensional 
(2D) ‘sheets’ within S  (Extended Data Fig. 4). Data from a typical sheet 
are shown in Fig. 2. For each value of ΨΨ (that is, for each pixel in the 
sheet), V ω( )AM

∼ ∼  was measured and fit as in Fig. 1c.
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Fig. 3 | Measurements of the EP2 knot K and the eigenvalue braids. a, All of 
the EP2 locations (ΨΨEP2) shown in a stereographic projection of S. X, Y and Z are 
dimensionless combinations of the control parameters. b, The data from a in a 
projection where each of the six ‘faces’ of S  that contains ΨΨEP2 is linearly 
mapped to one of the hexahedrons surrounding the central cube. The solid 
curve in a and b is the best fit to the data. Details of the projections and fit  
are in the Methods. The coordinate θ is described in the Supplementary 
Information. Additional views of these data are in Extended Data Fig. 5.  
c–e, Three control loops (green (c), red (d), blue (e)) in S, each from a different  
ℓ and sharing a common basepoint (black sphere). The measured knot K 

(yellow circles) and the best-fit knot (orange curve) are shown for reference. 
The projection is the same as in a. f–h, The eigenvalue spectrum ΨΨ( )λ  as ΨΨ is 
varied around the corresponding loop from c–e. ξ  indexes the values of ΨΨ along 
each loop. The black crosses show λ at the basepoint. The dashed lines are 
guides to the eye. The 1 − σ  confidence intervals for λ are comparable to the size 
of the plotted points. The measured λ traces out the braids: I (f), σ1 (g) and σ σ2 1 
(h). Extended Data Fig. 10 shows the control loops, and Extended Data Fig. 6 
shows a comparison with theory. Animations of this figure are shown in 
Supplementary Videos 3 and 4.
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To locate the EP2 points in S  we considered two quantities derived 
from these fits: D = (λ − λ ) (λ − λ ) (λ − λ )1 2

2
2 3

2
3 1

2  and E S= (det[ ]) −2   
where S is the matrix formed by the si j, . Both D and E  vanish at EP2, and 
both exhibit a phase winding of 2π around EP2. However, they provide 
complementary information: D = 0 reflects eigenvalue degeneracy, 
whereas E = 0 reflects eigenvector degeneracy (Supplementary  
Information). Furthermore, D and E are derived from different aspects 
of the fits to ∼ ∼V ω( )AM , and so reflect partially independent features of 
the data. The locations (ΨΨEP2) of the zeroes and phase windings in D 
and E  are identified algorithmically (Supplementary Information) and 
are shown in Fig. 2 as cyan circles.

The knot of twofold degeneracies
Figure 3a,b show all of the ΨΨEP2  identified in this way. For ease of  
visualization, they are depicted using two projections of S, both of 
which generically preserve knot equivalence classes. Figure 3a uses a 
stereographic projection, whereas Fig. 3b uses a projection isomorphic 
to the one in Fig. 3a, but which is more easily connected to the control 
parameters. In both projections, the experimentally identified EP2s 
are seen to trace out a curve that forms a trefoil knot K. Each point in 
Fig. 3a,b is coloured according to the value of θ measured at the cor-
responding ΨΨEP2 (θ is derived from λ as defined in the Supplementary 
Information, and serves as a coordinate along K).

Figure 3a,b also show the best fit of the measured ΨΨEP2 to standard  
optomechanics theory (Methods). This fit uses g  and κ as parameters and  
returns g = 2π × (0.1979, 0.3442, 0.3092) Hz and κ = 2π × 173. 84 kHz 
(these values are also used to generate the plots of D and E (labelled 
‘theory’) in the right-hand column of Fig. 2). These values of g  and κ 
extracted by fitting the knot K in the three-mode spectrum agree well 
with the values given earlier (in the section ‘Experimental system’), 
which are determined independently from measurements of the DBA 
(Extended Data Fig. 9 and Supplementary Information).

Non-commuting eigenvalue braids
When ΨΨ is varied around a loop C from a given ℓ, ΨΨ( )λ  is expected to 
form a braid whose equivalence class b  is determined by ℓ. To demon-
strate this, we selected pixels from the dataset described above  
(the 61 sheets) that trace out three loops with a common basepoint, as 
shown in Fig. 3c–e. The corresponding λ ΨΨ( ) for each loop is shown in 
Fig. 3f–h. The loops belong to different ℓ, and result in eigenvalue braids 
from Ib = , σ σ σ,1 2 1 (Fig. 3f–h, respectively). Here, I is the identity, σi (σi

−1) 

indicates that strand i has crossed over (under) strand i + 1, the strands 
are counted from the left (in the view used for the figures), and opera-
tions are written symbolically from right to left as the braid is read from 
bottom to top25. As σ1 and σ σ2 1 together generate the group B3, the loops 
in Fig. 3d,e can be concatenated to produce any braid of eigenvalues. 
The correspondence between a loop’s ℓ and the b it produces is a robust 
feature of the data; this is illustrated in Fig. 4 and Extended Data Fig. 7, 
which show the braids produced by several other loops.

The non-Abelian character of the group formed by these braids 
is demonstrated in Fig. 4. Figure 4a shows two loops (red, blue) 
belonging to different ℓ. Figure 4b shows λ ΨΨ( ) as Ψ is stepped first 
around the red loop and then around the blue loop, whereas Fig. 4c 
shows ΨΨ( )λ  as ΨΨ  is stepped first around the blue loop and then 
around the red loop. The former gives b σ σ= 2

−1
1
−1, whereas the latter 

gives b σ σ= 1
−1

2
−1. The inequivalence of these braids, which can be seen 

directly from the fact that they result in different permutations of 
the eigenvalues, demonstrates that encircling a degeneracy is not 
characterized by a number (as is the case for N = 2), but by a braid 
equivalence class.

Future directions
Looking ahead, one may ask if the braids demonstrated here may play 
a role in the system’s dynamics. For example, if one eigenmode of the 
system is initially excited, and then the system is slowly evolved 
around a control loop, it might be expected that the excitation would 
remain in the eigenmode that is smoothly connected with the original 
one, in analogy with adiabatic transport in Hermitian systems. If this 
were the case, a control loop would permute excitations among the 
normal modes, with the specific permutation determined by the 
loop’s ℓ. Such a control scheme—in which the outcome is determined 
by a topological property of the input—would be of considerable 
interest. However, in non-Hermitian systems adiabatic control loops 
do not transport excitations in this manner32. On the other hand, 
real-time loops have been shown to produce similar transport in spe-
cial cases13,14,33,34, and it remains an open question whether control 
schemes such as ‘shortcuts to adiabaticity’35–37 or tailored nonlinear-
ities12,38–40 can stabilize such transport more generally. Exploration 
of these possibilities may open new means for achieving robust 
topological control in oscillator systems.
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Fig. 3a. b, The spectrum λ ΨΨ( ) as ΨΨ is varied around the loop formed by 
concatenating the two loops in a. Specifically, the red loop is traversed first 
( ξ1 ≤ ≤ 59), and then the blue loop ( ξ60 ≤ ≤ 116). The black crosses show λ at the 
basepoint. The dashed lines are guides to the eye, and the 1 − σ  confidence 
intervals for λ are comparable to the size of the plotted points. c, The spectrum 

ΨΨλ( ) as ΨΨ is varied first around the blue loop ( ξ1 ≤ ≤ 57), and then the red loop 
( ξ58 ≤ ≤ 116). In both cases, the loops are traversed in the sense indicated by the 
arrows in a.
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Methods

Characteristic polynomial, discriminant and the trefoil knot
For an N N×  matrix H, the eigenvalues are the solutions of the charac-
teristic equation I Hdet(λ − ) = 0, which can be written as

⋯a a aλ − λ + λ + + (−1) = 0.N N N N
N1

−1
2

−2

The coefficients ai are invariants of H  under similarity transforms 
(change of basis), and in particular a = tr1  H and a H= detN . The char-
acteristic polynomial on the left-hand side of this equation can be 
factored as ∏ (λ − λ )i

N
i=1  in which the roots λi may be repeated. The coef-

ficients ai are the elementary symmetric polynomials in the roots λi, 
namely a = ∑ λi

N
i1 =1 , a = ∑ λ λi j i j i j2 , : < , ..., a = ∏ λN i

N
i=1 .

The discriminant of the polynomial is defined as D = ∏ (λ − λ )i j i j<
2; it 

vanishes if any two roots of the polynomial are equal. Being a sym-
metric polynomial, it can be expressed algebraically in terms of the 
elementary symmetric polynomials ai (for example, ref. 41). The explicit 
expressions are simpler if we shift H  by a multiple of the identity so 
that a H= tr = 01 . Then for the quadratic, N = 2, the discriminant is the 
familiar expression D a= −4 2, and the roots are a± − 2 . Focusing here-
after on the cubic, N = 3, its discriminant is41

D a a= −4 − 27 ,2
3

3
2

which enters the formulas for the roots.
Defining x a= 3, y a= − 2 as our coordinates in 2C  (so that the charac-

teristic polynomial is p y x= λ − λ −H
3 ), the solutions to the equation 

D x y y x( , ) = 4 − 27 = 03 2  form an algebraic variety (a hypersurface) in  
C2 that has a singularity at x y= = 0. D has a (weighted) scaling property, 
such that rescaling x ax→ , y by→ , where a, b are real and positive and 
a b=2 3, changes D by a factor; this maps any non-zero solution to D = 0 
to another. Thus the variety resembles a cone in C R≅2 4, and it is suffi-
cient to consider a cross section, that is the intersection of the variety 
with a hypersurface that (1) has the topology of a hypersphere S 3,  
(2) surrounds the origin without passing through it or intersecting itself 
and (3) is everywhere transverse to the local action of an infinitesimal (say, 
by a ε= 1 + , ε small) scaling. Any two such hypersurfaces are isotopy equiv-
alent (through a rescaling that depends on position on the hypersurface). 
A particular such hypersurface42 results from considering the unit hyper-
sphere defined by x y| | + | | = 12 2 . The points x y( , ) on the hypersphere  
that satisfy D x y( , ) = 0 can be parameterized as x y r e r e( , ) = ( , )x

iθ
y

iθ3 2 , 
where rx, ry are real positive constants and θ0 ≤ < 2π is a variable. These 
points lie on a two-torus T 2 embedded in 3S , and form a closed curve 
that is a trefoil knot in this 3S  (ref. 42). This is illustrated in Extended Data 
Fig. 1, as described in the Supplementary Information.

For any knot or link in R3 or S 3, the fundamental group of its comple-
ment is an isotopy invariant of the knot or link called the knot group. 
The knot group of the trefoil is well known to be the braid group B3, or 
this can be inferred by reasoning as in the main text.

Experimental setup
As described in the main text, this experiment focuses on three vibra-
tional modes of a Si3N4 membrane. The membrane’s dimensions are  
1 mm × 1 mm × 50 nm. These modes’ bare eigenvalues (that is, in the 

absence of optomechanical effects) are 
∼ ∼ ∼∼

= (λ , λ , λ ) =
(0)

1
(0)

2
(0)

3
(0)

λ
2π × (352 243 − 2.2i, 557217 − 1.9i, 704 837 − 1.8i) Hz, where the real 
(imaginary) parts give each mode’s oscillation frequency (amplitude 
damping rate). Frequencies related to the mechanical modes are 
denoted with a tilde when given in the laboratory frame, and without 
a tilde in the frame R described below.

The dynamical matrix H͠  governing these modes is controlled 
using the DBA effect of cavity optomechanics31 .The membrane  
is placed in an optical cavity with linewidth κ /2π = 190 kHz, input 
coupling rate κ κ= 0.267in  and optomechanical coupling rates 

g g g g= ( , , ) =1 2 3 2π × (0.198, 0.304, 0.300) Hz. Further details of the 
apparatus are in the Supplementary Information, Extended Data 
Fig. 8 and ref. 43.

The cavity is driven with three tones produced from a single laser (‘con-
trol’, Fig. 1a). The DBA from each tone induces a complex-valued shift in 
each mechanical mode’s eigenvalue31. In addition, each pair of tones gives 
rise to an intracavity beatnote, which induces a complex-valued coupling 
between pairs of modes whose frequency difference is comparable to 
the beatnote frequency44,45. In the resolved sideband regime ( ≪ ∼κ ω 1,2,3

(0) , 
where 

∼∼ω ≡ Re(λ )i i
(0) (0)

) these shifts and couplings can be tuned over the 
complex plane by varying the tones’ powers Pk  and detunings ∆k  

k( ∈ {1, 2, 3}) . An expression for H͠  in terms of Pk, ∆k, κ, κin, g  and 
(0)

λ
∼

 is 
given in the Supplementary Information. For the experiments described 
here, the tones’ common detuning δ (Fig. 1b) is varied. Their relative 
detunings are fixed, and are chosen to produce beatnote frequencies 
close to the differences between the ωi

(0)∼ .
The beatnote frequencies are chosen so that there is a rotating frame 

R (defined in the Supplementary Information) in which the dynamical 
matrix H  is time-independent (in the rotating wave approximation), 
and in which the bare eigenvalues (0)λ  are almost degenerate (their 
non-degeneracy in R is set by η = −2π × 100 Hz (Fig. 1b)).

Thus, within R, the mechanical modes can be described by the equa-
tion of motion

t H t tΨΨ˙( ) = − i ( ) ( ) + ( )x x f

Here x t x t x t x t( ) = ( ( ), ( ), ( ))1 2 3
T  and t( ) =f  f t f t f t( ( ), ( ), ( ))1 2 3

T  are the 
modes’ complex-valued amplitudes and the external forces driving them. 
Whereas the above equation is the generic equation of motion for any 
linear system, we emphasize the form of H ΨΨ( ) realized here: specifically, 
that the controls ΨΨ completely and smoothly parametrize all of the com-
plex eigenspectra in a neighbourhood that includes EP3 (ref. 6).

