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There has been much interest in physical systems that can be described as linear dynami-

cal systems which incorporate gain, loss, and non-reciprocity. Such systems can serve as novel

devices in sensing and control applications. They can be realized in any physical domain, includ-

ing optics, acoustics, electronics, and optomechanics. Systems that incorporate gain, loss, and

non-reciprocity are known as “non-Hermitian,” and are distinguished from Hermitian systems

by their complex eigenvalues, mode nonorthogonality, and a class of degeneracy known as an

exceptional point, for which the dynamical matrix H is nondiagonalizable. Spectral flow presents

another distinction between non-Hermitian and Hermitian systems.

Spectral flow is a topological property of the path which the system eigenvalues take in

the complex plane C when the system’s parameters are varied around a closed loop. For a

Hermitian system, the spectral flow is trivial, since the eigenvalues must return to themselves;

for a non-Hermitian system, eigenvalues need not return to the original values.

Optomechanics has been used to explore the spectral flow of systems near exceptional points

(EPs) for 2-mode systems, for which it is well-understood that spectral flow is determined by

how the loop encircles an EP degeneracy. In this thesis, we discuss spectral flow for n-mode

systems, and, in an optomechanical platform, experimentally demonstrate the n = 3 case. This

case is of interest because the corresponding exceptional point space is a trefoil knot, as opposed

to a single point, and because the braid group formed by the spectral flow is non-Abelian.

We begin with a pedagogical introduction to exceptional point degeneracies and spectral

flow. This introduces the braid group of spectral flow for control loops encircling the excep-

tional point space. Next, we employ the optomechanical interaction to define a three-mode

non-Hermitian system of mechanical modes, for which we have full control over the parameters

that determine the eigenvalues. We describe the optomechanical non-Hermitian platform used

in our experiment, which consists of an Si3N4 membrane coupled to a Fabry-Pérot cavity in a

cryostat, which is driven by two lasers. We show that this system can be brought to a triply

degenerate exceptional point (EP3 ). Around this EP3 point, we raster the doubly degenerate

exceptional point (EP2 ) subspace on a hypersurface which encloses the EP3 point, and show

that this EP2 subspace forms a trefoil knot. Near this EP2 trefoil knot, we execute control loops

which achieve spectral flow. We show that these spectral flows realize the non-Abelian braid

group B3. Finally, we conclude with a discussion on topological energy transfer between these

three modes in a future experiment.
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Chapter 1

Introduction

The goal of this dissertation was to experimentally investigate the generic physics of spectral

flow associated with a system of three non-Hermitian coupled harmonic oscillators. We sought

to explore the parameter space around a triple degeneracy of the three-mode system. We also

wished to demonstrate the eigenvalue spectral flow produced by parameter loops, which are

determined by how the loop encloses the subspace of double degeneracies. We used an optome-

chanical platform to demonstrate these goals, though essentially any three-mode, non-Hermitian

system could have been used. In this dissertation, I describe the work that my colleagues and I

have done to realize these goals [1].

1.1 Overview

Many systems in the physical sciences can be described by first-order differential equations of

the form

i
∂

∂t
c = Hc (1.1)

where H is an n × n dynamical matrix, and c is a vector in an n-dimensional complex vector

space. For example, H in quantum mechanics, H can be an n×n Hamiltonian which determines

the time-evolution of an n-level system. In classical mechanics, H can describe n coupled har-

monic oscillators. Much of classical mechanics [2] [3], classical electrodynamics [4], and (closed)

quantum mechanics [5] assume that H is Hermitian (i.e., the adjoint H† satisfies H† = H).

However, classical mechanics and electromagnetism can also readily introduce non-Hermiticity,

via gain and loss (dampers or resistors), and nonreciprocity (gyrators).

There is much rich physics that lies beyond Hermitian systems. For instance, we can consider

spectral flow, or the paths that eigenvalues of the dynamical matrix H(Ψ) take in the complex

plane C, when the control parameters Ψ of H(Ψ) are varied. These spectral flows produce unique

1
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(a) (b)

Figure 1.1: a: a Möbius strip of 2 × 2 spectral flow. b: a trefoil knot of 3 × 3 eigenvalue
degeneracies.

topological structures. For a toy 2× 2 dynamical matrix1

H(z) =

0 1

z 0

 , (1.2)

which has eigenvalues

λ± = ±
√
z, (1.3)

we can vary the parameter z as z = eiθ, for θ from 0 to 2π. Then the eigenvalues of H(θ = 0)

– +1 and −1 – switch to −1 and +1, respectively, for H(θ = 2π). Together, these paths trace

out a Möbius strip (Figure 1.1a). It turns out that this Möbius strip structure is intrinsically

related to a feature of non-Hermitian systems called an exceptional point, which is when H(z)

is not diagonalizable. The exceptional point of this toy H(z) is at z = 0, and the Möbius strip

appears if and only if the loop varying z encloses z = 0. This structure was observed in [6] [7] [8]

(it is also an important part of the story for “quasiadiabatic” time-evolution of the 2×2 system,

as [6] demonstrates).

