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In cavity optomechanics, single-photon detection of Raman scattered photons can be a useful tool for
observing nonclassical features of both radiation and motion. While this tool has been employed in experiments
with pulsed laser driving of a cavity mode, it has not been readily accessible to experiments with continuous
and constant laser driving. To address this, we present a study of a standard optomechanical system where
the cavity mode is continuously driven at two different frequencies and where sideband photons are detected
by single-photon detectors after frequency filtering the output from the cavity mode around its resonance
frequency. We first derive the normalized second-order coherence associated with the detected photons and
show that it contains signatures of the quantum nature of the mechanical mode which would be absent with
only single-tone driving. To identify model-independent nonclassical features, we derive two inequalities for
the sideband photon statistics that should be valid in any classical model of the system. We show that these
inequalities are violated in the proposed setup. This is provided that the average phonon occupation number
of the mechanical mode is sufficiently small, which in principle can be achieved through sideband cooling
intrinsic to the setup. Violation of the first inequality means that there is no well-defined probability distribution
of the Glauber-Sudarshan type for the cavity mode. In contrast, a violation of the second inequality means that
there is no joint probability distribution for the cavity mode at two times separated by a finite interval, which
originates from the noncommutativity of the motional quadratures of the mechanical mode. The proposed setup
thus employs a mechanical oscillator in order to generate a steady-state source of nonclassical radiation.
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I. INTRODUCTION

The coupling of macroscopic mechanical resonators to
optical or microwave cavity fields has become a useful exper-
imental platform for testing quantum mechanics of composite
degrees of freedom with large masses. The minute radiation
pressure interaction can be amplified by coherently driving
a cavity mode at sufficiently large power, leading to an ef-
fectively linear interdependence between motional degrees of
freedom and the cavity mode’s field fluctuations. The dy-
namics of such systems can only generate Gaussian states,
which severely limits the possibility of distinguishing quan-
tum and classical behavior. Nevertheless, strong experimental
evidence of the quantum nature of various macroscopic me-
chanical systems has been produced in the past decade,
including demonstrations of zero-point motion [1–6] and
quantum entanglement [7–10].

A useful tool in going beyond linear dynamics in cavity op-
tomechanics is to take advantage of projective measurements.
Detecting individual photons in the mechanically induced
sidebands of the coherent drive, i.e., so-called Stokes or
anti-Stokes photons or Raman photons, can give access to
non-Gaussian states due to the measurement’s backaction on
the system. This technique requires frequency filtering of the
cavity output in order to remove the large number of photons
at the carrier frequency. This has been achieved with mechan-

ical modes of microresonators having resonance frequencies
in the gigahertz regime [11–13], with an acoustic mode of
helium with frequency around 300 MHz [14], and recently
even with flexural dielectric membrane modes in the mega-
hertz regime [15].

Detection of individual sideband photons has been em-
ployed to demonstrate nonclassical phonon statistics with
photonic crystal nanobeams [12,16], where pulsed coherent
driving at two different frequencies was used in order to
sequentially detect both up- and down-converted sideband
photons at the same optical detection frequency. The same
technique has also been used to generate and verify en-
tanglement between motional modes of remote mechanical
nanobeams [17], similarly to earlier experiments on optical
phonons in diamond [18].

In the simplest case of continuous constant driving of the
cavity mode with a single drive tone, the sideband photon
statistics of the upper and lower sidebands measured sepa-
rately are those of thermal radiation [19]. Furthermore, the
normalized coherences have no dependence on the average
phonon occupation number of the mechanical mode. Thus,
with only one detection frequency, the photon statistics do not
reveal any nonclassical features. However, if both sideband
frequencies can be accessed individually and their cross cor-
relation can be measured, a violation of classical statistics can
in principle be observed also with continuous driving [19].
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In this article we consider a standard optomechanical sys-
tem where the cavity mode is continuously and coherently
driven at two separate frequencies, one red and one blue de-
tuned from the cavity resonance by the mechanical resonance
frequency. Both drives will produce sideband photons close
to cavity resonance, which we assume can be detected by
filtering the output of the cavity mode around its resonance
frequency.

We first show that the normalized second-order coherence
contains features that can be traced back to the quantum
nature of the mechanical mode and its average phonon oc-
cupation number nm. Next we investigate if the system can
display genuine measures of nonclassicality which cannot
be explained by inaccuracies or insufficiencies in our model
of the optomechanical system. We show that the observable
photon statistics can indeed violate two separate classical in-
equalities, involving both second- and third-order coherences,
for sufficiently small average phonon occupancies nm and for
particular choices of drive strength ratios.

The violation of the first inequality we study signifies
that there can be no well-defined probability distribution of
the Glauber-Sudarshan type that describes the state of the
(displaced) cavity mode [20]. We will show that this vio-
lation can be interpreted as antibunching conditioned on a
detected photon, which can occur as the sideband photons
have a tendency to be emitted in well-separated pairs in the
low-temperature regime. This is reminiscent of emission of
multiphoton (or multiphonon) bundles in cavity quantum elec-
trodynamics [21–23], but differs in that the emission of pairs
in the system we study is not reliant on a system anharmonic-
ity.

In cases where the system violates the second inequality,
which can be derived from the generalized nonclassicality
criterion in Ref. [24], one may conclude that there is no
well-defined joint probability distribution for the state of the
cavity mode at two different times. We will argue that this
can be traced back to the noncommutativity of the motional
quadratures of the mechanical mode or, equivalently, that
measurement of one motional quadrature will always disturb
the orthogonal quadrature according to quantum mechanics.

This study thus provides a technically simpler method for
observing nonclassicality in optomechanical systems com-
pared to previous schemes. While pulsed driving has so far
been a necessity in experiments on picogram mechanical ob-
jects due to absorption heating [12,16,17], continuous driving
can be possible with more massive devices, such as confined
volumes of helium [14] or dielectric membranes [15]. In addi-
tion, the setup we propose generates a steady-state source of
nonclassicality, which could potentially serve as a resource in
quantum-enhanced sensing schemes.