Locating the EP3
This section gives the protocol for experimentally identifying the EP3. 
Approaches to identifying threefold degeneracies are also given in 
refs. 16–24,46–48.

We identify the value of control parameters (ΨΨEP3) that corresponds 
to EP3 through the quantity d = |λ − λ | + |λ − λ | + |λ − λ |1 2 2 3 3 1 , which may 
be visualized as the perimeter of the triangle formed by the system’s 
three eigenvalues λ in the complex plane. At ΨΨEP3 the three eigenvalues 
are equal, and so d = 0.

The search for the EP3 point starts with the estimate:

μ μ μΨΨ = (2π × 49.7 kHz, 115 W, 387 W, 285 W).EP3
(thy)

We proceed by fixing three of the control parameters to these values, 
and scanning the fourth (say, Ψi). At each value of ΨΨ in this one- 
dimensional sweep, λ is measured (as described in the Supplementary 
Information) and converted to d ΨΨ( ). The experimental estimate ΨΨEP3

(est) 
is then revised with the value of Ψi that minimizes d over that sweep. 
This process is then repeated for different choices of Ψi. The estimate 
resulting from these one-dimensional sweeps is:

μ μ μΨΨ = (2π × 49.7 kHz, 125 W, 435 W, 300 W).EP3
(est)

To further refine the estimate of ΨΨEP3, we then measure d ΨΨ( ) on 2D 
sheets that pass through ΨΨEP3

(est). For each 2D sheet, two control param-
eters are scanned while the other two are fixed, resulting in a total of 
six sheets. The d ΨΨ( ) measured on these sheets are shown in Extended 
Data Fig. 2. For visualization purposes, Extended Data Fig. 3 shows the 
same sheets, but arranged in 3D to illustrate that d ΨΨ( ) is minimized in 
the neighbourhood of ΨΨEP3

(est). In Extended Data Figs. 2, 3, the middle row 
shows the filtered data (see the Supplementary Information for details 
of the filtering) and the bottom row shows the values of d ΨΨ( ) calculated 



from H (Supplementary Information) using the best-fit optomechan-
ical parameters determined by fitting the knot, as shown in Fig. 3a,b 
and described in detail in the Supplementary Information.

Near to ΨΨEP3  the quantity d ΨΨ( )  is expected to scale as4 
d ΨΨ ΨΨ ΨΨ( ) ≈ | − |EP3

1/3, but in practice the sharp cusp in d ΨΨ( ) is broad-
ened by fluctuations in ΨΨ. Nevertheless, clear minima are visible in the 
measured d ΨΨ( ), and their locations are given in the Supplementary 
Information (Supplementary Table 1). Details of the algorithm used to 
identify the minima are also in the Supplementary Information. The mean 
location of these minima is taken as the experimentally identified EP3:

δ P P PΨΨ = ( , , , )EP3
(exp)

EP3
(exp)

1,EP3
(exp)

2,EP3
(exp)

3,EP3
(exp)

=(2π × 54(7)kHz, 128(8) μW, 428(3) μW, 304(15) μW)

This compares well with the location of EP3 that is obtained from the 
best-fit parameters returned by fitting the measured knot:

μ μ μΨΨ = (2π × 60.2 kHz, 116 W, 477 W, 329 W).EP3
(knot)

Projections of the hypersurface S
Here we describe the two projections that are used in Fig. 3a,b of the 
main text (as well as Extended Data Fig. 4) to represent data acquired 
on the hypersurface S, which is the surface of a 4D hyperrectangle.

Standard stereographic projection. Stereographic projection is a 
standard means for representing a sphere (typically of one, two or three 
dimensions) in a Euclidean space with the same number of dimensions. 
In Fig. 3a of the main paper, we represent S  by first projecting it onto 
the unit three-sphere S 3 and then applying the standard stereograph-
ic projection of 3S  onto 3R .

The map is constructed by first adimensionalizing the control 
parameter as

δ

δ

P

P

P

P

P

P
ΨΨ

ΨΨ

ΨΨ
′ := − := − 1, − 1, − 1, − 1

EP3
(exp)

EP3
(exp)

1

1,EP3
(exp)

2

2,EP3
(exp)

3

3,EP3
(exp)�











and then normalizing it as ΨΨ′′ := ΨΨ
ΨΨ

′
‖ ′‖

, where ||·|| is the conventional L2 
norm. Note here the implicit use of the fact that ΨΨEP3

(exp) lies inside the 
four-volume bounded by S.

Next, we act on ΨΨ′′ with a 4D rotation R (specified below). The new 
unit vector R x z w yΨΨ′′ ≡ ( , , , ) is then stereographically projected onto 
the 3D cartesian coordinates X Y Z( , , )  as X Y Z= , = , =x

w
y

w
z

w1 − 1 − 1 − . 
Thus, the choice of R  corresponds to choosing the pole 

x z w y( , , , ) = (0,0,1,0)  for the stereographic projection.
The same pole is chosen for all the stereographic projections shown 

in this work (except for Extended Data Fig. 1, whose generation is 
described in the Supplementary Material). It is chosen so as to  
optimize the visualization of the experimentally identified knot,  
and corresponds to ΨΨ′′ = (0.1, − 0.83, 0.55, 0) , or equivalently, 
ΨΨ = (2π × 55 kHz, 22 μW, 596 μW, 304 μW).

‘Rectilinear stereographic’ projection. The projection shown in 
Fig. 3b of the main text is isomorphic to the projection just described. 
However, it is intended to provide a more intuitive representation of 
the dimensionful experimental parameters ΨΨ. Animations that describe 
this projection are shown in Supplementary Videos 1 and 2.

This projection consists of five steps.
(1) We select one of the eight 3D hyperrectangles that constitute S.
(2) �We simply rescale its axes so that it forms a cube (this is the central 

cube in Fig. 3b).
(3) �Each of the six 3D hyperrectangles adjacent to the first one is also 

rescaled to form a cube, which is then attached to the first cube 

on their common 2D face. The resulting ‘six-way cross’ faithfully 
represents the connections of the central cube to its six neighbours.

(4) ��To faithfully represent the connections among these six neighbours, 
a bilinear transformation43 is applied to each, deforming each cube 
into a truncated square pyramid. The transformation is chosen so 
that the 2D faces that are common to any two of these neighbours 
are made to touch. These seven hexahedrons (the central cube and 
the six truncated square pyramids surrounding it) can readily be 
labelled by their original dimensionful axes, as in Fig. 3b. Together 
they form the bounding box of Fig. 3b.

(5) ��The final 3D hyperrectangle is mapped to the exterior of the 
bounding box through a nonlinear mapping, and extends to in-
finity (as does the standard stereographic projection described 
above).

As described in the Supplementary Information, there are no EP2s 
in the two 3D hyperrectangles that correspond to constant P1. We 
choose these to be the interior (cubical) hexahedron and the exterior 
region. This choice places all of the EP2s in the six truncated square 
pyramids, facilitating a clear view of the knot. Supplementary Video 2 
gives animated views of the data and fit shown in this projection.

Fitting the EP2 locations to the optomechanical model
This section describes the fit of the three-mode optomechanical model 
to the 291 experimentally identified EP2 points shown in Fig. 3a,b of the 
main text. These locations are denoted as ℓΨΨEP2

(exp, ), with ℓ1 ≤ ≤ 291.
The best-fit parameters λ and κ for the model are obtained by mini-

mizing the cost function

ℓ

ℓ ℓg g∑C κ κΨΨ ΨΨ( , ) = | − ( , )|EP2
(exp, )

EP2
(thy, ) 2

where the summands define a distance between the experiment  
and theory, which is adimensionalized by the EP3 coordinates 

δ P P PΨΨ = ( , , , )EP3
(exp)

EP3
(exp)

1,EP3
(exp)

2,EP3
(exp)

3,EP3
(exp) .

In particular, for

δ P P PΨΨ = ( , , , )EP2
(exp, )

EP2
(exp, )

1,EP2
(exp, )

2,EP2
(exp, )

3,EP2
(exp, )ℓ ℓ ℓ ℓ ℓ

and

ℓ ℓ ℓ ℓ ℓδ P P PΨΨ = ( , , , )EP2
(thy, )

EP2
(thy, )

1,EP2
(thy, )

2,EP2
(thy, )

3,EP2
(thy, )

this dimensionless distance (squared) is

κΨΨ ΨΨ| − ( , )|EP2
(exp, )

EP2
(thy, ) 2gℓ ℓ

δ δ

δ

P P

P

P P

P

P P

P

−
+

−
+

−

+
−

EP2
(exp, )

EP2
(thy, )

EP3
(exp)

2

1,EP2
(exp, )
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1,EP3
(exp)

2

2,EP2
(exp, )

2,EP2
(thy, )

2,EP3
(exp)

2

3,EP2
(exp, )
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(exp)

2
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Here, g κΨΨ ( , )EP2
(thy, )ℓ  is the EP2 point found numerically (as a root of the 

discriminant D κΨΨ( , , )g , see the Supplementary Information) in a  
neighbourhood of ℓΨΨEP2

(exp, )  and in its 2D data sheet. For example, if 
ΨΨEP2

(exp, )ℓ  is identified in a data sheet that rasters P1 and P2 while holding 
δ and P3 fixed, the numerical root is found in the neighbourhood

ℓ ℓ ℓ ℓP P P P(0 . 65 , 1 . 35 ) × (0 . 65 , 1 . 35 )1,EP2
(exp, )

1,EP2
(exp, )

2,EP2
(exp, )

2,EP2
(exp, )

at the same fixed values of δ  and P3. κΨΨ ( , )EP2
(thy, ) gℓ  is evaluated with 

κ κ/ = 0.267in , and λ
∼(0)

 held equal to the values determined from the 
single-tone DBA measurements described in the Supplementary 
Information.
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The minimization of C κ( , )g  is implemented numerically on a 

high-performance cluster. The best-fit parameters so obtained are:

g
κ

= 2π × (0.1979, 0.3442, 0.3092)Hz
= 2π × 173.84 kHz

These parameters are used to produce the ‘best-fit knot’ shown as 
the continuous curve in Fig. 3a,b in the main text. This curve is gener-
ated by using the best-fit values of g  and κ given just above to calculate 
λ on 16,000 2D sheets in S. On each sheet, the EP2 points are identified 
as the roots of the discriminant D (found numerically as described in 
the Supplementary Information). At each of these EP2 points, θ is also 
calculated. Finally, these points are coloured according to θ and are 
connected by straight line segments.

The values of the parameters g  and κ given just above are also used 
to generate the theory plots in Fig. 2 of the main text, and in Extended 
Data Figs. 2, 3, 5 and 6 and Supplementary Video 5.

Relation of the present work to studies of non-Hermitian band 
structure (NHBS)
Topics related to those described in this work have been considered 
in the context of a NHBS22,49–59. However, there are several qualitative 
differences between NHBS and the non-Hermitian oscillators consid-
ered here: in the physical systems being described, the mathematical 
concepts relevant to the description, and the genericness of the result-
ing topological structures.

The physical system under consideration in NHBS is a wave prop-
agating in an L-dimensional lattice (in which L is typically 1, 2 or 3) 
that possesses a combination of non-reciprocity, gain and loss. 
Propagation in such a lattice can be characterized by bands whose 
dispersion is given by the complex eigenvalues of a matrix (which 
plays the role of H  in the present paper). A central question in NHBS 
is how these eigenvalues depend on the quasimomentum k (whose 
vector components play the role of the control parameters consid-
ered in the present paper). Theoretical51,56,57 and experimental22,58 
work has shown that varying k  in a closed loop may result in 
non-trivial eigenvalue braids. Theoretical work has shown that, for 
some lattices with L = 3, two-band systems described by 2 × 2 matri-
ces may exhibit a trefoil knot of twofold degeneracies within the 
Brillouin zone53,54,59. However, we emphasize that these results are 
distinct from those presented here.

This is because in NHBS, the number of control parameters is limited 
to L, and the control space they span (the analogue of NL  in the present 
work) is topologically non-trivial by assumption (because the Brillouin 
zone is an L-torus). By contrast, for non-Hermitian oscillators the con-
trol space ( NL ) is topologically trivial, and the number of controls (that 
is, the dimensionality of NL ) is sufficient to span the full space of com-
plex eigenspectra. This results in the direct connection—described in 
the main text—between non-Hermitian oscillators and general complex 
polynomials. In particular, the non-trivial structure of the degenerate 
subspace (which establishes the correspondence between control 
loops and the non-Abelian group of eigenvalue braids) is a generic 
feature of N N×  matrices. This is in contrast to NHBS, in which these 
features are not generic, but only appear on fine tuning.

Last, we note that experiments on NHBS so far22,58 have been limited 
to braids realized by two eigenvalues. Thus, they correspond to the 
N = 2 case, for which the subspace of degeneracies has a trivial geom-
etry, and the group formed by the eigenvalue braids is Abelian. By 
contrast, for the N = 3 case explored in the experiments described  
here, the subspace of degeneracies has a non-trivial geometry, and the 
eigenvalue braids form a non-Abelian group.

Another approach to studying the propagation of linear excitations 
in non-Hermitian lattices is provided by gyroscopic metamaterials60,61. 

However, these systems possess purely real eigenvalues (because of 
the symplectic symmetry of their dynamical matrix), and so do not 
exhibit the behaviour considered in this work.