For an 3× 3 non-Hermitian system, the topological structure involved is even richer. For the

2× 2 system, the exceptional point which determines the classes of spectral flows was one point

in the space; for the 3×3 system, the exceptional point space which determines the spectral flow

is instead a trefoil knot (Figure 1.1b). The spectral flows thus form an even richer topological

structure. A simple algebraic argument which lays this out is given in [9], yet this algebraic

result can have wide-ranging applications in generic 3 × 3 non-Hermitian systems. This thesis

1Any nonzero 2×2 dynamical matrix can be brought to this form – the Jordan-Arnol’d form – with a similarity
transformation, as shown in Chapter 2.
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experimentally measures this trefoil knot degeneracy structure in a non-Hermitian system of

three coupled modes, and measures the structures formed by its spectral flows.

The physical system used in this thesis is an optomechanical system. Fundamentally, light

and a mechanical resonator couple because the phonons of light impart momentum onto the

resonator, via the particle-like nature of photons. But phonons are also wavelike, and the

resonator can change its wavelength in response to this momentum, which alters the wavelength

of the photons. Optomechanics is a very productive platform to study a wide range of physical

phenomena. We use optomechanics in this work to create a platform in which we experimentally

study the topological structures associated with spectral flow in a non-Hermitian system of three

coupled harmonic oscillators.

This thesis reports on the results of the MIM experiment since 2018 [1]. We design a non-

Hermitian system of three coupled modes with three vibrational modes of a Si3N4 square mem-

brane, coupled to a Fabry-Pérot cavity via the optomechanical interaction. We measure spectra

in this parameter space by sweeping the parameters Ψ, and bring the system to the triply-

degenerate EP3 point that this system possesses. We then measure EP2 points in a manifold

surrounding this EP3 point, and show that they form a trefoil knot. We also demonstrate that

varying Ψ around a closed loop produces distinct eigenvalue braids, depending on how the loop

encloses the EP2 knot, and that concatenating these braids produces any braid in the braid

group B3.

1.2 Thesis Outline

In Chapter 2, we discuss the spectral flow of a non-Hermitian dynamical system, in the pres-

ence of exceptional points. Specifically, we discuss the dynamical matrix both at and near

exceptional points with the Jordan Normal Form and the closely related Jordan-Arnol’d Form,

respectively. We then discuss the connection between control loop homotopy classes in the non-

degenerate parameter space and the braid group of eigenvalue spectra of the dynamical matrix.

We then consider two- and three-mode systems: the eigenvalue braiding is determined by one

doubly degenerate exceptional point in the two-mode case, and by a trefoil knot of doubly de-

generate exceptional points (EP2 ) in the three-mode case. All of this is discussed for generic

non-Hermitian systems of damped coupled oscillators.

In Chapter 3, we describe the specific system of coupled oscillators used in this thesis: the

modes of a mechanical membrane which are coupled to the optical modes of a cavity via dy-

namical backaction in optomechanics. We review the natural independent harmonic oscillators

in the collection of vibrational modes of a membrane, as well as those of a Fabry-Pérot cavity.

3
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We then review their coupling via dynamical backaction. In particular, we use this light-matter

coupling to achieve a non-Hermitian system of three coupled modes, of which we realize full

control of the eigenspectrum. We tune this eigenspectrum to EP2 and EP3 degeneracies.

In Chapter 4, we describe the membrane-in-the-middle (MIM) platform used in this ex-

periment. Namely, we describe the membrane chosen to realize our mechanical modes, the

Fabry-Pérot cavity which the membrane lives in, and the 3He cryostat which contains the cavity-

membrane system.

In Chapter 5, we describe the process of driving and reading out the membrane, while

applying optical tones to tune the mode frequencies and dampings in the vicinity of EP2 and

EP3 degeneracies. We outline the optical table configuration, which drives the membrane with

one laser, and optomechanically controls the mechanical modes with an additional laser (as

described in Chapter 3). We also describe the processes by which we lock the two lasers to

two cavity modes. We then describe the electronic portion of the setup. Finally, we summarize

practical aspects of dataset acquisition via lock-in detection.