This article is organized as follows. In Sec. II we introduce
the proposed experimental setup and define the model used to
describe it. In Sec. III we study the filtered sideband photon
statistics resulting from this setup when assuming a thermal
mechanical state. In Sec. IV we present classical inequali-
ties for photon statistics measurements and investigate under
which circumstances these inequalities are violated. The as-
sumption of a thermal state is finally justified by the analysis
of the dynamics of the mechanical oscillator in Sec. V, where
we also discuss how sideband cooling intrinsic to the proposed

setup can help reach the regime where the classical inequali-
ties are violated. We conclude in Sec. VI.

II. SETUP AND MODEL

We consider a standard optomechanical system in which
the resonance frequency of an optical cavity mode depends
linearly on the displacement of a mechanical mode. This
interaction is described by the radiation pressure interaction
Ĥint = h̄g0x̂â†â, where â is the photon annihilation operator,
x̂ is the mechanical displacement operator in units of its zero-
point motion, and g0 is the shift in the cavity mode’s angular
resonance frequency caused by a displacement equal to the
zero-point motion.

The cavity mode has an angular resonance frequency ωc

and is driven by two lasers at frequencies ωr = ωc + �c −
(ω̃m − δ) and ωb = ωc + �c + (ω̃m − δ). Here ω̃m is the ef-
fective mechanical resonance frequency, to be defined below.
We note that the two drives are centered around the frequency
ωav = ωc + �c and red or blue detuned from this frequency
by ω̃m − δ. We will assume δ > 0 from now on, but we
note that its sign is not of importance. The optomechanical
interaction will lead to Raman scattering, creating sidebands
at frequencies ±ω̃m away from the two drive tones.

We consider the situation |�c|, δ � κ, ω̃m, where κ is the
cavity energy decay rate such that the upper sideband of the
red-detuned drive and the lower sideband of the blue-detuned
drive fall well within the cavity linewidth and close to the
cavity resonance frequency. At the same time, we will assume
that the effective mechanical linewidth γ̃ fulfills γ̃ � δ such
that these two sidebands are well separated by a frequency
2δ. This is illustrated in Fig. 1(a). We note that the parameter
hierarchy we propose is suitable for a variety of experimental
realizations of cavity optomechanics, since the cavity decay
rate κ typically exceeds the intrinsic mechanical decay rate γ

by several orders of magnitude.
The precise value of the sideband splitting 2δ will not be

important for the experiment we propose. This setup is thus
different from and experimentally simpler than the special
case δ = 0 in which the two sidebands overlap and interfere.
The latter has been considered and implemented in the con-
texts of backaction-free quadrature measurements [25–29],
dissipative mechanical squeezing [30–33], and two-tone op-
tomechanical instabilities [34]. We comment on this special
case in Appendix B 5.

We go to a frame rotating at the average of the two
drive frequencies ωav and to a frame rotating at the effective
mechanical resonance frequency ω̃m = ωm + �m for the me-
chanical mode. Here we define �m as the difference between
the effective and the bare mechanical resonance frequency ωm.
In terms of annihilation operators â (b̂) for photons (phonons),
the Hamiltonian then becomes

H (t ) = − h̄�câ†â − h̄�mb̂†b̂

+ h̄eiδt
(
Grâ + Gbâ†

)(
e−2iω̃mt b̂ + b̂†

)
+ h̄e−iδt

(
Grâ† + Gbâ

)(
b̂ + e2iω̃mt b̂†

)
, (1)

where the coherent driving has been taken into account by
displacing the cavity mode operator â at the two drive fre-
quencies. The coupling rates Gr and Gb are proportional to
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FIG. 1. (a) Overview of the frequencies in the proposed setup.
The black (dotted) Lorentzian is the cavity response with linewidth
κ . The two drive frequencies are shown by arrows and the four
mechanical sidebands are indicated as narrow Lorentzians (of width
γ̃ ) displaced by ±ω̃m from the drive frequencies. (b) Schematic
overview of the measurement setup. The output from the optome-
chanical system is sent through a set of filter cavities, in order
to access only the two sidebands close to the cavity resonance
frequency. After passing through a beam splitter (BS), the photon
statistics of the filtered output are then measured with single-photon
detectors (SPD).

the square root of the powers of the red and blue drives,
respectively, and we can assume they are real and positive
without loss of generality. We have also neglected the intrin-
sic nonlinearity of the optomechanical interaction, assuming
the experimentally relevant limit g0 � κ . Finally, we have
ignored any possible effect on the mechanical mode from
the intensity beat note at 2(ω̃m − δ), since this frequency is
far from any multiple of the mechanical resonance frequency
ω̃m. In particular, this setup with δ �= 0 conveniently avoids
potential parametric instabilities due to an intensity beat note
at 2ω̃m, which has been encountered in similar experiments
with δ = 0 [27,35].

In order to include dissipation, we use input-output the-
ory to find quantum Langevin equations for the annihilation
operators â and b̂ in the standard way [36]. In the adiabatic
limit γ̃ � κ , we may write an implicit solution for the photon
annihilation operator as

â(t ) = ζ̂ (t ) + âi(t ) + âo(t ), (2)

where ζ̂ represents the Gaussian cavity vacuum noise due to
coupling to a bath, obeying

〈ζ̂ (t )ζ̂ †(t ′)〉 = e−κ|t−t ′ |/2+i�c (t−t ′ ) (3)

and 〈ζ̂ †(t )ζ̂ (t ′)〉 = 〈ζ̂ (t )ζ̂ (t ′)〉 = 0 in the Markov approxi-
mation. We have also assumed h̄ωc � kBT , i.e., we neglect
thermal occupation of the environmental modes coupling to
the cavity mode. The second term in Eq. (2) describes the
upper sideband from the red-detuned drive and the lower
sideband from the blue-detuned drive, i.e., the innermost side-

(a) (b) (c)