Data availability
The experimental data and numerical calculations are available from 
the corresponding authors upon reasonable request.

Code availability
The code used for data analysis is available from the corresponding 
author upon reasonable request.
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Extended Data Fig. 1 | The trefoil knot of degeneracies and the eigenvalue 
braids for a three-mode system. a, At a fixed distance from the three-fold 
degeneracy, the control space for the spectrum is S 3 (shown here in 
stereographic projection). The degeneracies in this space are all two-fold and 
form a trefoil knot (orange). Three control loops (green, red, blue), each 

parameterized by s0 ≤ ≤ 1 share a common basepoint (black cross). 
b–d, Evolution of the eigenvalues as s is varied around each loop in a. The black 
crosses show λλ at the basepoint. The dashed lines are guides to the eye. This 
figure is calculated from the characteristic polynomial of a three-mode system 
(see the Supplementary Information).



Article

Extended Data Fig. 2 | Locating EP3. The quantity ΨΨd ( )  (which ideally 
vanishes at ΨΨEP3), measured on six 2D sheets passing through ΨΨ ,EP3

(est)  the location 
of the EP3 that is estimated from scanning individual components of ΨΨ  
(Methods). Top row: raw data. Middle row: data after outlier rejection and 

smoothing described in the Supplementary Information. The black circles 
show the minima that are located using the algorithm described in 
the Supplementary Information. Bottom row: the values of d calculated from 
the optomechanical model.



Extended Data Fig. 3 | Locating EP3 (perspective view). The data of Extended Data Fig. 2 arranged in 3D to illustrate the minimum of ΨΨd ( )  in the neighbourhood 
of the experimentally estimated location of the EP3.



Article

Extended Data Fig. 4 | The locations of the sixty-one 2D sheets within S . The 
sheets are colour-coded by the 3D face in which they lie. a, The sheets are shown 
within each of the eight 3D faces of S. b, The same sheets as in a, shown using 
the ‘rectilinear stereographic’ projection of Fig. 3b. Note that in this projection, 
all of the sheets are contained within the plot’s bounding box. c, The same 

sheets, shown using the stereographic projection of Fig. 3a. The thin black lines 
show the boundary of each sheet. Thin grey lines show where a sheet exits the 
plot’s bounding box. The projections are described in Methods. The data from 
these sheets are shown in Video 5 of the Supplementary Information.



Extended Data Fig. 5 | The knot of EP2 via four different signatures. The 
same data as in Fig. 3a, b, but in separate plots for the EP2 locations determined 
by each of the four different signatures. a, Zeroes of the discriminant D.  
b, Phase vortices of the discriminant D. c, Zeroes of the eigenvector indicator E. 

d, Phase vortices of the eigenvector indicator E. The quantities D and E  are 
defined in the main text, and additional discussion of E  is in the Supplementary 
Information. The projections used here are the same as in Fig. 3a, b. The solid 
curve is the same in all eight panels, and is the best-fit knot shown in Fig. 3a, b.
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Extended Data Fig. 6 | Comparison of measured and calculated braids.  
a–f, The same panels as in Fig. 3c–h. They show the control loops (green, red, 
and blue in a–c) in relation to the measured knot (yellow circles) and the best-fit 

knot (orange curve). d–f, The resulting eigenvalue braids. g–i, The eigenvalue 
spectrum as calculated using the optomechanical parameters determined 
from fitting the knot of EP2. The dashed lines are guides to the eye.



Extended Data Fig. 7 | Additional braids of eigenvalues. a–c, Three loops 
(green, red, blue), each from a different homotopy class. They share a common 
basepoint (black sphere) and are non-self-intersecting. The measured knot K 
(yellow circles) and the best-fit knot (orange curve) are shown for reference. 
The projection used here is the same as in Fig. 3a. d–f, The eigenvalue spectrum 

ΨΨλλ( ) as ΨΨ  is varied around a loop. The variable ξ  indexes the values of ΨΨ  (along 
each loop) at which λλ is measured. The black crosses show λλ at the start and 
stop of the loop. The dashed lines are guides to the eye. The 1σ  confidence 
intervals for λλ are comparable to the size of the plotted points. The braids 
realized are: σ 1

2 (d), σ 1
3 (e), and σ σ2 1

2 (f).
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Extended Data Fig. 8 | Details of the experimental setup. a, The optical and 
electronic layout. Red arrows: beam path from the ‘probe’ laser. Blue arrows: 
beam path from the ‘control’ laser. Purple arrows: overlapped beam path of the 
two lasers. Black arrows: electronic lines. Grey region: cryostat containing  
the optical cavity and membrane. The various components are described in 

the Supplementary Information. b, The optical spectrum. Red lines: tones 
produced from the probe laser. Blue lines: tones produced from the control 
laser. The tones and their generation are described in Methods and 
the Supplementary Information. Grey curves: the two cavity modes used 
in this work.



Extended Data Fig. 9 | Characterizing the optomechanical coupling. Here 
the cavity is driven with a single control tone, whose detuning (from the cavity 
resonance) is Δ. Each panel shows the measured deviation of the (real or 
imaginary part of the) mechanical mode’s eigenvalue from its bare value (that 
is, from the relevant component of 

∼
λλ

(0)
, whose numerical value is written in the 

panel). The error bars show the 1σ  confidence interval for each data point.  
A global fit to standard optomechanical theory gives the bare resonance 

frequencies 
∼
λλ

(0)
 and the optomechanical couplings gg . A detailed description of 

this procedure is in the Supplementary Information.
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Extended Data Fig. 10 | Control loops from Fig. 3c–e. The three control loops 
in Fig. 3c–e were assembled from data taken in the two 2D sheets shown here. 
The two sheets’ common border is shown as the dashed grey line. Each small 
grey disc represents a value of ΨΨ  at which λλ  was measured (that is, a ‘pixel’ in the 
2D sheet). The black crosses show the location of the EP2 in these sheets as 
determined by the minima-finding algorithm described in the Supplementary 
Information.
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§1. Details of the experimental setup  
This section describes the optical and electronic schemes used in this work. 
The optical cavity is a single-sided Fabry-Perot resonator that is 3.64 cm long, for which 

the free spectral range (FSR) is measured to be 𝜔𝜔𝐹𝐹𝐹𝐹𝐹𝐹 = 2𝜋𝜋 × 4.12 GHz. It is built with mirrors 
having 5 cm radius of curvature and nominal reflectivities 0.9998 and 0.99997. With the 
membrane placed approximately at the center of the cavity, the finesse is 2.37 × 104. Fitting the 
cavity’s reflection spectrum gives the input coupling efficiency 𝜅𝜅in/𝜅𝜅 = 0.267.i The 
optomechanical cavity is mounted in a vacuum can which is placed inside a cryostat maintained 
at temperature 𝑇𝑇 = 4.2 K, though the cryogenic temperature does not play a central role in this 
work. Details of the device’s construction can be found in Refs. [ii,iii]. 

 A detailed schematic of the extra-cavity setup is shown in Extended Data Fig. 8a. The 
optomechanical device is addressed by two Nd:YAG lasers (Innolight Prometheus), both 
operating with a wavelength of 1064 nm. The generation and use of the various optical tones 
derived from these lasers is described below. A schematic of the optical spectrum is depicted in 
Extended Data Fig. 8b. 

 
§1.1 Laser 1 (“probe laser”) 

Laser 1 is used to lock all of the optical tones relative to one of the cavity’s resonances. It is 
also used to drive the mechanical modes and to detect their motion. 

A portion of the light from Laser 1 is frequency-shifted by 279.5 MHz to generate a 
“probe” tone, using two acousto-optic modulators in series (AOM1 [Gooch & Housego free-
space AOBD] and AOM2 [Gooch & Housego Fibre-Q]) driven at 79.5 MHz and 200 MHz, 
respectively. The probe tone is locked to an optical resonance of the cavity at 𝜔𝜔cav,1 using the 
Pound-Drever-Hall (PDH) techniqueiv,v,vi. This is accomplished using an electro-optic modulator 
(EOM [New Focus 4001]) driven at 15 MHz. A lock bandwidth of 4 kHz is realized by using the 
output from PID1 (Liquid Instruments Moku:Lab) to tune the voltage-controlled oscillator 
(VCO) that drives AOM2. Applying the feedback to AOM2 effectively locks all of the beams’ 
detunings with respect to 𝜔𝜔cav,1, as discussed in §1.2. 

To prevent large-amplitude, low-frequency drifts from forcing AOM2 beyond its effective 
tuning range, PID2 (Mokulabs) applies feedback control (with 1 Hz bandwidth) to the tuning 
piezo inside Laser 1 to maintain the VCO frequency close to 200 MHz. 

Intensity modulation of the probe beam at frequencies 𝜔𝜔�AM ≈ 𝜔𝜔�1,2,3
(0)  is produced using the 

amplitude-modulation (AM) input of the function generator FG1 (HP 4682B) that drives AOM1. 
It is this intensity modulation that drives the membrane (via radiation pressure) for the 
susceptibility measurements (an example of which is shown in Fig. 1c of the main paper and 
discussed in §4 of this supplement). The modulation is sourced from a lock-in amplifier (LIA 
[Zurich Instruments, HF2LI]) and modulates the probe beam intensity with a depth ~0.04. 

Another portion of the light from Laser 1, which does not pass through AOM1, serves as the 
“local oscillator” (LO) for the heterodyne measurements. 
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The probe, its PDH and AM sidebands, and the LO are combined and sent to the 
optomechanical cavity’s input port. These tones, together with the phase modulation sidebands 
induced on them by the membrane’s motion, are then directed back from the optomechanical 
cavity through a circulator onto a photodetector (PD1 [Thorlabs PDA10CF, 150 MHz 
bandwidth]). The resulting photocurrent contains beatnotes at a variety of frequencies. To 
measure the beatnotes near 79.5 MHz, the output of PD1 is mixed down to 20.5 MHz (using a 
100 MHz oscillator [Vaunix LSG121, not shown]), and then input to the LIA for phase-sensitive 
detection. For all of the measurements described here, the probe power is ~ 15 μW and the LO 
power is ~ 1200 μW, as measured at PD1. 
 
§1.2 Laser 2 (“control laser”) 

Laser 2 is used to generate the three “control” tones.  
Laser 2 is locked to the unshifted light from Laser 1 with a frequency offset of 

8234.098(3) MHz.i This frequency is chosen so that Laser 2 addresses a cavity mode whose 
resonance frequency 𝜔𝜔cav,2 differs from 𝜔𝜔cav,1 by 2𝜔𝜔𝐹𝐹𝐹𝐹𝐹𝐹 (i.e., whose longitudinal mode number 
differs by two from the mode addressed by Laser 1). The motivation for this approach is 
described below. 

The light from Laser 2 is then frequency-shifted to generate the control tones 1,2,3. This 
shift is achieved using two AOMs in series. The first is AOM3 (Gooch & Housego, AOBD), 
which is driven by FG2 (2 units of Rigol DG4162) at three frequencies: 79.5 MHz – 𝜔𝜔�1

(0) + 𝛿𝛿,  
79.5 MHz – 𝜔𝜔�2

(0) + 𝜂𝜂 + 𝛿𝛿, and 79.5 MHz – 𝜔𝜔�3
(0) + 𝛿𝛿 (where 𝛿𝛿 is the “common detuning” that 

serves as one of the components of 𝜳𝜳). The second is AOM2 (which also controls the probe and 
LO), which is driven at 200 MHz.  

As mentioned above, the PDH lock signal is applied to AOM2 to ensure that all of these 
beams track fluctuations of the cavity. As described in Refs. [ii,iii], the primary source of these 
fluctuations is low-frequency vibrations of the structure supporting the membrane chip. As a 
result, the two cavity modes will experience the same detuning only if they have the same 
optomechanical coupling to the membrane. To ensure that this is the case, the membrane’s 
position within the cavity is chosen so that it lies at a “sweet spot”, defined as a point where  
𝑑𝑑𝜔𝜔cav,1
𝑑𝑑𝑥𝑥m

= 𝑑𝑑𝜔𝜔cav,2
𝑑𝑑𝑥𝑥m

, with 𝑥𝑥m being the membrane’s position. The process for locating such a point 

is described in Refs. [vii,i,iii] 
This also ensures that the optomechanical coupling between a given mechanical mode and 

any optical tone (whether produced by Laser 1 or Laser 2) is very nearly the same. In particular, 
the equality of the optomechanical coupling to the probe and control tones is useful in extracting 
the system’s eigenvalues (see §2, §3, §4).  

The powers of the control tones are stabilized (with a bandwidth of 1 kHz) using PID3 
(New Focus LB1005), which feeds back to a variable optical attenuator (VOA, Thorlabs 
V1000A). The control tone powers reported in this work are all measured at PD2 (Thorlabs 
PDA36A), and range from 0 μW to 800 μW.  
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§2. Optomechanical characterization 
This section details the measurement of the optomechanical coupling rates 𝒈𝒈 and the bare 

mechanical eigenvalues 𝝀𝝀� (0). Briefly, these are obtained by measuring the dynamical back-action 
(DBA) for each mechanical mode when the cavity is driven by a single control tone (i.e., rather 
than the three tones used in the main part of this work). Note that frequencies associated with the 
mechanical modes are written with a tilde (e.g. 𝝀𝝀�) when they are given in the lab frame, and 
without a tilde (e.g., 𝝀𝝀) when they are given in the rotating frame  ℛ (which is defined in §3). 