In Chapter 6, we analyze the data taken in Chapter 5. We describe the response of the

membrane to our drive, spectroscopy of the data, and the 9-Lorentzian fit model. We then find

an EP3 point in our 4-parameter system. After finding this EP3 point, we describe the collection

of datasets on the hypersurface on which we find EP2 points (as in Chapter 2). We next outline

the data analysis that we perform to algorithmically find EP2 points in our datasets. Having

found these EP2 points, we represent them on our complete hypersurface with two stereographic

projections, and see that they form a trefoil knot (as promised in Chapter 2). Finally, we realize

generators of the braid group B3, using control loops in the complement of the knot in our

control space.

In Chapter 7, we discuss steps toward a future experiment in which we apply dynamical

loops around the EP2 knot near the triple degeneracy. The purpose of the dynamical loops is to

demonstrate topological energy transfer between the three modes. We introduce the adiabatic

theorem for Hermitian systems and the Berry phase (i.e., the geometric phase). Even though

the adiabatic theorem does not hold for non-Hermitian systems in general, we also discuss

quasiadiabatic and adiabatic processes for which the adiabatic theorem does hold, as well as the

role that loss and gain modes play in diabatic (sudden) transitions in the non-Hermitian case.

We show simple modifications to the electronic setup of Chapter 5 which enable dynamical loops.

Additionally, we describe how complex ringdown measurements can be used to measure the phase

as well as the amplitude of the excited modes. Finally, we show preliminary measurements

in which we initialize one eigenmode and transfer its energy to a different eigenmode with a

quasiadiabatic loop, and measure the amplitude and phase of the ringdown signal. We believe
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this will be a key step in measuring the geometric phase introduced by the loop in a future

experiment.

In Chapter 8, we first summarize the results of this thesis. We then describe a future, more

powerful experimental setup, which will enable faster data-taking, control over the entire control

space of eigenmodes around the EP3 point, and reciprocal energy transfer between modes via

“shortcuts to adiabaticity.”
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Chapter 2

Spectral Flow near Exceptional

Points

In this chapter, we discuss exceptional points as they apply to spectral flow in this experiment.

We first provide a review of exceptional points and their applications in Section 2.1. We next

review spectral theory and generalized eigenspaces in Section 2.2, as nondiagonalizability of

the dynamical matrix is a hallmark of exceptional points. We then examine spectral flow of

an n-mode system, the braid group Bn of eigenvalue braids in Section 2.3, and these braids’

connection to exceptional points. We explore spectral flow further for 2-mode (Section 2.4) and

3-mode systems (Section 2.5).

2.1 Overview of Exceptional Points

In the past decade, there has been high interest in non-Hermitian physics. In particular, non-

Hermitian systems possess features absent from Hermitian systems, such as complex eigenvalues

[10] [11], non-orthogonal eigenvectors, and exceptional point degeneracies (EPs) [12] [11]. Given

a system whose time evolution is generated by an n× n dynamical matrix H, exceptional point

degeneracies are points in the system’s parameter space for which H is nondiagonalizable [13]

[14] [12]. Near EPs, H responds much more sharply to changes in parameters than they do away

from EPs [13] [14] [15].

The novel features of non-Hermitian systems enable the development of new forms of sensing

and control. Specifically, advances in fabrication technologies allow one to use gain and loss

as new degrees of freedom [16], rather than as deviations from the theories that predominantly

assume Hermitian dynamics, and which only permit real eigenvalues [5] [2] [4]. An application

in the realm of sensing is that the eigenvalues λ of systems at an exceptional point are more

6
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sensitive to perturbations (ε) than conventional sensors. This is because, near an exceptional

point, δλ(ε) ∼ ε1/n, which is sharper than a Hermitian sensor, in which δλ(ε) ∼ ε. This was

demonstrated with a whispering-gallery-mode micro-toroid cavity [17] [18]. Additionally, this

was used to enhance the sensitivity of in vivo microsensors in rats by a factor of 3.2 times the

limit of conventional sensing methods [19]. More generally, sensors which have nonreciprocity

(which requires non-Hermiticity) can exceed fundamental bounds on any reciprocal (and, hence,

Hermitian) sensor [18] [20].

Non-Hermitian systems are fundamental to topological photonics [16]. In one experiment, at

an exceptional point, the eigenstates undergo a transition from distributed modes to localized

modes, as a function of lattice spacing [21]. This is a PT-symmetry-breaking phase transition, as

discussed in detail in [22] [23] (PT-symmetry is defined here as spacetime reflection symmetry).