FIG. 2. Illustration of processes that emit sideband photons close
to the cavity resonance frequency. (a) A phonon is created by
emission of a down-converted photon from the blue-detuned drive
at frequency ωav − δ. (b) A phonon is annihilated by emission of
an up-converted photon from the red-detuned drive at frequency
ωav + δ. (c) A virtual phonon is created and immediately annihilated,
resulting in the emission of two photons, one up-converted and one
down-converted, at the same frequency ωav. A process with the
opposite order of phonon creation and annihilation is also possible.

bands close to cavity resonance [see Figs. 1(a), 2(a), and 2(b)],

âi(t ) = −ie−iδt Grχc(δ)b̂(t ) − ieiδt Gbχc(−δ)b̂†(t ), (4)

where we have defined the cavity susceptibility

χc(ω) = 1

κ/2 − i(ω + �c)
. (5)

Finally, when defining 	 = 2ω̃m − δ, we have

âo(t ) = −ie−i	t Gbχc(	)b̂(t ) − iei	t Grχc(−	)b̂†(t ), (6)

which describes the outermost sidebands, i.e., the lower side-
band of the red-detuned drive and the upper sideband of the
blue-detuned drive [see Fig. 1(a)].

In Sec. V we will discuss the dynamics of the mechanical
mode and argue that, to a very good approximation, it is in a
thermal steady state. The state is characterized by an average
phonon occupation number nm and we will denote the effec-
tive mechanical energy decay rate by γ̃ . For the time being, we
treat these as independent parameters and show later how they
depend on the various parameters of our model. This means
that all correlation functions describing the mechanical mode
can be expressed in terms of the second-order correlation
functions

〈b̂†(t + τ )b̂(t )〉 = nme−γ̃ τ/2, (7)

〈b̂(t + τ )b̂†(t )〉 = (nm + 1)e−γ̃ τ/2, (8)

where τ � 0. The additional +1 in (8) originates from the
boson commutation relations, indicating the quantum nature
of the mechanical oscillator.

III. SECOND-ORDER COHERENCE
OF SIDEBAND PHOTONS

We will now consider the photon statistics of the two
center (or innermost) sidebands combined. In practice, this
can be measured by frequency filtering the cavity output
around the cavity resonance frequency with a filter bandwidth
B satisfying δ � B � ω̃m, before the sidebands are sent to
single-photon detectors. This is schematically illustrated in
Fig. 1(b).

A central assumption in the following will be that the
photodetectors destroy all information about the frequency of
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a detected photon. This means that as long as the mechan-
ical mode is not interrogated, there is no way of knowing
whether a detected photon was down-converted from the blue-
detuned drive or up-converted from the red-detuned drive, i.e.,
a quantum superposition of a phonon creation and a phonon
annihilation will occur.

We note that such interference between up- and down-
converted photons is what leads to a squeezed mechanical
state in the case of δ = 0 [30]. For δ �= 0, however, the av-
erage mechanical state stays thermal, since the squeezing
angle rotates with frequency δ such that the effect of this
interference averages out. This justifies why we have assumed
a mechanical steady state that is invariant under time transla-
tion.

We start by considering the normalized second-order co-
herence for the filtered cavity mode, which we can express
as

g(2)(t, t + τ ) = 〈â†
f (t )â†

f (t + τ )â f (t + τ )â f (t )〉
〈â†

f (t )â f (t )〉〈â†
f (t + τ )â f (t + τ )〉 (9)

when defining

â f (t ) = ζ̂ f (t ) + âi(t ), (10)

with ζ̂ f (t ) the filtered cavity vacuum noise. The latter is de-
fined in Appendix A, where further details on the filtering can
be found.

For simplicity, we will now consider the limits
δ/κ, |�c|/κ → 0, which means that we will be ignoring
that the cavity susceptibility is slightly different for the
two innermost sidebands. We also take the limit γ̃ /δ → 0,
which neglects any overlap between the two sidebands. We
will study corrections to our results beyond these limits in
Appendix B. The corrections turn out to be of first order in
γ̃ /δ, but only of second order in δ/κ, |�c|/κ .

The optomechanical interaction results in the cavity vac-
uum noise ζ̂ becoming correlated with the mechanical mode,
i.e., 〈ζ̂ (t + τ )b̂(†)(t )〉 �= 0. This means there are nonzero terms
in the numerator of g(2)(t, t + τ ) where ζ̂ f (t + τ ) explicitly
enters. These terms represent off-resonant virtual phonon pro-
cesses where two photons, one upshifted and one downshifted,
are created simultaneously and emitted at the frequency ωav

within a time interval of order 1/κ , as illustrated in Fig. 2(c).
However, it turns out (see Appendix B) that these terms only
give corrections of order δ2/κ2 or δ|�c|/κ2 to the result one
finds by replacing â f with âi in Eq. (9). Thus, we will neglect
these terms in the limit we consider now.

Given these simplifications, we may now write an expres-
sion for the normalized second-order coherence. Recognizing
that it is independent of absolute time t for a thermal mechani-
cal state and thus simplifying the notation by g(2)(t, t + τ ) →
g(2)(τ ), we find

g(2)(τ ) = 1

+ e−γ̃ τ

(
1 + 4β[1/4 + nm(nm + 1) cos(2δτ )]

[nm + β(nm + 1)]2

)
(11)

FIG. 3. Normalized second-order coherence g(2)(τ ) as a function
of time delay τ in the case of β = 1 and with γ̃ /δ = 0.05.

when we define the squared ratio between the optomechanical
coupling constants as

β =
(

Gb

Gr

)2

. (12)

We note that the expression (11) is not well defined if both
nm and β are zero. This is reasonable since if that were the
case, there would be no sideband photons to detect. A phonon
occupation number nm that is strictly zero is also unphysical
when taking the off-resonant sidebands into account, as will
be evident in Sec. V.

Let us first note that if we consider the case of only a
single drive tone, i.e., Gb = 0 (β = 0) or Gr = 0 (β → ∞),
we get g(2)(τ ) = 1 + e−γ̃ τ . This is characteristic of (classical)
thermal radiation and there is no dependence on the phonon
occupation number nm [19].