To characterize mode 𝑖𝑖 of the membrane (where the modes are indexed by 𝑖𝑖 ∈ {1,2,3}), the 
optical cavity is driven by a single control tone with power ~250 μW and detuning Δ, which is 
stepped over a range ~ 3𝜅𝜅 centered near −𝜔𝜔�𝑖𝑖

(0). At each value of  Δ, the mechanical 
susceptibility of the mode is measured (as described in §4) and fit to a complex Lorentzian to 
yield the resonance frequency 𝜔𝜔�𝑖𝑖 ≡ Re(𝜆̃𝜆𝑖𝑖) and energy damping rate 𝛾𝛾�𝑖𝑖 ≡ −2Im(𝜆̃𝜆𝑖𝑖), both of 
which are tuned via dynamical back-action (DBA). This is illustrated in Extended Data Fig. 9.  

For Δ ≪ −𝜔𝜔�𝑖𝑖
(0), the DBA is expected to approach zero. Thus, the asymptotes in Extended 

Data Fig. 9 correspond to the bare mechanical eigenvalues 𝝀𝝀�(0). In addition, the DBA-induced 
shift in 𝜔𝜔�𝑖𝑖 is expected to be zero (and the shift in 𝛾𝛾�𝑖𝑖 is expected to be a maximum) at Δ ≈ −𝜔𝜔�𝑖𝑖

(0). 
This feature is helpful in identifying any spurious shift Δ0 in the laser detuning. The value of Δ0 
found from fitting data as in Extended Data Fig. 9 is typically less than 2𝜋𝜋 × 5  kHz. Once Δ0 is 
measured, it is compensated by adding a corresponding shift to the offset lock of Laser 2 (which 
generates the three control tones, see §1). 

The best-fit values of 𝒈𝒈 and 𝝀𝝀� (0) are determined from a global fit of the dataset shown in 
Extended Data Fig. 9 to standard optomechanics theory.34 These values are:  

 
𝝀𝝀�(0) = 2𝜋𝜋 × (352243.3±0.1 − 2.2±0.1𝑖𝑖, 557216.8±0.1 − 1.9±0.1𝑖𝑖, 704836. 7±0.1 − 1.8±0.1𝑖𝑖) Hz 
𝒈𝒈 = 2𝜋𝜋 × (0.198±0.001, 0.304±0.001, 0.300±0.001) Hz  
 
where the uncertainties indicate one standard deviation. 

Note that we define 𝒈𝒈 = �𝜂𝜂𝑐𝑐  𝒈𝒈𝟎𝟎, where 𝒈𝒈𝟎𝟎 is the conventionally reported single-photon 
optomechanical coupling rate. Here the coupling efficiency 𝜂𝜂𝑐𝑐 = 𝑃𝑃in/𝑃𝑃meas, where 𝑃𝑃in is the 
optical power incident on the optomechanical device and 𝑃𝑃meas is the power detected at PD2. 
Since the absolute magnitude of 𝒈𝒈0 is inconsequential to the results presented in this work, no 
attempt is made to calibrate 𝜂𝜂𝑐𝑐. However, for completeness we note that the theoretically 
expected value of 𝒈𝒈𝟎𝟎 = 2𝜋𝜋 × (5.5, 4.3, 3.9) Hz. 
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§3. Modelling the three-mode system 
 This section describes the theoretical model for optically controlling 𝐇𝐇, the dynamical 
matrix of the mechanical three-mode system. It also defines the rotating frame ℛ in which the 
bare mechanical modes are nearly degenerate, and in which the EPs are accessed. Lastly, it 
details how the experimental parameters that correspond to an EP3 are determined, and how it is 
verified that these parameters span the space of spectra in the neighborhood of this EP3. 
  
§3.1 Optomechanical model  
The classical Hamiltonian function for the full optomechanical system (i.e., including the optical 
mode as well as the three mechanical modes) is: 
 

𝓗𝓗 = ℏ�Ωcav,2 − 𝑖𝑖 𝜅𝜅/2�𝑎𝑎∗𝑎𝑎 + �ℏλ�𝑖𝑖
(0)𝑐̃𝑐𝑖𝑖∗𝑐̃𝑐𝑖𝑖

3

𝑖𝑖=1

−�ℏ𝑔𝑔𝑖𝑖(𝑐̃𝑐𝑖𝑖∗ + 𝑐̃𝑐𝑖𝑖)𝑎𝑎∗𝑎𝑎
3

𝑖𝑖=1

 

 
where 𝑎𝑎 is the complex amplitude of the optical mode addressed by the control laser, the 𝑐̃𝑐𝑖𝑖 are 
the complex amplitudes of the three mechanical modes, and * denotes complex conjugation. The 
first two terms correspond to the uncoupled optical and mechanical oscillators, and the third term 
corresponds to their interaction (with coupling strengths 𝑔𝑔𝑖𝑖). Note that the expression for 𝓗𝓗 
includes the reduced Planck’s constant ℏ only in order to conform with the broader literature on 
optomechanics, in which the coupling rates would be the single-photon rates and the mode 
amplitudes would be the corresponding quantum mechanical operators. Since this work is purely 
classical, the overall scale of 𝓗𝓗 (and hence the appearance of ℏ) is irrelevant. 
 The dynamics of 𝑎𝑎 and 𝑐̃𝑐𝑖𝑖 are governed by 𝓗𝓗 via Hamilton’s equations. The optical 
cavity is also driven through its input port (with coupling 𝜅𝜅in) with a drive field 
 

𝑎𝑎in(𝑡𝑡) = ��
𝑃𝑃𝑗𝑗
ℏΩ𝑗𝑗

𝑒𝑒−𝑖𝑖(Ω𝑗𝑗𝑡𝑡+𝜙𝜙𝑗𝑗)
3

𝑗𝑗=1

 

 
corresponding to the three control tones with powers 𝑃𝑃𝑗𝑗, frequencies Ω𝑗𝑗 (i.e. detunings Δ𝑗𝑗 = Ω𝑗𝑗 −
𝜔𝜔cav,2), and phases 𝜙𝜙𝑗𝑗. Because 𝜅𝜅 ≫ 𝑔𝑔𝑖𝑖, the interaction term in 𝓗𝓗 can be linearized with respect 
to 𝑎𝑎. And since 𝜅𝜅 ≫ 𝛾𝛾�𝑖𝑖, the optical field can be adiabatically eliminated to yield an effective 
equation of motion for the mechanical modes, in which 𝑎𝑎 does not appear but in which the 
parameters of the cavity drive (i.e., of the control tones) do.  

For the detunings used in this work (see Fig. 2b of the main text):  
 

Δ1 = −𝜔𝜔�1
(0) + 𝛿𝛿, Δ2 = −𝜔𝜔�2

(0) + 𝛿𝛿 + 𝜂𝜂, Δ3 = −𝜔𝜔�3
(0) + 𝛿𝛿 

 
(with 𝜂𝜂 = −2𝜋𝜋 × 100 Hz), the intensity beatnote between control tones 𝑗𝑗 and 𝑘𝑘 is at the frequency 
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 �Δ𝑗𝑗𝑗𝑗� = �Δ𝑗𝑗 − Δ𝑘𝑘� ≈ �𝜔𝜔�𝑗𝑗

(0) − 𝜔𝜔�𝑘𝑘
(0)�.  

 
Under the rotating wave approximation, the control tones 𝑗𝑗 and 𝑘𝑘 thus couple only the two 
mechanical modes 𝑗𝑗 and 𝑘𝑘, and not the third mechanical mode. As a result, the equation of 
motion for the three mechanical modes reduces to the form 
 

𝒄𝒄�̇ = �
𝑐̃𝑐1̇
𝑐̃𝑐2̇
𝑐̃𝑐3̇
� = −𝑖𝑖 𝐇𝐇�  �

𝑐̃𝑐1
𝑐̃𝑐2
𝑐̃𝑐3
� = −𝑖𝑖𝐇𝐇�  𝒄𝒄� 

 
where 

 

𝐇𝐇� = �
𝜆̃𝜆1

(0)  0 0 
 0 𝜆̃𝜆2

(0)  0
 0 0 𝜆̃𝜆3

(0)
�+ �

𝜎𝜎11                         𝜎𝜎12𝑒𝑒𝑖𝑖Δ12𝑡𝑡𝑒𝑒𝑖𝑖𝜙𝜙12     𝜎𝜎13𝑒𝑒𝑖𝑖Δ13𝑡𝑡𝑒𝑒𝑖𝑖𝜙𝜙13
𝜎𝜎21𝑒𝑒−𝑖𝑖Δ12𝑡𝑡𝑒𝑒−𝑖𝑖𝜙𝜙12 𝜎𝜎22                         𝜎𝜎23𝑒𝑒𝑖𝑖Δ23𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖23
𝜎𝜎31𝑒𝑒−𝑖𝑖Δ13𝑡𝑡𝑒𝑒−𝑖𝑖𝑖𝑖13 𝜎𝜎32𝑒𝑒−𝑖𝑖Δ23𝑡𝑡𝑒𝑒−𝑖𝑖𝑖𝑖23 𝜎𝜎33                    

� 

 
and 𝜙𝜙𝑗𝑗𝑗𝑗 = 𝜙𝜙𝑗𝑗 − 𝜙𝜙𝑘𝑘.  

The coefficients denoted by 𝜎𝜎 are time-independent, and depend on the parameters of the 
optical drive. Specifically, the off-diagonal components are given by: 
 

𝜎𝜎𝑗𝑗𝑗𝑗 = −𝑖𝑖𝜅𝜅in 𝑔𝑔𝑗𝑗𝑔𝑔𝑘𝑘 ��
𝑃𝑃𝑗𝑗
ℏΩ𝑗𝑗

𝑃𝑃𝑘𝑘
ℏΩ𝑘𝑘

𝜒𝜒cav∗ �Δ𝑗𝑗�𝜒𝜒cav(Δ𝑘𝑘) �𝜒𝜒cav�𝜔𝜔�𝑗𝑗
(0) + Δ𝑗𝑗� − 𝜒𝜒cav�𝜔𝜔�𝑗𝑗

(0) − Δ𝑘𝑘���  

 
and the diagonal components are given by: 
 

𝜎𝜎𝑗𝑗𝑗𝑗 = −𝑖𝑖𝜅𝜅in 𝑔𝑔𝑗𝑗2 
∑ � 𝑃𝑃𝑘𝑘

ℏΩ𝑘𝑘
|𝜒𝜒cav(Δ𝑘𝑘)|2 �𝜒𝜒cav�𝜔𝜔�𝑗𝑗

(0) + Δ𝑘𝑘� − 𝜒𝜒cav�𝜔𝜔�𝑗𝑗
(0) − Δ𝑘𝑘���𝑘𝑘=1,2,3   

 
where the cavity’s optical susceptibility is 
 

𝜒𝜒cav(Δ) =
1

𝜅𝜅/2 − 𝑖𝑖Δ
 

 
 We can remove the explicit time dependence from 𝐇𝐇�  by writing the equation of motion in 
the rotating frame ℛ defined by the transformation 𝐔𝐔 given immediately below. In this frame the 
equation of motion is 
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𝒄̇𝒄 = −𝑖𝑖 𝐇𝐇 𝒄𝒄 
 
where  
  

𝒄𝒄 = �
𝑐𝑐1(𝑡𝑡)
𝑐𝑐2(𝑡𝑡)
𝑐𝑐3(𝑡𝑡)

� = 𝐔𝐔�
𝑐̃𝑐1(𝑡𝑡)
𝑐̃𝑐2(𝑡𝑡)
𝑐̃𝑐3(𝑡𝑡)

� = �
𝑒𝑒𝑖𝑖�𝜔𝜔�1

(0)+𝜂𝜂�𝑡𝑡𝑒𝑒−𝑖𝑖𝜙𝜙1  0 0 
 0 𝑒𝑒𝑖𝑖𝜔𝜔�2

(0)𝑡𝑡𝑒𝑒−𝑖𝑖𝜙𝜙2  0
 0  0 𝑒𝑒𝑖𝑖�𝜔𝜔�3

(0)+𝜂𝜂�𝑡𝑡𝑒𝑒−𝑖𝑖𝜙𝜙3

��
𝑐̃𝑐1(𝑡𝑡)
𝑐̃𝑐2(𝑡𝑡)
𝑐̃𝑐3(𝑡𝑡)

� 

 
and the dynamical matrix 𝐇𝐇 = 𝐔𝐔𝐇𝐇�𝐔𝐔−1 + 𝑖𝑖𝐔̇𝐔𝐔𝐔−1 is time-independent: 
 

𝐇𝐇 = �
−𝜂𝜂 − 𝑖𝑖𝛾𝛾�1

(0)/2  0 0 
 0 −𝑖𝑖𝛾𝛾�2

(0)/2  0
0 0 −𝜂𝜂 − 𝑖𝑖𝛾𝛾�3

(0)/2

� + �
𝜎𝜎11 𝜎𝜎12 𝜎𝜎13
𝜎𝜎21 𝜎𝜎22 𝜎𝜎23
𝜎𝜎31 𝜎𝜎32 𝜎𝜎33

�  (S1) 

  
It is in this frame ℛ that 𝐇𝐇 can be brought to an EP3 degeneracy by controlling the second matrix 
in Eq. S1 (denoted 𝛔𝛔) with 𝜳𝜳 = (𝛿𝛿,𝑃𝑃1,𝑃𝑃2,𝑃𝑃3). 
 
§3.2 Locating an 𝑬𝑬𝑬𝑬𝟑𝟑 

The dynamical matrix described by Eq. S1 is a complicated function of the experimental 
control parameters (𝛿𝛿,𝑃𝑃1,𝑃𝑃2,𝑃𝑃3) and we did not find an analytic means for determining values of 
these parameters that correspond to a three-fold degeneracy. Instead, we searched numerically 
over a wide range of these parameters. This search revealed several three-fold degeneracies. The 
one used for this work (i.e., 𝜳𝜳EP3) was chosen because it corresponded to the most readily 
accessible values of (𝛿𝛿,𝑃𝑃1,𝑃𝑃2,𝑃𝑃3). 
 