For example, nonreciprocal lasing is found in a 1D chiral edge mode by breaking time-reversal

symmetry in topological cavities [24]. Additionally, non-Hermiticity has implications to other

symmetries besides PT-symmetry: the Altland-Zirnbauer symmetry classication for insulators

and superconductors gets 38 symmetry classes instead of 10, because non-Hermiticity makes

chiral symmetry distinct from sublattice symmetry [25] [21].

Non-Hermiticity even appears in quantum systems. In a three-level transmon in which the

dynamics of a two-level subsystem can be approximately described using a non-Hermitian Hamil-

tonian, quantum state tomography is performed near the transmon’s exceptional point [26]. A

more recent work shows non-reciprocal state transfer by tuning the transmon qubit parameters

in a control loop that encircles the exceptional point, as well as chiral geometric phases accumu-

lated in this state transfer [27]. These works provide a route toward using non-Hermiticity in

topological quantum information processing.

Exceptional points are also useful for amplifiers and for non-Hermitian power transfer. A

fundamental limit in the gain-bandwidth ratio of optical amplifiers can be surpassed with ex-

ceptional points (e.g., with a microring resonator at an EP) [28]. A 2019 experiment uses EPs

to achieve wireless power transfer between a source and a receiver resonator under robust oper-

ating conditions [29]; this improves on a 2007 experiment with energy transfer between coupled

resonators, which needs to tune the coupling frequency as the source-receiver distance increases

[30].

As detailed further in Section 4.4, the Harris group has experimentally explored nonreciprocal

energy transfer in a two-mode optomechanical system by encircling an exceptional point, and

experimentally demonstrated energy transfer which depends on whether a control loop encloses

the exceptional point, and whether the state is in the “gainful” mode for most of the duration of

the control loop [6] [31] [32] [33, pp.59-67]. Additionally, adiabatic transport is explored further

7
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for an n × n system in a theoretical paper [34], which finds that, for certain initial states and

closed control loops of time T = 1/ε, the state returns to itself and gains a complex phase of ε−1

times a Puisseux expansion in powers of ε1/n; in particular, the nth order term is independent

of T , and only depends on the loop homotopy class.

This has been a short review of the applications of non-Hermiticity in modern research. For

more in-depth reviews, one can read [16] and [11].

2.2 Spectral Theory

To discuss exceptional points in a physical system, we first review basic notions of linear algebra.

Specifically, we review generalized eigenspaces in vector spaces, since a dynamical matrix cannot

be diagonalized at an exceptional point. We also review the Jordan canonical form, on which

we will use perturbation theory to examine exceptional points in Sections 2.4.3 and 2.5.1. This

discussion on generalized eigenspaces largely follows [35].

2.2.1 Linear Maps

Vector Spaces

Let us briefly define vector spaces and review basic notions of vector spaces.

A vector space is a set V with elements v ∈ V for which the two operations vector addition

and scalar multiplication (by elements of a field F) are defined:

Given any v1, v2 ∈ V : define v1 + v2 ∈ V

Given any v ∈ V, c ∈ F : define cv ∈ V
(2.1)

The elements v ∈ V are said to be vectors in the vector space.

The vector addition is commutative and associative. The vector addition also has a zero-

identity 0 ∈ V such that for any v ∈ V , 0 + v = v. Any v ∈ V also has an additive inverse

−v ∈ V , where v + (−v) = 0. [35, pp.12-13] [36, pp.1-2] [37, Section 2].

The scalar multiplication has a one-identity 1 ∈ F where, for any v ∈ V , 1 · v = v. Further-

more, scalar multiplication satisfies the distributive property over vector addition:

v1, v2 ∈ V, a ∈ F : a(v1 + v2) = av1 + av2

v ∈ V, a, b ∈ F : (a+ b)v = av + bv

(2.2)

The field F is most often taken to be the real or complex numbers, R or C. In this thesis, we
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primarily concern ourselves with vector spaces over C.1 Throughout this discussion, we will

assume that V is a nonzero vector space (i.e., V 6= {0}).

Subspaces

In discussing exceptional points of a physical system defined by a dynamical matrix M , we will

frequently be interested in subsets U of vector spaces V which are vector spaces in their own

right. These are called vector subspaces, or simply subspaces. In this discussion, we will

decompose the vector space V into subspaces which are characterized by the eigenvalues and

eigenvectors of M (Sections 2.2.2 and 2.2.3).