For other values of the ratio β, however, the function
g(2)(τ ) oscillates with a period of π/δ and with a time-
decaying amplitude e−γ̃ τ A with initial size

A = 4βnm(nm + 1)

[nm + β(nm + 1)]2
. (13)

In Fig. 3 we plot the normalized second-order coherence
function in Eq. (11) for the special case of β = 1, i.e., equal
strengths for the two drives, and for different values of the
phonon occupation number nm. In the classical limit of large
nm, we can interpret these oscillations as interference between
classically correlated sidebands. In a quantum interpretation,
we can think of the oscillations as interference between a
process where a phonon is first created and subsequently
destroyed and the opposite process. This is illustrated in
Fig. 4(a). We also note that the oscillations disappear in the
limit nm → 0. The oscillator is then most likely in the ground
state before the first photon is detected, which means there
are no two-step paths in the phonon Fock state ladder that can
interfere.

To explore a wider range of the drive strength ratio β,
we plot the normalized second-order coherence function in
Eq. (11) at zero time delay g(2)(0) and the amplitude A as
a function of the ratio β for different values of the phonon
occupation number nm in Fig. 5. We observe that g(2)(0) = 2
for β = 0 and g(2)(0) = 3 for β = 1 irrespective of the value
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FIG. 4. Illustration of phonon creation and annihilation pro-
cesses associated, respectively, with emission of down-converted
photons from the blue-detuned drive and up-converted photons from
the red-detuned drive at times t1, t2, and t3. (a) In general, there
can be interference between two paths in the Fock state ladder,
corresponding to different time orderings of one up-converted and
one down-converted photon. Here we imagine starting from the nth
Fock state. In reality, the oscillator is initially in a thermal state, i.e., a
mixed state of different phonon numbers. (b) When starting from the
phonon ground state, there are interfering paths in the phonon Fock
state ladder for three detected sideband photons, but not for only two
detected photons.

of nm. The former is consistent with thermal radiation, as
mentioned above. The latter can be understood by realizing
that for β = 1, the filtered cavity mode only couples to a
single quadrature of the mechanical oscillator [25,26] at a
time, i.e., we can then write âi(t ) ∝ X̂δt (t ), where

X̂δt (t ) = 1√
2

[e−iδ(t−t0 )b̂(t ) + eiδ(t−t0 )b̂†(t )] (14)

and δt0 is the complex phase of
√

χ∗
c (−δ)χc(δ). This gives

g(2)(0) = 〈X̂ 4
0 (0)〉/〈X̂ 2

0 (0)〉2 = (4 − 1)!! = 3 for any Gaus-
sian quadrature probability distribution by using Isserlis’s
theorem.

Figure 5 also shows that g(2)(0) can become very large in
the limits nm � 1 and β � 1, i.e., when the probability of

(a)

(b)

FIG. 5. (a) Normalized second-order coherence g(2)(0) at zero
time delay as a function of β. (b) Initial oscillation amplitude A as a
function of β.

the mechanical oscillator being in the ground state is close to
unity. A detected photon is then most likely a down-converted
photon from the blue-detuned drive that excites the oscillator
from the ground state to the first excited state. These pro-
cesses happen at a rate of order G2

b/κ , although the rate of
detected photons will of course also depend on the detection
efficiency. Conditioning on one such photon detection gives
a large increase in the probability of an immediate second
photon detection and thus a large g(2)(0) [19]. The reason is
that an up-converted photon from the red-detuned drive can
then return the oscillator to the ground state, which is more
likely than further exciting the oscillator since Gr � Gb.

In other words, in the limits nm � 1 and β � 1, the de-
tected photons tend to come in well-separated pairs, with
a pair consisting of one down-converted followed by one
up-converted photon. More precisely, the ratio between the
timescale between two photons in a pair and the timescale be-
tween two pairs is β � 1. We note that despite this tendency
of well-separated pairs of photons, not all photons necessarily
come in pairs since the oscillator can both be excited and de-
excited through its coupling to other degrees of freedom, i.e.,
its environment. However, the normalization of g(2) ensures
that it nevertheless captures this tendency.

Let us now return to the special case β = 1, where the
filtered output field is proportional to the mechanical quadra-
ture X̂δt at time t . This means that at two different times t
and t ′ separated by t ′ − t = π/2δ, the cavity is susceptible
to orthogonal quadratures X̂δt and X̂δt+π/2. For a mechanical
steady state that is Gaussian and rotationally invariant in phase
space, any deviation of g(2)(π/2δ) from unity can then be
traced back to a nonzero commutator [X̂δt (t ), X̂δt+π/2(t ′)] ≈ i
between orthogonal quadratures. The physical interpretation
of this is that of quantum measurement backaction. Detection
of a photon at time t translates to a measurement of the me-
chanical oscillator along a particular direction in phase space,
which disturbs the orthogonal quadrature.

We also note that the phonon occupation number nm is
accessible from measurements of g(2)(τ ), since

g(2)(0) − 2

1 + e−πγ̃ /2δ − g(2)(π/2δ)
= (nm + 1/2)2

(nm + 1/2)2 − 1/2
, (15)

which is independent of β. In the limit γ̃ /δ → 0, the parame-
ter δ can be determined from the positions along the time axis
of the local minima of g(2)(τ ), whereas γ̃ can be determined
from the decay envelopes.

IV. MODEL-INDEPENDENT NONCLASSICALITY

Although the second-order coherence g(2)(τ ) in Eq. (11)
contains features that stem from the quantum nature of the
mechanical oscillator, it was derived under the assumptions
of a thermal mechanical state (i.e., perfectly Gaussian and
rotationally symmetric in phase space) and the absence of
technical laser noise. A pertinent question is thus whether
this system can produce photocurrent statistics that cannot be
explained by any classical model.
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To explore genuine nonclassical features, we now define
the normalized third-order coherence

g(3)(t, t, t + τ ) = 〈â† 2
f (t )â†

f (t + τ )â f (t + τ )â2
f (t )〉

〈â†
f (t )â f (t )〉2〈â†

f (t + τ )â f (t + τ )〉 , (16)

where the numerator is proportional to the probability rate of
detecting two photons at the same time t followed by one
photon at time t + τ . As with the second-order coherence,
we will again simplify the calculation by replacing â f with
âi in (16). In Appendix B we show that the terms neglected in
general give corrections to g(3) of first order in δ/κ . However,
for the particular delay times τ that we will consider below,
one can show that the corrections are in fact only of second
order in δ/κ .