§3.3 Spanning the neighborhood of 𝑬𝑬𝑬𝑬𝟑𝟑 
 To test whether the four experimental parameters (𝛿𝛿,𝑃𝑃1,𝑃𝑃2,𝑃𝑃3) span the space of spectra 
around an EP3 degeneracy, we use the inverse function theorem to argue about the existence of a 
map between these four parameters and the two complex coefficients (𝑥𝑥,𝑦𝑦) of the characteristic 
polynomial of 𝐇𝐇𝟎𝟎 in the vicinity of 𝜳𝜳EP3. For simplicity, here we use 𝐇𝐇𝟎𝟎 (the traceless version 
of 𝐇𝐇, defined as 𝐇𝐇𝟎𝟎 = 𝐇𝐇− tr(𝐇𝐇)𝐈𝐈/3 where 𝐈𝐈 is the identity matrix), in which case 𝑥𝑥 = det(𝐇𝐇0) 
and 𝑦𝑦 = tr(𝐇𝐇0

2)/2.  
In particular, we consider the Jacobian 𝐉𝐉 of this map, where 

 

𝐉𝐉 = �

𝜕𝜕Re(𝑥𝑥)/𝜕𝜕𝜕𝜕 𝜕𝜕Re(𝑥𝑥)/𝜕𝜕𝑃𝑃1 𝜕𝜕Re(𝑥𝑥)/𝜕𝜕𝑃𝑃2 𝜕𝜕Re(𝑥𝑥)/𝜕𝜕𝑃𝑃3
𝜕𝜕Im(𝑥𝑥)/𝜕𝜕𝜕𝜕 𝜕𝜕Im(𝑥𝑥)/𝜕𝜕𝑃𝑃1 𝜕𝜕Im(𝑥𝑥)/𝜕𝜕𝑃𝑃2 𝜕𝜕Im(𝑥𝑥)/𝜕𝜕𝑃𝑃3
𝜕𝜕Re(𝑦𝑦)/𝜕𝜕𝜕𝜕 𝜕𝜕Re(𝑦𝑦)/𝜕𝜕𝑃𝑃1 𝜕𝜕Re(𝑦𝑦)/𝜕𝜕𝑃𝑃2 𝜕𝜕Re(𝑦𝑦)/𝜕𝜕𝑃𝑃3
𝜕𝜕Im(𝑦𝑦)/𝜕𝜕𝜕𝜕 𝜕𝜕Im(𝑦𝑦)/𝜕𝜕𝑃𝑃1 𝜕𝜕Im(𝑦𝑦)/𝜕𝜕𝑃𝑃2 𝜕𝜕Im(𝑦𝑦)/𝜕𝜕𝑃𝑃3

� 
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and the derivatives are evaluated at 𝜳𝜳EP3. 𝐉𝐉 is continuously differentiable in 𝜳𝜳 because 𝑥𝑥 and 𝑦𝑦 
are smooth functions in the elements of 𝐇𝐇𝟎𝟎, which in turn are continuously differentiable in 𝜳𝜳 
(over the range of 𝜳𝜳 used in these measurements). Therefore, if det(𝐉𝐉) ≠ 0, the parameters span 
the same space as 𝑥𝑥 and 𝑦𝑦 (which is the full space of spectra, as discussed in the main paper) in 
the neighborhood of the EP3.  

Numerical evaluation of det(𝐉𝐉) is carried out using the expression for 𝐇𝐇 in Eq. S1 (and 
the location of 𝜳𝜳EP3 as determined in Methods), giving det(𝐉𝐉) ≈ 1030 (2𝜋𝜋 Hz)9/W3. This value 
is non-zero. More precisely, it is of the order of magnitude expected from the form of 𝐉𝐉. It is 

roughly equal to �𝜆𝜆 
(typ)�

10 (Δ𝑃𝑃)3(Δ𝛿𝛿)�  where 𝜆𝜆 
(typ) is the typical magnitude of the eigenvalues 

in the neighborhood of 𝜳𝜳EP3, and Δ𝑃𝑃 and Δ𝛿𝛿 are the typical scales of the control parameters over 
which the 𝜆𝜆𝑖𝑖 vary. 

The connection between the experimental control parameters and the coefficients of the 
characteristic polynomial (in the neighborhood of EP3) can also be understood by noting that any 
traceless matrix in the neighborhood of an EP3 can be brought (via similarity transformation) to 
the canonical form (known as Arnol’d-Jordan normal form)6,7 

 

 𝐇𝐇𝟎𝟎 = �
0 1 0
0 0 1
𝑥𝑥 𝑦𝑦 0

� 

 
where 𝑥𝑥 and 𝑦𝑦 are the two complex coefficients of the characteristic polynomial, as described in 
the preceding paragraphs (and in §1). 𝐇𝐇𝟎𝟎 may also be regarded as the companion matrix of the 
characteristic polynomial. This form highlights the fact that the non-vanishing of det(𝐉𝐉) 
(described in the preceding paragraphs) ensures the existence of a linear relationship between the 
experimental control parameters and the matrix elements of  𝐇𝐇𝟎𝟎. 
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§4. Extracting the spectrum from mechanical susceptibility measurements 
This section describes the relationship between the system’s eigenvalue spectrum 𝝀𝝀 and 

measurements of the mechanical susceptibility. In particular, it derives the functional form used 
to fit the susceptibility data (e.g., as shown in Fig. 1c of the main text). 

In the rotating frame ℛ (see §3), the mechanical modes’ response to a force 𝒇𝒇(𝜔𝜔) can be 
written in the Fourier domain as 

 
𝒄𝒄(𝜔𝜔) = 𝛘𝛘(𝜔𝜔)𝒇𝒇(𝜔𝜔)  

 
where 
 

𝛘𝛘(𝜔𝜔) = (𝜔𝜔𝐈𝐈 − 𝐇𝐇)−1  
 
The principle behind the measurements used in this work is to apply a force 𝒇𝒇(𝜔𝜔), measure 

the mechanical response 𝒄𝒄(𝜔𝜔), and thus infer the susceptibility 𝛘𝛘(𝜔𝜔), which contains 
information about 𝝀𝝀. 

 The measurement of the mechanical response is carried out in the lab frame, where 
 

𝒄𝒄�(𝜔𝜔�) = �
𝑐̃𝑐1(𝜔𝜔�)
𝑐̃𝑐2(𝜔𝜔�)
𝑐̃𝑐3(𝜔𝜔�)

� =

⎝

⎜
⎛
𝑐𝑐1�𝜔𝜔� − 𝜔𝜔�1

(0) − 𝜂𝜂�

𝑐𝑐2�𝜔𝜔� − 𝜔𝜔�2
(0)�        

𝑐𝑐3�𝜔𝜔� − 𝜔𝜔�3
(0) − 𝜂𝜂�⎠

⎟
⎞

  

 

=

⎝

⎜⎜
⎛
∑ �𝛘𝛘�𝜔𝜔� − 𝜔𝜔�1

(0) − 𝜂𝜂��
1,𝑗𝑗
�𝒇𝒇�𝜔𝜔� − 𝜔𝜔�1

(0) − 𝜂𝜂��
𝑗𝑗

3
𝑗𝑗=1

∑ �𝛘𝛘�𝜔𝜔� − 𝜔𝜔�2
(0)��

2,𝑗𝑗
�𝒇𝒇�𝜔𝜔� − 𝜔𝜔�2

(0)��
𝑗𝑗

3
𝑗𝑗=1        

∑ �𝛘𝛘�𝜔𝜔� − 𝜔𝜔�3
(0) − 𝜂𝜂��

3,𝑗𝑗
�𝒇𝒇�𝜔𝜔� − 𝜔𝜔�3

(0) − 𝜂𝜂��
𝑗𝑗

3
𝑗𝑗=1 ⎠

⎟⎟
⎞

    

 
The force applied by the intensity modulation of the probe tone is (in the lab frame) 𝒇𝒇�(𝑡𝑡) ∝
𝑒𝑒𝑖𝑖𝜔𝜔�AM𝑡𝑡𝒈𝒈, i.e. in the Fourier domain 𝒇𝒇�(𝜔𝜔�) ∝ 𝒈𝒈 𝛿𝛿(𝜔𝜔� − 𝜔𝜔�AM). In ℛ this is: 

 

𝒇𝒇(𝜔𝜔) ∝

⎝

⎜
⎛
𝑔𝑔1𝛿𝛿�𝜔𝜔 − 𝜔𝜔�AM + 𝜔𝜔�1

(0) + 𝜂𝜂�

𝑔𝑔2𝛿𝛿�𝜔𝜔 − 𝜔𝜔�AM + 𝜔𝜔�2
(0)�        

𝑔𝑔3𝛿𝛿�𝜔𝜔 − 𝜔𝜔�AM + 𝜔𝜔�3
(0) + 𝜂𝜂�⎠

⎟
⎞
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Thus, driving the membrane with a single sinusoidal force results in motion at three 
different frequencies. However, the lock-in amplifier only detects motion at the drive frequency 
𝜔𝜔�AM, i.e.  

 

𝑉𝑉� [𝜔𝜔�AM] = 𝛼𝛼 �𝑓𝑓LIA(𝜔𝜔� − 𝜔𝜔�AM)𝒄𝒄�(𝜔𝜔�) ⋅ 𝒈𝒈
 

 

𝑑𝑑𝜔𝜔� ≈ 𝛼𝛼 � 𝒄𝒄�(𝜔𝜔�) ⋅ 𝒈𝒈

𝜔𝜔�AM+𝜉𝜉

𝜔𝜔�AM−𝜉𝜉

𝑑𝑑𝜔𝜔� 

 
where 𝑓𝑓LIA(𝑥𝑥) is the filter function of the lock-in amplifier (which has effective bandwidth 𝜉𝜉), 
and 𝛼𝛼 is the transduction gain. As a result,  

 

𝑉𝑉�(𝜔𝜔�AM) =

⎩
⎪
⎨

⎪
⎧𝛼𝛼 𝑔𝑔12 �𝛘𝛘�𝜔𝜔�AM − 𝜔𝜔�1

(0) − 𝜂𝜂��
1,1

    ≡ 𝑉𝑉�1(𝜔𝜔�AM)          for 𝜔𝜔�AM ≈ 𝜔𝜔�1
(0) 

𝛼𝛼 𝑔𝑔22 �𝛘𝛘�𝜔𝜔�AM − 𝜔𝜔�2
(0)��

2,2
           ≡ 𝑉𝑉�2(𝜔𝜔�AM)          for 𝜔𝜔�AM ≈ 𝜔𝜔�2

(0)

𝛼𝛼 𝑔𝑔32 �𝛘𝛘�𝜔𝜔�AM − 𝜔𝜔�3
(0) − 𝜂𝜂��

3,3
   ≡ 𝑉𝑉�3(𝜔𝜔�AM)          for 𝜔𝜔�AM ≈ 𝜔𝜔�3

(0)

  

 
so that only the diagonal components of the susceptibility 𝛘𝛘(𝜔𝜔) are measured. Each of these 
diagonal components contains 𝝀𝝀, so in principle it would suffice to measure 𝑉𝑉�(𝜔𝜔�AM) in just one 
of the frequency ranges (say, around 𝜔𝜔�2

(0)). However, to make the analysis robust against noise, 
𝑉𝑉�(𝜔𝜔�AM) was measured in all three frequency ranges (i.e., around each of the 𝜔𝜔�1,2,3

(0) ), and this 
nominally redundant data was fit to determine 𝝀𝝀. 

 To explicitly see the relation of the susceptibility 𝛘𝛘(𝜔𝜔) to the eigenspectrum of 𝐇𝐇, 
consider its diagonalization 𝐇𝐇 = 𝐓𝐓𝐓𝐓𝐓𝐓−𝟏𝟏, where 

 

𝐃𝐃 = �
𝜆𝜆1 0 0 
 0 𝜆𝜆2 0 
 0  0 𝜆𝜆3

�. 

 
It can be easily shown that 𝛘𝛘(𝜔𝜔) = 𝐓𝐓(𝜔𝜔𝐈𝐈 − 𝐃𝐃)−1𝐓𝐓−1, where (𝜔𝜔𝐈𝐈 − 𝐃𝐃)−1 is diagonal and 
contains 𝝀𝝀 as   

 

(𝜔𝜔𝐈𝐈 − 𝐃𝐃)−1 =

⎝

⎜
⎜
⎜
⎛

1
𝜔𝜔 − 𝜆𝜆1

 0 0

0 
1

𝜔𝜔 − 𝜆𝜆2
0 

 0 0 
1

𝜔𝜔 − 𝜆𝜆3⎠

⎟
⎟
⎟
⎞

. 