To state that a subset U ⊆ V is a subspace of the vector space V , it suffices to check that

the additive identity 0V ∈ V is in U (i.e. 0V ∈ U), that U is closed under vector addition (i.e.

if u,w ∈ U , then u+w ∈ U), and that U is closed under scalar multiplication (i.e. if u ∈ U , and

c ∈ F, then cu ∈ F).

We now look at the addition of subspaces of V in this discussion. Suppose that U1, U2, . . . Um

are subspaces of V . Then the set

U1 + U2 + · · ·+ Um = {u1 + u2 + · · ·+ um : u1 ∈ U1, u2 ∈ U2, . . . um ∈ Um} (2.3)

is a subspace of V . Furthermore, this sum of subspaces is the smallest subspace of V that contains

all of U1, U2, . . . , Um, in the sense that if another subspace W ⊆ V contains all Uk, k = 1, . . . ,m,

then U1 + . . . Um ⊆W [35, Thm. 1.39, pp.20-1].

A noteworthy type of sum of vector subspaces is a direct sum

U = U1

⊕
· · ·
⊕

Um, (2.4)

which is the set in Equation 2.3, with the additional property that for any element u ∈ U1 +

· · ·+ Um, there is exactly one way to write u = u1 + · · ·+ um, where uk ∈ Uk, k = 1, . . . ,m. It

can be proven that (2.3) is a direct sum if and only if 0U ∈ U can be uniquely written as the

sum 0U = 01 + · · ·+ 0m, for 0k ∈ Uk [35, Thm. 1.44, p.23].

1A field is an algebraic structure over which addition and multiplication operations are defined, and both
have additive and multiplicative inverses [37, Section 1]. There are many other fields relevant in number theory,
algebraic geometry, and cryptography. [38, pp.176-7].
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Linear Combinations and Bases

Consider a vector space V and a list of vectors L = [vα]α (where the vα are allowed to be

repeated). We can write linear combinations of the vectors in L:

v =
∑
α

aαvα (2.5)

for some coefficients aα ∈ F. We call L a basis of V if, for every v ∈ V , there exists a unique

representation of v as a linear combination of elements of L [36, p.6, Ch.1.2]. For example, if

we consider R3 as a vector space over R, then the list of vectors L = [(1, 0, 0), (0, 1, 0), (0, 0, 1)]

is a basis of R3. For a list of vectors in V to be a basis, it must satisfy two criteria: that the

elements span V , and that they are linearly independent.

The span of L is the set of all vectors that can be written as linear combinations of elements

of L:

span(L) = {v ∈ V : v =
∑
α

aαvα, aα ∈ F, vα ∈ L} (2.6)

We say that L spans V or L generates V if span(L) = V . In practice, span(L) ⊆ V always

holds, so one would prove that V ⊆ span(L) holds to show that L spans V . For example, in

R3, the list {(0, 1, 0), (0, 0, 1)} does not span R3, but the list {(1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1)}

spans R3 (but is not a basis).

The vectors in L are said to be linearly independent if, given a linear combination 0 =∑
α aαvα of vectors vα ∈ L, the only possible representation is with the linear combination

aα = 0, for all indices α. If there is a way to write 0 =
∑
α aαvα where not all aα are 0,

then L is linearly dependent [36, p.8, Ch.1.2] [35, p.33, Ch.2.A]. For instance, in R3, the list

{(1, 0, 0), (0, 1, 0), (1, 1, 0)} is not linearly independent (as (0, 0, 0) = (1, 0, 0)+(0, 1, 0)−(1, 1, 0)),

whereas the list {(1, 0, 0), (0, 1, 0)} is linearly independent (but not a basis for R3).

In discussing bases, one discusses the dimension of a vector space. There are two kinds of

vector spaces in a discussion on dimension: those that admit a finite-length basis, and those

that do not. A vector space with a finite-length basis is finite-dimensional. In this thesis, we

concern ourselves almost entirely with vector spaces that have a finite dimension.