For a thermal mechanical state, g(3)(t, t, t + τ ) will also
feature oscillations with delay time τ of period π/δ, and thus
local minima at odd multiples of π/2δ, due to destructive
interference. While it is straightforward to calculate the full
expression for g(3)(t, t, t + τ ) → g(3)(τ ) (see Appendix B 4),
we will focus on the two special cases τ = 0, which gives

g(3)(0) = 9g(2)(0) − 12 (17)

for any Gaussian state, and τ = π/2δ, i.e., at the first local
minimum, where

g(3)

(
π

2δ

)
= 6 + β

[nm + β(nm + 1)]2
(18)

×
[

8 − 3(2nm + 1)2 + 4(2nm + 1)
nm − β(nm + 1)

nm + β(nm + 1)

]

for a thermal state and in the limit γ̃ /δ → 0.
We now define the quantity

K (t, t + τ ) = g(3)(t, t, t + τ )

[g(2)(t, t + τ )]2
. (19)

For a thermal mechanical state, K (t, t + τ ) → K (τ ) is also
independent of the absolute time t , but we emphasize that
the nonclassicality criteria presented below are valid in the
general case and do not rely on any assumptions about the
nature of the optomechanical system.

In a state where the filtered cavity mode â f can be repre-
sented by a positive-definite Glauber-Sudarshan distribution
P(α) of the coherent complex cavity amplitude α, one can
show [20] that

K (t, t ) � 1. (20)

We can, for example, think of P(α) as describing the state
of a filter cavity whose input is the output from the optome-
chanical cavity in a cascaded setup [37,38] (see Appendix A).
According to (17), this classicality criterion (20) is violated
for a Gaussian state if g(2)(0) > (9 + √

33)/2 = 7.37, which
can occur in the system we have considered for sufficiently
small nm and β. In Fig. 6 we show the parameter region (black
color) where (20) is violated. We observe that it requires a
phonon occupation number nm � 0.054 when choosing an
optimal drive ratio β = 0.05.

The violation of (20) reflects that the cavity mode is in
a squeezed state with an average photon occupation number
much smaller than unity. As discussed above, this means that

FIG. 6. The black area shows the region of parameter space
where both inequalities (20) and (21) are violated. The dark gray
area shows the region of parameter space where the inequality (21)
is violated.

photons tend to come in pairs (one down-converted followed
by one up-converted), but that there is little overlap in time
between the different pairs. Thus, conditioned on having de-
tected one photon, the probability of immediately detecting
two more photons is relatively small. In fact, we may write
K (t, t ) = g(2)

c (t, t ), where the subscript c indicates that it is the
normalized second-order coherence in the state conditioned
on one photon detection. This means that we can regard the
violation of (20) as conditional antibunching.

To see this in a different way, let us imagine that the me-
chanical mode is initially in the ground state. The first photon
detection will then produce a single-phonon Fock state. For
β � 1, âi(t ) is approximately proportional to b̂(t ) such that
the filtered photon statistics is almost the same as the phonon
statistics, which will feature antibunching for a single-phonon
Fock state.

We note that (20) cannot be violated in the special case
β = 1. This is as expected, since K (t, t ) can in that case be ex-
pressed in terms of single-time expectation values of only one
mechanical quadrature, for which there exists a well-defined
Gaussian probability distribution.

For finite time delay τ , we can also derive an inequality
that must be satisfied by a mode that has a well-defined joint
probability distribution P(α1, α2) [24,39] of coherent complex
amplitudes α1 and α2 at times t and t + τ , respectively. The
inequality

K (t, t + τ ) � 1 (21)

can be derived directly from the Cauchy-Bunyakovsky-
Schwarz inequality or from the generalized multimode
classicality criterion derived in Ref. [24]. In the system we
have considered and for time delay τ = π/2δ, the inequality
(21) is violated in a larger region of parameter space than
the equal-time inequality (20), as shown in Fig. 6 (dark gray
color). In this case, nonclassicality can be observed for nm �
0.12 at an optimal β = 0.53. We also note that measurement
of K (π/2δ) only requires two-photon coincidence detection,
unlike K (0), which requires three-photon coincidence mea-
surements.
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FIG. 7. Quantity K (π/2δ) as a function of average phonon oc-
cupation number nm. We observe that the inequality (21) is clearly
violated for sufficiently small nm. The optimal choice of drive
strength ratio in order to observe violation of (21) is β = 0.53.

In Fig. 7 we plot K (π/2δ) as a function of the phonon
occupation number nm for different values of the drive ratio
β. We observe that the inequality (21) is clearly violated for
sufficiently small occupation numbers, which means that it
should be observable if this parameter regime can be accessed.
One would then be able to conclude that there can be no joint
probability distribution for the cavity field for times separated
by π/2δ, even in cases where all single-time cavity expecta-
tion values can be calculated from a well-defined probability
distribution, e.g., for β = 1.

The violation of the inequality (21) can be understood from
the fact that starting from the oscillator ground state, the three-
photon detection amplitude can be reduced due to destructive
interference for an appropriate delay time, whereas the two-
photon amplitude cannot. This is illustrated in Fig. 4(b). This
figure also helps motivate why we only consider two distinct
detection times, and not three, in the definition of the third-
order coherence (16). In the regime where quantum effects are
significant, the mechanical oscillator is with high probability
in Fock state |1〉 after the first photon detection, such that a
nonzero time delay between the first and the second photon
does not lead to any interference effects, only mechanical
decay.