 



11 
 

This can be used to write the 𝑉𝑉�𝑖𝑖(𝜔𝜔�AM) explicitly in terms of 𝝀𝝀 and the matrix elements of 𝐓𝐓 and 
𝐓𝐓−1 as 

 

𝑉𝑉�1(𝜔𝜔�) = 𝛼𝛼 𝑔𝑔12 �
𝑇𝑇11(𝑇𝑇−1)11

𝜔𝜔� − 𝜔𝜔�1
(0) − 𝜂𝜂 − 𝜆𝜆1

+
𝑇𝑇12(𝑇𝑇−1)21

𝜔𝜔� − 𝜔𝜔�1
(0) − 𝜂𝜂 − 𝜆𝜆2

+
𝑇𝑇13(𝑇𝑇−1)31

𝜔𝜔� − 𝜔𝜔�1
(0) − 𝜂𝜂 − 𝜆𝜆3

� 

𝑉𝑉�2(𝜔𝜔�) = 𝛼𝛼 𝑔𝑔22 �
𝑇𝑇21(𝑇𝑇−1)12
𝜔𝜔� − 𝜔𝜔�2

(0) − 𝜆𝜆1
+

𝑇𝑇22(𝑇𝑇−1)22
𝜔𝜔� − 𝜔𝜔�2

(0) − 𝜆𝜆2
+

𝑇𝑇23(𝑇𝑇−1)32
𝜔𝜔� − 𝜔𝜔�2

(0) − 𝜆𝜆3
� 

𝑉𝑉�3(𝜔𝜔�) = 𝛼𝛼 𝑔𝑔32 �
𝑇𝑇31(𝑇𝑇−1)13

𝜔𝜔� − 𝜔𝜔�3
(0) − 𝜂𝜂 − 𝜆𝜆1

+
𝑇𝑇32(𝑇𝑇−1)23

𝜔𝜔� − 𝜔𝜔�3
(0) − 𝜂𝜂 − 𝜆𝜆2

+
𝑇𝑇33(𝑇𝑇−1)33

𝜔𝜔� − 𝜔𝜔�3
(0) − 𝜂𝜂 − 𝜆𝜆3

� 

 
 To extract the eigenvalues 𝝀𝝀, these three spectra can be fit to the sum of nine complex 

Lorentzians as 
 

𝑉𝑉�1(𝜔𝜔�) = 𝑎𝑎1 �
𝑠𝑠11

𝜔𝜔� − 𝜔𝜔�1
(0) − 𝜂𝜂 − 𝜆𝜆1

+
𝑠𝑠12

𝜔𝜔� − 𝜔𝜔�1
(0) − 𝜂𝜂 − 𝜆𝜆2

+
𝑠𝑠13

𝜔𝜔� − 𝜔𝜔�1
(0) − 𝜂𝜂 − 𝜆𝜆3

� + 𝑏𝑏1 

𝑉𝑉�2(𝜔𝜔�) = 𝑎𝑎2 �
𝑠𝑠21

𝜔𝜔� − 𝜔𝜔�2
(0) − 𝜆𝜆1

+
𝑠𝑠22

𝜔𝜔� − 𝜔𝜔�2
(0) − 𝜆𝜆2

+
𝑠𝑠23

𝜔𝜔� − 𝜔𝜔�2
(0) − 𝜆𝜆3

� + 𝑏𝑏2 

𝑉𝑉�3(𝜔𝜔�) = 𝑎𝑎3 �
𝑠𝑠31

𝜔𝜔� − 𝜔𝜔�3
(0) − 𝜂𝜂 − 𝜆𝜆1

+
𝑠𝑠32

𝜔𝜔� − 𝜔𝜔�3
(0) − 𝜂𝜂 − 𝜆𝜆2

+
𝑠𝑠33

𝜔𝜔� − 𝜔𝜔�3
(0) − 𝜂𝜂 − 𝜆𝜆3

� + 𝑏𝑏3 

 
where 𝑎𝑎𝑖𝑖 = 𝛼𝛼 𝑔𝑔𝑖𝑖2 and  𝑠𝑠𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑖𝑖𝑖𝑖(𝑇𝑇−1)𝑗𝑗𝑗𝑗, and the three additional (complex) constants 𝑏𝑏𝑖𝑖 represent 
the lock-in-detection background. Of the 18 complex parameters in this model (𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖, 𝑠𝑠𝑖𝑖𝑖𝑖, and 
𝜆𝜆𝑖𝑖), the amplitudes 𝑠𝑠𝑖𝑖𝑖𝑖 are constrained by the fact that 𝐓𝐓𝐓𝐓−1 = 𝐈𝐈 = 𝐓𝐓−1𝐓𝐓, i.e. ∑ 𝑇𝑇𝑖𝑖𝑖𝑖(𝑇𝑇−1)𝑗𝑗𝑗𝑗𝑗𝑗 =
1 = ∑ (𝑇𝑇−1)𝑖𝑖𝑖𝑖𝑇𝑇𝑗𝑗𝑗𝑗𝑗𝑗 , which implies that ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑗𝑗 = 1 = ∑ 𝑠𝑠𝑗𝑗𝑗𝑗𝑗𝑗 . Therefore, the rows and columns of 
the matrix 
 

𝐒𝐒 = �
𝑠𝑠11 𝑠𝑠12 𝑠𝑠13
𝑠𝑠21 𝑠𝑠22 𝑠𝑠23
𝑠𝑠31 𝑠𝑠32 𝑠𝑠33

�  

 
each add to unity. These are five independent complex constraints, and are implemented in 
fitting the measured spectra as: 
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𝑠𝑠13 = 1 − 𝑠𝑠11 − 𝑠𝑠12 
𝑠𝑠23 = 1 − 𝑠𝑠21 − 𝑠𝑠22 
𝑠𝑠31 = 1 − 𝑠𝑠11 − 𝑠𝑠21 
𝑠𝑠32 = 1 − 𝑠𝑠12 − 𝑠𝑠22 
𝑠𝑠33 = 𝑠𝑠11 + 𝑠𝑠12 + 𝑠𝑠21 + 𝑠𝑠22 − 1. 
 
In other words, the global fit of the measured spectra 𝑉𝑉�1[𝜔𝜔�],  𝑉𝑉�2[𝜔𝜔�],𝑉𝑉�3[𝜔𝜔�] to nine complex 

Lorentzians is implemented with 13 complex fit parameters. The best-fit values for 𝝀𝝀 and 𝐒𝐒 so 
extracted are used in various ways to identify the locations of EP2 and EP3 (see §7). 
  



13 
 

§5. Degeneracy of eigenvectors 
This section describes the connection between eigenvector degeneracy and the vanishing 

of 𝐸𝐸 = (det(𝐒𝐒))−2. 
We first note that in the susceptibility measurements, the membrane motion is detected 

only at the actuation frequency 𝜔𝜔�AM, though the actuation induces motion at other frequencies 
via the intracavity intensity beatnotes (this point is discussed in §4). Thus, the only component of 
the force vector contributing to the detected motion when 𝜔𝜔�AM  ≈  𝜔𝜔�𝑖𝑖

(0) is 𝒇𝒇𝑖𝑖, where 𝒇𝒇1 ∝
(1 0 0)T,𝒇𝒇2 ∝ (0 1 0)T,𝒇𝒇3 ∝ (0 0 1)T, corresponding to the three uncoupled modes. The motion 
induced by 𝒇𝒇𝑖𝑖 is the sum of (three) Lorentzians with amplitudes 𝑠𝑠𝑖𝑖𝑖𝑖.  

The amplitude 𝑠𝑠𝑖𝑖𝑖𝑖 is proportional to the product of the projection of the actuation force 𝒇𝒇𝑖𝑖 
onto the 𝑗𝑗th left and right eigenvectors of 𝐇𝐇. In the basis of the uncoupled modes 

 

𝐒𝐒 = �
𝑠𝑠11 𝑠𝑠12 𝑠𝑠13
𝑠𝑠21 𝑠𝑠22 𝑠𝑠23
𝑠𝑠31 𝑠𝑠32 𝑠𝑠33

� = �
𝑇𝑇11(𝑇𝑇−1)11 𝑇𝑇12(𝑇𝑇−1)21 𝑇𝑇13(𝑇𝑇−1)31
𝑇𝑇21(𝑇𝑇−1)12 𝑇𝑇22(𝑇𝑇−1)22 𝑇𝑇23(𝑇𝑇−1)32
𝑇𝑇31(𝑇𝑇−1)13 𝑇𝑇32(𝑇𝑇−1)23 𝑇𝑇33(𝑇𝑇−1)33

� 

 
where 𝐓𝐓 diagonalizes the dynamical matrix, i.e. 𝐇𝐇 = 𝐓𝐓𝐓𝐓𝐓𝐓−1 (see §4). The columns of 𝐓𝐓 are the 
right eigenvectors of 𝐇𝐇 and the rows of 𝐓𝐓−1 are its left eigenvectors.  

We now provide some intuition for why 𝐸𝐸 = (det(𝐒𝐒))−2 vanishes at an EP. In the basis 
of the system’s right eigenvectors, the force 𝒇𝒇𝑖𝑖 ∝ ((𝑇𝑇−1)1𝑖𝑖 , (𝑇𝑇−1)2𝑖𝑖 , (𝑇𝑇−1)3𝑖𝑖)T, and in the 
basis of the system’s left eigenvectors, 𝒇𝒇𝑖𝑖T ∝ (𝑇𝑇𝑖𝑖1 , 𝑇𝑇𝑖𝑖2 , 𝑇𝑇𝑖𝑖3). At an EP, neither the left nor the 
right eigenvectors span the full space; therefore, at least two projections of a generic vector (like 
𝒇𝒇𝑖𝑖) onto both the left and right eigenvectors must diverge. This implies that at least two columns 
of 𝐒𝐒 diverge, and hence that det[𝐒𝐒] diverges and 𝐸𝐸 = (det(𝐒𝐒))−2 vanishes.  

We note that, formally, 𝐸𝐸 = (det(𝐒𝐒))−2 has the undesirable property of depending 
explicitly on the choice of basis. However, there is a basis that is naturally chosen by our 
susceptibility measurements (specifically, that of the uncoupled modes), and we will show below 
that we can still make a generic connection between the vanishing of 𝐸𝐸 and the coalescence of 
two eigenvectors.  

Despite the basis dependence, 𝐸𝐸 also has two nice properties. First, 𝐸𝐸 does not depend on 
the arbitrary nonzero scale of the eigenvectors because of the multiplication of matrix elements 
of 𝐓𝐓 with those of 𝐓𝐓−1 in the definition of 𝐒𝐒. Second, taking the square of det(𝐒𝐒) ensures that 𝐸𝐸 
does not depend upon the ordering of the eigenvectors, and is single-valued. 

We now show that if 𝐓𝐓 is chosen to vary smoothly away from degeneracies6 𝐸𝐸 
generically goes to 0 as a second-order EP is approached, while its phase winds by 2𝜋𝜋 if such a 
point is encircled. Without loss of generality, we focus this discussion on a 2 × 2 traceless 
matrix because close to a second-order EP only the two-dimensional subspace spanned by the 
two coalescing eigenvectors is relevant. For a smooth choice of the eigenvector matrix, its 
general form is (see Eq. 9 of Ref. [viii]) 
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𝐓𝐓 ~ 𝐕𝐕� 1 1
−√𝑥𝑥 √𝑥𝑥

�  as |𝑥𝑥| → 0   

 
where 𝑥𝑥 = det(𝐇𝐇0) and 𝑥𝑥 = 0 at a second-order EP. The first column of 𝐕𝐕 (i.e., (𝑉𝑉11,𝑉𝑉21)𝑇𝑇) 
defines the unique (right) eigenvector at 𝑥𝑥 = 0. All that we know, in general, about the 𝑥𝑥-
independent basis transformation matrix 𝐕𝐕 is that det(𝐕𝐕) ≠ 0, which follows from det(𝐓𝐓) ≠ 0 
for 𝑥𝑥 ≠ 0. After some algebra, we find: 

 

𝐒𝐒 ~ 𝟏𝟏
𝟐𝟐
�

1 + 𝑉𝑉11𝑉𝑉21
√𝑥𝑥det(𝐕𝐕)

1 − 𝑉𝑉11𝑉𝑉21
√𝑥𝑥det(𝐕𝐕)

1 − 𝑉𝑉11𝑉𝑉21
√𝑥𝑥det(𝐕𝐕)

1 + 𝑉𝑉11𝑉𝑉21
√𝑥𝑥det(𝐕𝐕)

�    as |𝑥𝑥| → 0   

 

After some more algebra, this becomes 𝐸𝐸~𝑥𝑥 �det(𝐕𝐕)
𝑉𝑉11𝑉𝑉21

�
2
. This shows that, as long as 𝑉𝑉11 and 𝑉𝑉21 

are non-zero, the claimed properties of 𝐸𝐸 follow from 𝐸𝐸~𝑥𝑥 as |𝑥𝑥| → 0. To finish the proof, we 
argue that 𝑉𝑉11 and 𝑉𝑉21 are generically non-zero. Indeed, for 𝑉𝑉11 or 𝑉𝑉21 to vanish would require 
fine-tuning all the matrix elements of the traceless matrix 𝐇𝐇0 (i.e., six real parameters), while 
generically we only have access to two real control parameters (which determine 𝑥𝑥). 
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 §6. Rastering the hypersurface 𝓢𝓢 
The hypersurface 𝒮𝒮 described in the main text is the boundary of a 4D hyperrectangle, 

and is a union of eight 3D hyperrectangles, which we refer to as “faces”. Each of these 3D faces 
is spanned by three components of 𝜳𝜳 (for example, 𝑃𝑃1,𝑃𝑃2,𝑃𝑃3) which range from their minimum 
value to their maximum value (given below), while the remaining component of 𝜳𝜳 (in this 
example it would be 𝛿𝛿 ) is held fixed at either its maximum or its minimum value. As a result, the 
3D faces span the ranges:  

 
−10 kHz ≤ 𝛿𝛿/2𝜋𝜋 ≤ 106 kHz 
22 μW ≤ 𝑃𝑃1 ≤ 240 μW 
289 μW ≤ 𝑃𝑃2 ≤ 675 μW 
78 μW ≤ 𝑃𝑃3 ≤ 702 μW 
 
For ease of analysis, measurements of 𝝀𝝀 were taken by densely rastering 𝜳𝜳 within sixty-

one 2D “sheets”, each lying within one of the eight 3D faces. The locations of these sheets are 
shown in Extended Data Fig. 4, and the actual data sets (from all 61 sheets) are shown in Video 
5.  