The relationship between a spanning list and a basis is as follows:

Theorem 2.2.1. Let L be a spanning list of length n of a finite-dimensional vector space V . L

can be reduced to a basis B of V by removing at most n− 1 elements from L. [36, p.10, Ch.1.2]

[35, pp.41-2, Ch.2.B]

Proof. To prove this, suppose that a list of vectors L spans the vector space V . If the vectors

of L are linearly dependent, it is easy to see that at least one element vα of L can be written

10
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in terms of the other members of L: vα =
∑
β 6=α aβvβ [35, p.34, Ch.2.A]. Thus, if L is linearly

dependent, we can identify an element vm ∈ L that can be written as a linear combination of

other element of L, remove vm from L, and still have span(L − [vm]) = span(L). This process

is repeated until the list is linearly independent and still spans V . It is repeated at most n− 1

times, until the final list B is linearly independent and spans V (and is nonempty). Thus, any

finite-length spanning list L contains a basis of length at most that of L. �

We also see the relationship between any linearly independent list and a basis:

Theorem 2.2.2. Any linearly independent list L of a finite-dimensional vector space V can be

extended to a basis B of V . If V has a basis with length n, and L has length m, then this can be

done in finitely many operations [35, p.41, Ch.2.B].

Proof. The proof is similar to the proof of Theorem 2.2.1: if L spans V , we are done. If not, let

B be a finite-length basis of V . B spans V , so L∪B spans V . Take the combined list L∪B, and

remove elements of B from L ∪B until the list L′ is linearly independent and still spans B. �

We may set a constraint on the lengths of any linearly independent list and any spanning

list:

Theorem 2.2.3. In a finite-dimensional vector space V , any linearly independent list L1 has a

length which is at least the length of any spanning list L2 [35, p.35, Ch.2.A].

Proof. This is proven combinatorially, where let u1, . . . , um be the items in L1, and w1, . . . , wn

be the elements of L2. n can be taken to be finite, since V is finite-dimensional. We can remove

u1 from L1 and prepend it to L2: L1
2 = [u1, w1, . . . , wn]. Then L2 is linearly dependent, so we

can write one of the wk elements, designated as w1 (reordering the elements of L2 if necessary),

as w1 = a1u1 +
∑n
k=2 bkwk. Then remove w1 to get L1′

2 = [u1, w2, . . . , wn], which has length n

and spans V . The list L1
1 = [u2, . . . , um] has length m − 1, and is linearly independent. This

procedure is continued inductively, where we remove uk from Lk−1
1 , prepend it to Lk−1′

2 to get

Lk2 , and remove wk from Lk2 to get Lk
′

2 (again, having reordered the wk if necessary). Lk
′

2 spans

V , is of length n, and Lk1 is linearly independent and has length m− k. This process terminates

on k = m: Lm1 is empty, Lm
′

2 has length n, and Lm
′

2 still spans V , so we conclude m ≤ n. �

A corollary to the above result for bases is that

Corollary 2.2.3.1. Any two bases B1 and B2 of a finite-dimensional vector space V have the

same length: B1 has length of at most that of B2 [35, p.35].

Proof. This is seen when we consider B1 as the linearly independent list and B2 as the generating

list in the above discussion; switching the roles of B1 and B2 shows that the length of B1 is at

least that of B2. �
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Thus, we can define the dimension of a vector space as the length of any basis of the

vector space.

An intuitive property of direct sums is that

Theorem 2.2.4. Given a subspace U which has a direct sum decomposition (Equation (2.4)),

dimU = dimU1 + · · ·+ dimUm (2.7)

[35, p.49, Ex.16]

Proof. This is easily proven with the “principle of inclusion-exclusion” for the dimension of the

sum of two subspaces U1 and U2:

dim (U1 + U2) = dimU1 + dimU2 − dim (U1 ∩ U2) (2.8)

[35, p.47, Thm.2.43], together with the definition of a direct sum. �

One might ask about vector spaces that are not finite dimensional, which are vector spaces

that do not admit a finite-length basis. It can be proven with Zorn’s Lemma (the maximal

principle) that every vector space has a basis; see [39, Ch. 1.7, pp.58-61] for a proof of this. Since

vector spaces that do not have finite-length bases do have bases, we call these spaces infinite

dimensional. For instance, the space of polynomial functions P(C), which are functions f(x) =∑n
k=0 akx

k, for ak ∈ C and for any n ∈ N. n is the index of the polynomial (and an is taken to

be nonzero). A finite-length basis does not exist for this set, since if one writes a list L of linearly

independent polynomials, these polynomials will have a highest index N . Then the polynomial

f(x) = xN+1 cannot be spanned by the list L, so L is not a basis. However, we can write a basis

B = [xk : k ∈ N]. B has length infinity2, so P(C) is clearly an infinite-dimensional vector space.

Unless otherwise stated, we assume in this thesis that a given vector space V is finite-

dimensional.