It is remarkable that the interaction with the mechanical
mode can give rise to these genuinely nonclassical effects,
since, when averaging over the environment and the measure-
ment record, the mechanical mode is in a thermal steady state
which can be characterized by quasiprobability distributions
that are always positive. The explanation is that the ordered
mechanical expectation values which appear in the nonclassi-
cality measure K (t, t + τ ) cannot be calculated from a single
such distribution without invoking the quantum commutation
relation between mechanical quadratures.

V. DYNAMICAL BACKACTION

The quantum signatures we have discussed are observable
in the limit of small average phonon occupation numbers nm.
They do not however depend on the absolute values of the
coupling rates Gr and Gb, only their ratio through β. One
possible way to observe these features is thus to cool a high-

frequency mechanical oscillator close to the quantum ground
state such that nth � 1, where

nth = 1

eh̄ωm/kBTeff − 1
(22)

is the thermal occupation number of the oscillator’s effec-
tive environmental bath with temperature Teff . In this case,
one could use small coupling rates Gr and Gb such that
the thermal mechanical state is essentially unperturbed, i.e.,
nm ≈ nth � 1. We do note, however, that the absolute values
of the coupling rates determine the photon flux arriving at the
detector such that there is a limit to how small they can be and
still provide adequate statistics, depending on the dark current
noise of the detectors.

The cooling to nth � 1 could be achieved by either con-
ventional refrigeration or additional laser cooling with a third
laser drive, or both. In fact, it would even be possible to use
the same cavity mode â for cooling with a third drive tone
(at a nonoptimal red-detuned frequency), provided neither the
cooling tone nor its sidebands make it through the frequency
filter.

Another possibility for reaching the regime nm � 1 is to
exploit sideband cooling intrinsic to the two-tone setup by
operating at small values of β, in which case up-conversion
from the red-detuned drive will cool the oscillator mode more
than down-conversion from the blue-detuned drive will heat
it. This requires that the system is in the resolved sideband
regime ωm > κ . We note that several of the experimental
setups where single sideband photon detection has been im-
plemented are indeed in this regime [11–14].

We will now take into account the mechanical oscillator
dynamics in order to investigate in which parameter regime,
i.e., for which values of Gr , β, and nth, the nonclassical fea-
tures discussed in Sec. IV can be observed.

Using the adiabatic solution (2) gives the following
Langevin equation for the phonon annihilation operator:

˙̂b = − γ̃

2
b̂ − μe2iδt b̂† + √

γ η̂

− ieiδt
(
Gr ζ̂ + Gbζ̂

†) − iei	t
(
Gbζ̂ + Gr ζ̂

†). (23)

In the limits δ/κ, |�c|/κ → 0, the effective mechanical
linewidth is

γ̃ = γ [1 + (1 − s)(Cr − Cb)], (24)

where γ is the intrinsic mechanical linewidth, we have defined

s = 1

1 + (4ωm/κ )2
, (25)

and we have introduced the optomechanical cooperativities

Cj = 4G2
j

κγ
, (26)

with j = r, b. The cooperativities are measures of how
strongly the mechanical and optical degrees of freedom in-
teract relative to their intrinsic decay rates. In order for the
linearized model to be valid, we must have that γ̃ > 0 to
avoid instability. For Cr,Cb � 1, this is always satisfied. For
Cr,Cb � 1, it is always satisfied for β � 1.
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The off-resonant term in Eq. (23) proportional to μ ∼
O(γCr

√
β�c/κ ) can safely be neglected in the limits

γ̃ /δ, |�c|/κ → 0 we consider (see also Appendix B 2). The
operator η̂ describes thermal and quantum noise from the
mechanical mode’s effective bath, which we assume to be
Gaussian and where

〈η̂(t )η̂†(t ′)〉 = (nth + 1)δ(t − t ′), (27)

〈η̂†(t )η̂(t ′)〉 = nthδ(t − t ′), (28)

and 〈η̂(t )η̂(t ′)〉 = 0.
Finally, to arrive at (23), we have chosen the mechanical

detuning �m to match a shift in the mechanical resonance fre-
quency due to the optomechanical interaction, i.e., the optical
spring effect. This choice can be viewed as simply the defini-
tion of ω̃m. Equivalently, it can be seen as a renormalization
of the sideband frequency splitting 2δ, which we in any case
choose freely. This reflects the fact that the precise value of
the mechanical frequency ωm is not important in the setup we
propose.

Solving Eq. (23), using the noise properties (3), (27), and
(28), and ignoring corrections of order γ̃ /ωm, we find that
Eqs. (7) and (8) are valid, with the average phonon occupation
number

nm = nth + Cb + sCr

1 + (1 − s)(Cr − Cb)
. (29)

The two last terms in the numerator of Eq. (29) represent
heating due to Raman scattering of photons from the two drive
frequencies to their lower sidebands or, equivalently, from ra-
diation pressure shot noise. We also find that the off-diagonal
mechanical correlation functions vanish in the limit γ̃ /δ → 0
(see Appendix B 3 for further details).

We now consider the limit of predominantly optical damp-
ing of the mechanical mode, i.e., Cr − Cb � 1, which means
β < 1, and the resolved-sideband limit ωm � κ , giving

nm = n(0)
m + β

1 − β
, (30)

with

n(0)
m = nth

Cr
+

(
κ

4ωm

)2

. (31)

The parameter n(0)
m is the average phonon occupation number

one would have for only red-detuned driving, i.e., if β = 0,
just as in standard optomechanical sideband cooling [40,41].
For sufficiently large cooperativity Cr , the first term can be
made arbitrarily small. The second term in Eq. (31) is the
usual limitation given by radiation pressure shot noise. We
note that sideband cooling of modes of macroscopic me-
chanical systems has reached values of n(0)

m well below unity
in a variety of experimental platforms, e.g., superconducting
circuits [42], suspended photonic crystals [43], and dielectric
membranes [5,6]. In Fig. 8 we again plot the regions where
the inequalities (20) and (21) are violated, but now with β

and n(0)
m (not nm) as the free parameters. The black region

is the parameter regime where both inequalities are violated,
the light gray region is where only the equal-time inequality
(20) is violated, and the dark gray region is where only (21) is
violated. We also plot K (π/2δ) as a function of n(0)

m in Fig. 9,

FIG. 8. The dark gray area shows the region of parameter space
where the inequality (21) is violated. The light gray area shows
the region of parameter space where the inequality (20) is violated.
The black area shows the region of parameter space where both
inequalities are violated.

which shows that a violation of (21) can be observable for a
sufficiently strong red-detuned drive and a system sufficiently
far in the resolved sideband regime.