As can be seen from Extended Data Fig. 4, no 2D sheets lie within the two faces having 
constant 𝑃𝑃1. This is because the optomechanical model (described in §3) predicts that the EP2 lie 
only in the other six faces. The absence of EP2 in the two faces with constant 𝑃𝑃1 was confirmed 
by measuring 𝝀𝝀 at several hundred locations in these two faces (not shown). 
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§7. Data analysis algorithms 
Here we describe the algorithms used to locate the EPs in the 2D data sheets. We also 

describe the processing (outlier rejection and Gaussian filtering) applied to the data in these 2D 
sheets in order for the algorithms to perform effectively.  

As described in the main text, each measurement of a mechanical spectrum (i.e., with the 
control parameters 𝜳𝜳 set to a specific value) is fit to extract 𝝀𝝀 and 𝐒𝐒 for this value of 𝜳𝜳. These 
quantities are then converted into 𝑑𝑑,𝐷𝐷,𝐸𝐸, and 𝑡𝑡 for this value of 𝜳𝜳. The quantity 𝑡𝑡 is defined as: 

 
𝑡𝑡 ≡ 𝑥𝑥/𝑦𝑦 = �2𝜆̂𝜆1𝜆̂𝜆2𝜆̂𝜆3/�𝜆̂𝜆12 + 𝜆̂𝜆22 + 𝜆̂𝜆32�� 

 
where 𝑥𝑥 and 𝑦𝑦 are the coefficients of the characteristic polynomial (see Methods and §3.1). The 
eigenvalues of the traceless version of 𝐇𝐇 (see §3.1) are 𝜆̂𝜆𝑗𝑗 = 𝜆𝜆𝑗𝑗 − 𝜆̅𝜆, where 𝜆̅𝜆 = (𝜆𝜆1 + 𝜆𝜆2 + 𝜆𝜆3)/
3. As described below, 𝑡𝑡 is useful because its complex phase 𝜃𝜃 ≡ Arg(𝑡𝑡) provides a coordinate 
along the trefoil knot.  

Much of the analysis used in this study is based on densely rastering two components of 𝜳𝜳, 
resulting in a 2D “sheet” in which 𝑑𝑑(𝜳𝜳),𝐷𝐷(𝜳𝜳),𝐸𝐸(𝜳𝜳), and 𝑡𝑡(𝜳𝜳) can be displayed. Analyzing the 
data in these sheets allows for the identification of EP2 and EP3 locations. It is usually 
straightforward to identify the EP locations from the measured 𝑑𝑑(𝜳𝜳),𝐷𝐷(𝜳𝜳),𝐸𝐸(𝜳𝜳) as the 
vanishing or phase-winding of these quantities, which are readily evident in Fig. 2 of the main 
text and in Video 5.  

However, to apply a uniform approach to locating these points, we use a minima-finding 
algorithm and a vortex-finding algorithm. These algorithms can be adversely impacted by noise 
in the data and by occasional outlier data points. The noise we refer to is the apparently random 
pixel-to-pixel variations visible in the top row of Fig. 2 from the main text (i.e., superposed on 
the smooth behavior that is similar to the corresponding theory plot in the bottom row). The 
outliers we refer to are the few pixels whose value differs drastically from their neighbors in the 
top row of Fig. 2 from the main text. As a result, we apply outlier rejection followed by Gaussian 
filtering to each of the quantities 𝑑𝑑(𝜳𝜳),𝐷𝐷(𝜳𝜳),𝐸𝐸(𝜳𝜳), and 𝑡𝑡(𝜳𝜳), yielding the filtered versions 
𝑑̅𝑑(𝜳𝜳),𝐷𝐷�(𝜳𝜳),𝐸𝐸�(𝜳𝜳), and 𝑡𝑡̅(𝜳𝜳), which are shown as the middle row in Fig. 2 of the main text and 
Extended Data Figs. 2,3, as well as Video 5. For the complex quantities 𝐷𝐷,𝐸𝐸, and 𝑡𝑡, the real and 
imaginary parts are treated separately and then recombined.  

A minima identification algorithm (described in §7.3) is applied to 𝑑̅𝑑 to locate the EP3 point 
as described in Methods. Minima identification is also applied to the magnitudes of 𝐷𝐷� and 𝐸𝐸� to 
locate the EP2 points in the hypersurface 𝒮𝒮. A phase-vortex identification algorithm (described in 
§7.4) is applied to the arguments (i.e. complex phases) of 𝐷𝐷� and 𝐸𝐸�, also to locate the EP2 points 
in 𝒮𝒮. Lastly, the argument of 𝑡𝑡̅ at each EP2 is the value of 𝜃𝜃 used to color the corresponding point 
in Figs. 3a,b of the main paper and Extended Data Fig. 5. 

The complete data set consisting of the sixty-one 2D sheets used to search for EP2 points in 
the hypersurface 𝒮𝒮 is shown in Video 5. The data set of six 2D sheets used to identify the EP3 
point is shown in Extended Data Figs 2,3. 
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§7.1 Outlier rejection 
Outliers were identified using a Tukey Fence, which tags a data point at 𝜳𝜳 as an outlier if 

the value at 𝜳𝜳 is outside the range {𝑄𝑄1 − 𝑠𝑠 × (𝑄𝑄3 − 𝑄𝑄1),𝑄𝑄3 + 𝑠𝑠 × (𝑄𝑄3 − 𝑄𝑄1)}, where the first 
and third quartiles 𝑄𝑄1 and 𝑄𝑄3 are defined over a 5 pixel × 5 pixel neighborhood of 𝜳𝜳 within the 
2D sheet under consideration (the neighborhood is clipped for 𝜳𝜳 near the sheet’s edge). To 
ensure that only extreme outliers are tagged, we set 𝑠𝑠 = 6. By way of illustration, if the data 
were Gaussian distributed, this would correspond to tagging only values beyond 8.7 standard 
deviations.  

All tagged outliers are inspected individually to eliminate the possibility of a false tag. The 
value of each outlier is replaced with the median of its 5 pixel × 5 pixel neighborhood. In the 
end, ~200 of the ~27,000 measurements (~0.8%) of 𝝀𝝀 and 𝐒𝐒 on the hypersurface 𝒮𝒮 were 
rejected as outliers.   
 
§7.2 Gaussian filtering 
 After the outlier rejection described above, the data in each 2D sheet is convolved with a 
2D Gaussian kernel with HWHM = 1.87 pixels. The filter kernel is clipped (and re-normalized) 
as appropriate for pixels that lie near the edge of the sheet. 
 
§7.3 Minima Identification 
 For any quantity 𝑓𝑓(𝜳𝜳) (which may be 𝑑̅𝑑(𝜳𝜳), |𝐷𝐷�(𝜳𝜳)|, or |𝐸𝐸�(𝜳𝜳)|), a minimum is initially 
tagged at any value of 𝜳𝜳 at which 𝑓𝑓 is the minimum over its 3 pixel × 3 pixel neighborhood. 
Since some of these initial tags are caused by noise, we only accept tags at which the magnitude 
of the second derivative is larger than a specific threshold. In particular, we require |𝑓𝑓′′(𝜳𝜳)| >
𝜁𝜁 , where the threshold 𝜁𝜁 is chosen to be ⟨|𝑓𝑓′′|⟩ + 2𝜎𝜎�𝑓𝑓′′�, with the mean ⟨ ⋯⟩ and standard 
deviation 𝜎𝜎 evaluated over the entire data sheet.  

The 𝜳𝜳 that are tagged in this way are reported as the experimentally identified minima. 
When this analysis is applied to 𝑑̅𝑑(𝜳𝜳), the minima correspond to experimental estimates of the 
EP3 location. When this analysis is applied to |𝐷𝐷�(𝜳𝜳)| and |𝐸𝐸�(𝜳𝜳)|, the minima correspond to the 
experimentally identified EP2 points. At each identified minimum of |𝐷𝐷�| and |𝐸𝐸�|, the value of 
𝜃𝜃 = Arg(𝑡𝑡̅) at that location is reported as the measured 𝜃𝜃 for that EP2. These points are shown in 
Extended Data Figs 5a,c. 
 
§7.4 Phase-Vortex Identification  
 For each phase function (Arg[𝐷𝐷�] and Arg[𝐸𝐸�]), the algorithm starts with a location 𝜳𝜳 
within the sheet and then considers the closed counter-clockwise path defined by the eight 
nearest neighbors of 𝜳𝜳. The point 𝜳𝜳 is tagged as a phase vortex if the unwrapped phase along 
this closed path changes by ± 2𝜋𝜋.  
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It sometimes happens that this approach tags several neighboring 𝜳𝜳 as phase vortices. To 
determine whether this results from pixelation of the data, or because different portions of the 
knot actually intersect the sheet in close-by locations, we algorithmically clusteri any adjacent 
points identified as phase vortices based on their value of 𝜃𝜃 (which serves to distinguish different 
parts of the knot from each other). For each cluster identified in this way, the mean value of 𝜳𝜳 is 
reported as the experimentally identified phase vortex (EP2). Also, the mean value of 𝜃𝜃(𝜳𝜳) for 
each cluster is reported as the measured 𝜃𝜃 for that EP2. These points are shown in Extended Data 
Figs 5b,d. 
 It should be noted that all the phase vortices identified in this work show a winding of 
±2𝜋𝜋 along the closed path constructed above. This is expected for Arg(𝐷𝐷�) and Arg(𝐸𝐸�), as 
𝜆𝜆𝑖𝑖(𝜳𝜳)~|𝜳𝜳−𝜳𝜳EP2|1/2 in the neighborhood of an EP2 point at 𝜳𝜳EP2.ix  The proof of this is given 
in Ref. [i]. See also §5. 
 
§7.5 Theory Plots of 𝑫𝑫 and 𝑬𝑬 
 Eqn. S1 (see §3) can be numerically diagonalized at a given 𝜳𝜳 to find the eigenvalues 
𝝀𝝀(𝜳𝜳). Similarly, we calculate 𝐒𝐒(𝜳𝜳) from the 𝐓𝐓-matrix associated with this diagonalization, cf. 
§4. The theoretical 𝐷𝐷(𝜳𝜳) and 𝐸𝐸(𝜳𝜳) so evaluated are depicted in the bottom rows in Fig. 2 of the 
main text, in Extended Data Figs 2,3, and in Video 5.  

The cyan squares in the theory plots of these figures mark the roots of 𝐷𝐷 (corresponding 
to EP2), which are found numerically. To make the numerical root-finding tractable, the EP2 
degeneracy of 𝐇𝐇 is cast as the system of equations 

 
Re[𝐷𝐷] = 0  
Im[𝐷𝐷] = 0  
 

where 𝐷𝐷 is the discriminant of 𝑝𝑝𝐇𝐇.  
In producing these theory plots, the parameters used are those obtained as the best-fit 

parameters for the knot data shown in Figs. 3a,b of the main text:  
 
𝒈𝒈 = 2𝜋𝜋 × (0.1979, 0.3442, 0.3092) Hz 
𝜅𝜅 = 2𝜋𝜋 × 173.84 kHz 
 

The process by which the knot is fit is described in Methods. 
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§8. Visualizing the eigenvalue braids 
 Here we describe various aspects of representing the eigenvalue braids, both for the 
experimental data and the theoretical calculations. 
 
§8.1 Producing Extended Data Fig. 1 

This subsection describes how Extended Data Fig. 1 was generated. We first describe the 
calculation of the trefoil knot of EP2 locations shown in Extended Data Fig. 1a. Then we describe 
the specific form of the control loops in Extended Data Fig. 1a, and the corresponding 
eigenvalue braids shown in Extended Data Figs. 1b-d. 

Extended Data Fig. 1 was generated by considering the two complex coefficients 𝑥𝑥 and 𝑦𝑦 
of the characteristic polynomial 𝑝𝑝𝐇𝐇 = 𝜆𝜆3  − 𝑦𝑦𝑦𝑦 − 𝑥𝑥 for a traceless 3 × 3 matrix. As described in 
the main text (and in Methods), the space spanned by 𝑥𝑥 and 𝑦𝑦 may be viewed as ℝ4, with the 
Cartesian coordinates  (Re(𝑥𝑥), Im(𝑥𝑥), Re(𝑦𝑦), Im(𝑦𝑦))T giving a smooth parametrization of all the 
eigenspectra in the neighborhood of EP3, which is found at 𝑥𝑥 = 𝑦𝑦 = 0.  

Extended Data Fig. 1a shows a representation of the unit hypersphere 𝒮𝒮3 centered at the 
origin (0,0,0,0)T. Specifically, Extended Data Fig. 1a shows 𝒮𝒮3 mapped by a stereographic 
projection (whose pole is located at (−1,0, 0,0)T) to the space ℝ3 spanned by the Cartesian 
coordinates (𝑋𝑋,𝑌𝑌,𝑍𝑍)T defined via 

 

Re(𝑥𝑥) = 1−𝑋𝑋2−𝑌𝑌2−𝑍𝑍2

1+𝑋𝑋2+𝑌𝑌2+𝑍𝑍2
       Im(𝑥𝑥) = 2𝑍𝑍

1+𝑋𝑋2+𝑌𝑌2+𝑍𝑍2
       Re(𝑦𝑦) = 2𝑋𝑋

1+𝑋𝑋2+𝑌𝑌2+𝑍𝑍2
       Im(𝑦𝑦) = 2𝑌𝑌

1+𝑋𝑋2+𝑌𝑌2+𝑍𝑍2
  

 
The space spanned by (𝑋𝑋,𝑌𝑌,𝑍𝑍)T is the space shown in Extended Data Fig. 1a.  