Linear Operators

Recall the definition of a linear map T : V → W , for vector spaces V and W over a field F:

T maps an element v ∈ V to an element w ∈ W , with w = T (v). A linear map will satisfy

linearity: given v1, v2 ∈ V , and scalars a, b ∈ F, we have

T (av1 + bv2) = aT (v1) + bT (v2). (2.9)

2More formally, B has the same cardinality as the natural numbers [40, Ch.10]
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The set of linear maps of V into W can be denoted L(V,W ) [35, p.52] [36, Ch.1].

A linear operator is simply a linear map T : V → V , or a linear map of the vector space

V into the same vector space V . The set of linear operators on V can be denoted by L(V ).

In discussing the spaces of generalized eigenvectors, we will use the notion of null spaces and

ranges of linear maps. The null space, or kernel, of a linear map T : V → W is the set of all

vectors v ∈ V such that T (v) = 0 [35, p.60]. This space is written as null(T ). The range of T

is the set of all vectors w ∈ W such that T (v) = w, for some v ∈ V [35, p.62]. This space is

written as range(T ). Both the null space and the rank are subspaces of V and W , respectively.

The null space and range of a linear map is closely related to injectivity and surjectivity.

Recall that a function f : X → Y is injective if, for all x1, x2 ∈ X, f(x1) = f(x2) implies that

x1 = x2 [35, p.60]. Recall also that f is surjective if, for all y ∈ Y , there exists x ∈ X such

that f(x) = y [35, p.62]. One can show that a linear map T : V → W is injective if and only if

null(T ) = {0} [35, p.61]. One may also note that the definition of surjectivity is equivalent to

range(T ) = W . Finally, a function is invertible if and only if it is both injective and surjective.

A fundamental result about the null space and range of a linear operator is the nullity-

plus-rank theorem for operators T : V → W on finite dimensional vector spaces V and W . It

states

Theorem 2.2.5 (Nullity-Plus-Rank Theorem). Let V and W be finite-dimensional vector spaces.

Let T : V →W be a linear map. Then [35, Thm.3.22, p.63]

dimV = dim null(V ) + dim range(V ) (2.10)

Proof. Let Bnull = [v1, . . . , vm] be a basis for null(V ). By Theorem 2.2.2, we can extend Bnull to

a basis B of V : B = [v1, . . . , vm, w1, . . . , wn−m]. Thus, since dim null(V ) = m, and dimV = n,

we need to prove that dim range(V ) = n − m. Let w ∈ range(V ). Then T (v) = w, for some

v ∈ V . Write v =
∑m
k=1 akvk +

∑n−m
k=1 bkwk. Apply T to both sides:

w = T (v) = T

(
m∑
k=1

akvk +

n−m∑
k=1

bkwk

)
=

n−m∑
k=1

bkT (wk) (2.11)

so T (w1), . . . , T (wn−m) spans range(V ). These are also linearly independent, since w1, . . . , wn−m

is linearly independent (as w1, . . . , wn−m are part of a basis for V ). Thus, T (w1), . . . , T (wn−m)

is a basis for range(V ). �

This powerful result has many corollaries in finite-dimensional linear algebra. For instance,

Corollary 2.2.5.1. A map T : V →W on finite-dimensional V and W is injective if and only

if it is surjective, and also if and only if it is invertible [35, Thm.3.69, p.87].
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Proof. If T is injective, dim null(T ) = 0. By the nullity-plus-rank theorem, dimV = dim range(T ),

so T is surjective. The reverse is proven in the same way. Then, by the above, T is bijective if

it is injective or surjective. �

2.2.2 Eigenvalues and Eigenvectors

In this section, we discuss the eigenvalues and eigenvectors of a linear operator on a vector space.

First, we define an eigenvalue and eigenvector of a linear operator T ∈ L(V ), on a vector

space V . A scalar λ ∈ V is an eigenvalue of T if, for some v ∈ V , v 6= 0, Tv = λv. The vector

v is an eigenvector [35, p.134].3 Equivalent to the definition of an eigenvector, we say that λ

is an eigenvalue of T if the operator T − λI is not injective (i.e. the nonzero eigenvector v ∈ V

is in null(T − λI)). For T on a finite-dimensional vector space V , this is equivalent to T − λI

not being surjective, and also to T − λI not being invertible (Theorem 2.2.5.1) [35, p.134].

The eigenspace of eigenvectors corresponding to an eigenvalue λ of the linear operator T

over the vector space V is denoted E(λ). This is the set of all vectors such that (T − λI)v = 0.

It is easy to see that E(λ) = null(T − λI). We define the geometric multiplicity of λk as

dimE(λk) [35, p.255].

Theorem 2.2.6. Any linear operator T on a finite-dimensional complex vector space V has an

eigenvalue λ ∈ C.