VI. CONCLUSION

We have identified genuinely quantum features in the side-
band photon statistics of an optomechanical cavity that is
continuously driven. Compared to the standard optomechani-
cal system with frequency filtered cavity output, the proposed
setup is accessible simply by adding a second drive tone.
Therefore, our results should be relevant to a variety of dif-
ferent experimental platforms.

We note that to violate the model-independent classical in-
equalities we have studied requires cooling of the mechanical
mode to quite low occupation numbers, namely, nm � 0.12
when cooled by other means or n(0)

m � 0.02 when relying on
cooling intrinsic to the setup. However, the results presented
can be useful for observing agreement with quantum theory
also for higher occupation numbers, as long as one can verify
the accuracy of the model by additional checks.

FIG. 9. Quantity K (π/2δ) as a function of n(0)
m , i.e., the average

phonon occupation number if Gb were zero. The optimal choice of
drive strength ratio for observing violation of (21) is β = 0.014.
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APPENDIX A: DETAILS ON FILTERING

To model the effect of the frequency filtering, we imagine
a single filter cavity mode with photon annihilation operator ĉ
as shown schematically in Fig. 10. We assume that the modes
â and ĉ have equal resonance frequencies. The right-hand side
output field from the optomechanical cavity mode â is

âout,R(t ) = √
κRâ(t ) − âin,R(t ), (A1)

where κR is the contribution to the cavity linewidth coming
from the decay through the mirror on the right. The circulator
ensures that âin,R is independent of the output ĉout,L from the
filter cavity and thus only represents vacuum noise.

We also assume that the left-hand side input field to the fil-
ter cavity is ĉin,L(t ) = âout,R(t ), i.e., that the circulator realizes
a cascaded quantum system [37,38]. We ignore any time delay
due to the finite speed of light here, but this is not essential.
The input field on the right-hand side of the filter cavity, ĉin,R,
is simply vacuum noise.

We denote the filter cavity decay rate by B. In the Fourier
representation, standard input-output theory for the empty
filter cavity thus gives the right-hand side output field

ĉout,R[ω] = √
BLBRχ f (ω)(

√
κRâ[ω] − âin,R[ω])

+ [BRχ f (ω) − 1]ĉin,R[ω], (A2)

where BL (BR) is the contribution to the filter cavity decay rate
from its left (right) mirror and

χ f (ω) = 1

B/2 − i(ω + �c)
. (A3)

If we now assume δ � B � κ, ωm, we approximately find

ĉout,R[ω] = 2
√

BLBRκR

B

(
B

2
χ f (ω)ζ̂ [ω] + âi[ω]

)

+ [BRχ f (ω) − 1]ĉin,R[ω]

− √
BLBRχ f (ω)âin,R[ω]. (A4)

One should now note that the vacuum noise ĉin,R is uncor-
related with all other terms and therefore cannot contribute
to any normal-ordered correlation function involving the

FIG. 10. Schematic overview of the relationship between the
optomechanical cavity and the filter cavity or cavities.

output field ĉout,R(t ). In addition, although âin,R can be cor-
related with the optomechanical cavity mode operator (see
Appendix B 4), the explicit dependence on âin,R in Eq. (A4)
cannot contribute to a time-ordered correlation function in-
volving the output field ĉout,R(t ) since 〈âin,R(t + τ )â(t )〉 is
nonzero only for τ < 0 due to causality.

Thus, when defining the filtered cavity vacuum noise ζ̂ f (t )
through its Fourier transform

ζ̂ f [ω] = B

2
χ f (ω)ζ̂ [ω], (A5)

it is clear from Eq. (A4) that the photon statistics of the right-
hand side output field ĉout,R is the same as that calculated by
the operator â f defined in Eq. (10). We also point out that,
since ĉin,R is vacuum noise, the measured photon statistics is
the same as the photon statistics of the filter cavity mode ĉ
such that the Glauber-Sudarshan function P(α) referred to in
the text can be thought of as a representation of the state of
mode ĉ.

APPENDIX B: CORRECTIONS TO IDEAL LIMITS

1. Definitions

We start by defining the normalized cavity response

t (ω) =
(

κ

2

)2

|χc(ω)|2, (B1)

which measures how easy it is to put a photon in the cavity
mode at a particular frequency. We also define the effective
cooperativities

C̃r = t (δ)Cr, C̃b = t (−δ)Cb, (B2)

which adjusts for the fact that the sidebands are not necessar-
ily exactly at the cavity resonance frequency, as well as their
ratio

β̃ = C̃b

C̃r
= t (−δ)

t (δ)
β. (B3)

2. Mechanical linewidth and average phonon number

For nonzero δ/κ, |�c|/κ , the effective mechanical
linewidth becomes

γ̃ = γ {1 + [t (δ) − t (−	)]Cr − [t (−δ) − t (	)]Cb}, (B4)

whereas the average phonon occupation number is corrected
to

nm = nth + t (−δ)Cb + t (−	)Cr

1 + [t (δ) − t (−	)]Cr − [t (−δ) − t (	)]Cb
. (B5)

In the limit C̃r − C̃b � 1 and the resolved-sideband limit
ωm � κ , we then get

nm = n(0)
m + β̃

1 − β̃
, (B6)

with

n(0)
m = nth

C̃r
+ t (−	)

t (δ)
. (B7)