The yellow curve in Extended Data Fig. 1a is defined by two constraints: 
 
|𝑥𝑥|2 + |𝑦𝑦|2 = 1  
4𝑦𝑦3 − 27𝑥𝑥2 = 0  

 
The first constraint simply defines 𝒮𝒮3 and so is satisfied everywhere in the space shown in 
Extended Data Fig. 1a. The second constraint corresponds to the vanishing of the discriminant of 
𝑝𝑝𝐇𝐇 (which is 𝐷𝐷 =  4𝑦𝑦3 − 27𝑥𝑥2). Since 𝐷𝐷 vanishes just where two (or more) eigenvalues of 𝐇𝐇 are 
degenerate, and since EP3 is not in 𝒮𝒮3, the orange curve shows all of the EPs in 𝒮𝒮3, and all of 
these are EP2. This curve is a trefoil knot, as described in Methods. 

Each of the three loops (green, red, and blue) shown in Extended Data Fig. 1a can be 
written in the coordinate system (𝑋𝑋,𝑌𝑌,𝑍𝑍)𝑇𝑇 as: 

 
𝑋𝑋(𝑑𝑑, 𝑟𝑟,𝜃𝜃,𝜙𝜙, 𝑠𝑠) = �(𝑑𝑑 − 𝑟𝑟) sin(𝜃𝜃) + 𝑟𝑟 sin(𝜃𝜃 + 2𝜋𝜋𝜋𝜋)� cos(𝜙𝜙) 
𝑌𝑌(𝑑𝑑, 𝑟𝑟,𝜃𝜃,𝜙𝜙, 𝑠𝑠) = �(𝑑𝑑 − 𝑟𝑟) sin(𝜃𝜃) + 𝑟𝑟 sin(𝜃𝜃 + 2𝜋𝜋𝜋𝜋)� sin(𝜙𝜙) 
𝑍𝑍(𝑑𝑑, 𝑟𝑟,𝜃𝜃,𝜙𝜙, 𝑠𝑠) = (𝑑𝑑 − 𝑟𝑟) cos(𝜃𝜃) + 𝑟𝑟 cos(𝜃𝜃 + 2𝜋𝜋𝜋𝜋) 
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where {𝑑𝑑,𝜃𝜃,𝜙𝜙} denotes the basepoint of the loop in spherical polar coordinates, 𝑟𝑟 is the loop’s 
radius, and 𝑠𝑠 ∈ [0,1] parameterizes the position along the loop (i.e. 𝑠𝑠 = 0 and 𝑠𝑠 = 1 both 
correspond to the loop’s basepoint).  

All three loops in Extended Data Fig. 1a have the same base point at (𝑑𝑑 = 2.5,𝜃𝜃 =
5𝜋𝜋
12

,𝜙𝜙 = − 𝜋𝜋
12

)𝑇𝑇, which is shown as the black cross. Loops from three distinct homotopy classes 
were realized by using 𝑟𝑟 = 0.4, 0.74, 1.2 for the green, red, and blue loop respectively.  

To display the eigenvalue braids produced by each of these loops (shown in Extended 
Data Figs. 1b-d), we find the three roots of 𝑝𝑝𝐇𝐇 for 101 values of 𝑠𝑠 ranging from 0 to 1. For each 
value of 𝑠𝑠, the three roots (which comprise the eigenspectrum 𝝀𝝀 of 𝐇𝐇) are plotted in the complex 
plane. Their evolution as a function of 𝑠𝑠 is shown in Extended Data Figs. 1b-d by stacking a copy 
of the complex plane for each value of 𝑠𝑠. The black crosses highlight 𝝀𝝀 at 𝑠𝑠 = 0 (the bottom of 
each plot), which by construction is identical to 𝝀𝝀 at 𝑠𝑠 = 1 (the top of each plot).  

 
§8.2 Producing Figs. 3c-h of the main paper 

The three control loops shown in Figs. 4c-h of the main text were assembled from data 
taken in two of the sixty-one 2D sheets. In Figs. 4c-e of the main paper, these loops are shown in 
the stereographic projection of the hypersurface 𝒮𝒮 (described in Methods) in order to highlight 
their relationship with the knot of EP2.  

In Extended Data Fig. 10, we show how these three loops lie within their 2D sheets. In 
Extended Data Fig. 10, each gray disc represents a value of 𝜳𝜳 at which 𝝀𝝀 is measured (i.e., a 
“pixel” in the 2D sheets of Video 5). The green, red, and blue rectangles show the control loops 
that are produced by selecting (respectively) 21, 59, and 123 of these pixels. For each of these 
loops, the discrete variable 𝜉𝜉 indexes the pixels along the loop (e.g., 1 ≤ 𝜉𝜉 ≤ 59 for the red 
loop). 

To compare the measured braids with theory, Extended Data Fig. 6 shows the same 
panels as in Fig. 4c-h of the main paper, but together with the 𝝀𝝀(𝜳𝜳) calculated using the best-fit 
parameters from the fit described in Methods (Extended Data Figs. 6g-i).  
 
§8.3 Coloring the braid strands 

Figures 3,4 of the main paper (as well as Extended Data Figs. 6,7) show experimentally 
measured braids. These are realized by stepping the parameters 𝜳𝜳 around the loops shown in 
Figs. 3c-e and 4a (and Extended Data Figs. 6a-c and 7a-c). At each value of 𝜳𝜳, the spectrum 𝝀𝝀 is 
determined from measurements as described in §4. The complete set of these measurements (i.e., 
at all of the values of 𝜳𝜳 around the loop) produces the data points shown in Figures 3f-h and 4b,c 
of the main paper (and in Extended Data Figs. 6d-f and 7d-f). 

However, coloring the individual strands (e.g., as light green, green, and dark green as in 
Fig. 3f) is potentially ambiguous. This is a consequence of the fact that 𝜳𝜳 is always stepped by a 
finite amount between measurements, while the components of 𝝀𝝀 at one value of 𝜳𝜳 are 
associated with specific components of 𝝀𝝀 at some other 𝜳𝜳 only via the fact that 𝝀𝝀 is a smooth 
function of 𝜳𝜳 (so long as 𝜳𝜳 is not an EP).ix 
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This means that if the steps in 𝜳𝜳 are sufficiently fine (and if the measurements of 𝝀𝝀 have 
little noise), then the braid strands’ identities will be evident from step to step. But if 𝜳𝜳 is 
stepped too coarsely (or if the measurements of 𝝀𝝀 are very noisy), then it will not be evident how 
to identify the strands from step to step.  

It can be seen from Figs. 3f-h and 4b,c (as well as from the rotating versions of these 
figures, Video 4) that the steps in 𝜳𝜳 are sufficiently fine (and the noise in 𝝀𝝀 sufficiently small) 
that it would be straightforward to connect the measurements of 𝝀𝝀 into three braids “by eye”. 
However, to avoid any potential ambiguity, we implemented this “coloring” of the strands using 
a simple algorithm. Specifically, with each increment of 𝜉𝜉 (which indexes the position along the 
control loop) i.e., from 𝜉𝜉 to 𝜉𝜉 + 1, each component of 𝝀𝝀(𝜉𝜉 + 1) is associated with a component 
of 𝝀𝝀(𝜉𝜉) such that the sum of the distances 

 

𝑄𝑄 = � |𝜆𝜆𝒎𝒎(𝜉𝜉 + 1) − 𝜆𝜆𝒎𝒎(𝜉𝜉)|2
𝟑𝟑

𝒎𝒎=𝟏𝟏

 

 
is minimized. More precisely, 𝑄𝑄 is minimized over the six possible choices for identifying the 
components of 𝝀𝝀(𝜉𝜉 + 1) with those of 𝝀𝝀(𝜉𝜉). Repeating this process for every value of 𝜉𝜉, the 
braids are tracked and colored as depicted in Figs. 3,4 of the main text and in Extended Data 
Figs. 6,7. 
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§9. Videos 
 
Video 1: Laying out the hypersurface 𝓢𝓢 in terms of the experimental parameters. 
The surface of a 4D hyperrectangle is a union of eight 3D hyperrectangles. These 3D 
hyperrectangles are connected to each other via their common 2D faces. As described in 
Methods, the “rectilinear stereographic” projection (used in Fig. 3b of the main paper) 
“glues” those common 2D faces together in a way that is isomorphic to the standard 
stereographic projection. This video illustrates the construction of the rectilinear 
stereographic projection from the eight 3D data sets. 

00:00 – 00:07 An arrangement of the eight 3D hyperrectangles is shown. Each 
hyperrectangle is labelled by its fixed control parameter (green text). The labelled arrows on the 
axes of each hyperrectangle indicate the remaining three control parameters which vary within 
their bounds, i.e.: −10 kHz ≤ 𝛿𝛿/2𝜋𝜋 ≤ 106 kHz, 22 μW ≤ 𝑃𝑃1 ≤ 240 μW, 289 μW ≤ 𝑃𝑃2 ≤
675 μW, 78 μW ≤ 𝑃𝑃3 ≤ 702 μW.  

00:07 – 00:15 Some pairs of common 2D faces are chosen and highlighted in different 
colors.  

00:16 – 00:18 The highlighted faces are glued together by translating them towards the 
𝑃𝑃1 = 22 μW hyperrectangle.  

00:18 – 00:24 The remaining hyperrectangles are glued on their common 2D faces. Then 
the six nearest neighbors of the 𝑃𝑃1 = 22 μW hyperrectangle are subject to a bilinear 
transformation that stretches them transverse to their 𝑃𝑃1 axis. The eighth and final hyperrectangle 
(𝑃𝑃1 = 240 μW) is turned inside-out and its contents are stretched over the region exterior to the 
rest of the face (i.e., extending to infinity). The wireframe figure at 00:24 is the end result of the 
rectilinear stereographic projection.  

 
Video 2: Visualizing the EP2 knot in the rectilinear stereographic projection. This video 
shows how the measured EP2 locations (and the best-fit knot) appear in each of the eight 3D 
faces of the hypersurface 𝒮𝒮. It also shows the smooth transformation of these faces (along with 
the data & fit) into the rectilinear stereographic projection of Fig. 3b from the main text. 

00:00 – 00:05 The eight 3D faces of 𝒮𝒮 are shown. They are arranged to form a “net” of the 
hypersurface 𝒮𝒮. Also shown are the measured EP2 locations (colored circles) and the best-fit knot 
(solid curve) from Figs. 3a,b of the main text. For each 3D face, the green text indicates the 
control parameter that is held constant.  

00:05 – 00:16 The net is rotated to give a complete view. Note that the two 3D faces in 
which 𝑃𝑃1 is held constant do not contain any EP2 locations (in either the data or the fit). 

00:16 – 00:26 The eight 3D faces, along with the data and fit inside them, are continuously 
deformed to realize the rectilinear stereographic projection. Note that the two empty 3D faces 
(i.e., the ones with constant 𝑃𝑃1) are mapped to the innermost cube and to the region outside the 
frame. Thus, all of the EP2 locations (in both the data and the fit) lie in the six hexahedrons that 
surround the central cube. 
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00:26 – 00:37 The rectilinear stereographic projection is rotated to give a complete view. 
00:37 – 00:40 The axis labels are added. 

 

Video 3: This video is simply a rotating version of Figs. 3a,b from the main text. 
 

Video 4: This video is simply a rotating version of Figs. 3c-h from the main text. 
 

Video 5: The sixty-one 2D data sheets used to locate the 𝜳𝜳𝐄𝐄𝐄𝐄𝐄𝐄 in the hypersurface 𝓢𝓢. Each 
panel shows the complex-valued quantities D and E measured on a 2D sheet in 𝒮𝒮. From left to 
right, the columns show Abs(𝐷𝐷), Arg(𝐷𝐷), Abs(𝐸𝐸), and Arg(𝐸𝐸). In each sheet, two of the control 
parameters are held fixed (these fixed values are given in the upper right corner). The other two 
control parameters are scanned, and form the horizontal and vertical axes of the 12 panels. The 
top row shows the raw data. The middle row shows the data after outlier rejection and 
convolution with a Gaussian (described in §7). The cyan circles are the 𝜳𝜳EP2, which are 
identified algorithmically (also described in §7). The bottom row shows D and E as calculated 
from optomechanics theory. The cyan squares are the 𝜳𝜳EP2 determined from this calculation. In 
addition, each panel includes two views of the 𝜳𝜳EP2 data and best-fit knot (as in Fig. 3a,b of the 
main text) in which the specific 𝜳𝜳EP2 found in that panel are shown in red. 
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§10. Table  
 
                  Parameter 1  
 
Sheet 

𝛿𝛿/2𝜋𝜋 (kHz) 
↓ 

𝑃𝑃1 (μW) 
↓ 

𝑃𝑃2 (μW) 
↓ 

𝑃𝑃3 (μW) 
↓ 

Parameter 1 ×  𝛿𝛿  -- 134 431 293 
Parameter 1 ×  𝑃𝑃1  47.8 -- 429 321 
Parameter 1 ×  𝑃𝑃2 52.5 122 -- 299 
Parameter 1 ×  𝑃𝑃3  61.9 124 425 -- 
     
Mean 54.1 128 428 304 
Std. Dev. 7.2 8 3 15 
 
 
Table 1 
Location of the minimum in 𝑑𝑑 for each of the six 2D sheets shown in Extended Data Figs. 2,3. 
See Methods. 
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