Let us briefly justify why we could neglect the term
proportional to μ in Eq. (23). This represents off-resonant
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two-phonon driving induced by the two drive tones sepa-
rated by 2(ω̃m − δ). To second order in δ/κ, |�c|/κ , we find
|Re μ| � |Im μ| and

Im μ = 2γ C̃r

√
β̃�c

κ
. (B8)

Second-order perturbation theory in μ would give resonant
corrections proportional to |μ|2/δ, which should be compared
to the effective linewidth:

|μ|2
γ̃ δ

≈
(

4Gb

κ

)2
�2

c

κδ

1

1/Cr + (1 − s)(1 − β )
. (B9)

In the weak-coupling limit Cr,Cb � 1, this is then clearly
negligible as long as �c/δ � 1. Conversely, in the limit
Cr � 1, the corrections are negligible as long as β is not too
close to 1, i.e., as long as there is some effective sideband cool-
ing. However, as we have seen, the ideal choice for observing
the nonclassical features discussed is indeed the limit β � 1.
Finally, we note that even in the case β = 1, neglecting μ is
still justified as long as CrCb � κ2δ/γ�2

c .

3. Finite sideband overlap

In the main text we considered the limit γ̃ /δ → 0, i.e.,
strictly separated sidebands. In practice, we neglected the
off-diagonal mechanical correlation functions, which for finite
γ̃ /δ become

〈b̂(t + τ )b̂(t )〉 = e2iδt e−γ̃ τ/2σm, (B10)

〈b̂†(t + τ )b̂†(t )〉 = e−2iδt e−γ̃ τ/2σ ∗
m, (B11)

with

σm = −γ
√

C̃rC̃b

γ̃ + 2iδ
. (B12)

4. Calculation of second- and third-order coherence

Due to the system dynamics being linear, Wick’s theorem
gives that the normalized second- and third-order coherences,
defined in Eqs. (9) and (16), can be expressed as

g(2)(t, t + τ )

= 1 + |〈a†
f (t + τ )a f (t )〉|2 + |〈a f (t + τ )a f (t )〉|2
〈a†

f (t )a f (t )〉〈a†
f (t + τ )a f (t + τ )〉 (B13)

and

g(3)(t, t, t + τ )

= 4g(2)(t, t + τ ) + g(2)(t, t ) − 4

+ 4 Re
〈a2

f (t )〉∗〈a†
f (t + τ )a f (t )〉〈a f (t + τ )a f (t )〉

〈a†
f (t )a f (t )〉2〈a†

f (t + τ )a f (t + τ )〉 .

(B14)

We still consider the limit γ̃ /κ → 0, i.e., the limit where
the cavity adiabatically follows the mechanical mode, but we
now include corrections to the limits γ̃ /δ → 0, δ/κ → 0, and
|�c|/κ → 0.

To evaluate (B13) and (B14), we need the correlation func-
tion

〈â†
f (t + τ )â f (t )〉
= 〈â†

i (t + τ )âi(t )〉 = e−γ̃ τ/2

×
{

eiδτ G2
r |χc(δ)|2

(
nm − γ C̃b

γ̃ − 2iδ

)

+ e−iδτ G2
b|χc(−δ)|2

(
nm + 1 − γ C̃r

γ̃ + 2iδ

)}
, (B15)

as well as the off-diagonal correlation function

〈â f (t + τ )â f (t )〉 = 〈âi(t + τ )âi(t )〉 + 〈ζ̂ f (t + τ )âi(t )〉,
(B16)

where the first term becomes

〈âi(t + τ )âi(t )〉 = − e−γ̃ τ/2GrGbχc(δ)χc(−δ)

×
{

eiδτ

(
nm − γ C̃b

γ̃ − 2iδ

)

+ e−iδτ

(
nm + 1 − γ C̃r

γ̃ + 2iδ

)}
. (B17)

Compared to the results presented in the main text, Eqs. (B15)
and (B17) include corrections of order γ C̃r(b)/δ [due to terms
proportional to (B10) and (B11)]. They also contain correc-
tions of order δ2/κ2, δ�c/κ

2, and �2
c/κ

2, which we ignored in
the main text when approximating χc(±δ) ≈ 2/κ . The latter
corrections simply leads to replacing β by β̃ in Eqs. (11) and
(18).

In the main text we also neglected the last term in (B16),
i.e., correlations between the cavity vacuum noise and the
mechanical mode. This term becomes

〈ζ̂ f (t + τ )âi(t )〉 = ie−(κ/2−i�c )τ GrGbχc(δ)χc(−δ)δχc(0)
(B18)

in the limit γ̃ � κ . This result cannot be found by using the
approximate equation (4), since it involves an off-resonant
phonon [as illustrated in Fig. 2(c)], but must rather be calcu-
lated starting from the original Langevin equations. We note
that the correlation function (B18) scales as δ/κ compared to
the first term in (B16). Note also that it decays at a rate κ/2,
since it represents processes where two photons are created
simultaneously by a virtual phonon transition.

By using the above expressions, one can show that the
corrections to g(2)(τ ) are in fact only of second order in the
parameters δ/κ, |�c|/κ for an arbitrary delay time τ . While
the corrections to g(3)(τ ) can generally be of first order in δ/κ ,
it can be shown that at the delay times τ = 0 and τ = π/2δ

on which we have focused, the corrections are in fact only of
second order in this small parameter.

5. Fully overlapping sidebands

Let us briefly comment on the special case δ = 0, where
the correlation functions (B10) and (B11) cannot be neglected.
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In this case, we have

nm − γ C̃b

γ̃ − 2iδ
≈ γ nth

γ̃
, (B19)

nm + 1 − γ C̃r

γ̃ + 2iδ
≈ γ (nth + 1)

γ̃
, (B20)

where we have neglected the outermost sidebands, i.e., made
the rotating-wave approximation, valid for ωm/κ � 1. The
consequence of this is that the results in Eqs. (11) and (17) are
valid also in this case, but with the effective phonon number
nm replaced by the bath occupation number nth. This means
that, unlike for δ �= 0, the intrinsic sideband cooling would
not be of help for observing violation of the inequality (20) in
this case.
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