Proof. To prove this assertion, take any nonzero vector v ∈ V . Let n = dimV . Then we can

construct a list of vectors v, Tv, T 2v, . . . , Tnv. There are n + 1 vectors, so this list of vectors

must be linearly dependent. Thus, there exist scalars ak ∈ C, k = 0, . . . , n, where not all ak are

zero, such that

0 = a0v + a1Tv + · · ·+ anT
nv (2.12)

Consider the polynomial p(z) = a0 + a1z + · · · + anz
n. This polynomial can be naturally used

to define a linear operator p(T ):

p(T ) = a0I + a1T + · · ·+ anT
n (2.13)

Thus, 0 = p(T )v. Note that p(z) is a polynomial over a complex field, so by the fundamental

theorem of algebra, p(z) = (z − λn) . . . (z − λ1), where the scalars λk ∈ C need not be distinct.

Then

0 = p(T )v = (T − λnI)(T − λn−1I) . . . (T − λ1I)v (2.14)

3This might be called an “ordinary” eigenvector, to distinguish from a generalized eigenvector (of order greater
than one).
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Then one of two statements is true: (T − λ1I)v = 0, or not. If yes, then v is an eigenvector

corresponding to eigenvalue λ1. If not, proceed inductively. It must hold that for some m from

1 to n, 0 = (T − λm)
(∏1

k=m−1(T − λkI)v
)

, or else 0 6= p(T )v, which contradicts Equation

(2.12). Then λm is an eigenvalue with eigenvector w =
(∏1

k=m−1(T − λkI)v
)

, thus proving the

result. �

We can remark that Theorem 2.2.6 does not hold for linear operators over real fields. For

instance, T (x, y) = (−y,+x), which has a matrix representation M =

0 −1

1 0

 has no real

eigenvalues. If it is taken as an operator on C2, then it has eigenvalues ±i. Additionally,

Theorem 2.2.6 does not hold for infinite-dimensional spaces. For instance, in the full infinite-

dimensional Fock basis of a harmonic oscilllator, the raising operator a† |n〉 =
√
n+ 1 |n+ 1〉

has no eigenvalue; the only vector for which a†v = λv for any λ ∈ C is the zero vector v = 0.

A well-known result is that eigenvectors that correspond to distinct eigenvalues are linearly

independent [35, p.136]. Thus, if a linear operator T on an n-dimensional space V has n distinct

eigenvalues, it has n linearly independent eigenvectors, so its eigenvectors are a basis for V .

However, if T has less than n distinct eigenvalues, then its eigenvectors need not be a basis for

V . For instance, the linear operator M =

λ 1

0 λ

 has λ as its only eigenvalue, and the only

eigenvectors corresponding to λ are scalar multiples of (1, 0)T .

If T does have a basis that consists entirely of eigenvectors of T , then we say that T is

diagonalizable. Equivalently, if T is diagonalizable, we can take a list of the eigenvalues of T ,

λ1, . . . , λm, and decompose V into a direct sum

V = E(λ1)
⊕

E(λ2)
⊕
· · ·
⊕

E(λm) (2.15)

If the dimension of V is n, then m ≤ n, by Theorem 2.2.4. The inequality is allowed for

diagonalizable T , so some of the eigenspaces may have a dimension greater than 1. If we take

bases Bk of E(λk), then B1 ∪ · · · ∪Bm is a basis of V . In this basis,

T =



λ1 0 . . . 0

0
. . . 0 . . .

...

... 0 λk
. . .

. . .
. . . 0

0 . . . 0 λm


(2.16)

In general, to find a list of vectors that correspond to the eigenvalues of a linear operator
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T ∈ L(V ) and write a basis of V entirely in terms of these vectors, we extend the notion of

eigenvectors to generalized eigenvectors (Section 2.2.3).

2.2.3 Generalized Eigenspaces and Jordan Normal Form

Generalized Eigenspace Definitions

Here, we define generalized eigenvectors, and use the Jordan Normal Form to “almost diagonal-

ize” matrices that cannot be diagonalized. A generalized eigenvector corresponding to an

eigenvalue λ of a linear operator T on a vector space V is a nonzero vector v ∈ V for which there

exists some integer m ≥ 1 such that

(T − λI)mv = 0 (2.17)

We will refer to the smallest integer m for which (2.17) holds the order of the generalized eigen-

vector.

We can write the space of generalized eigenvectors corresponding to λ as

G(λ) = {v ∈ V | ∃j ∈ Z+ : (T − λI)jv = 0} (2.18)

It can be proven that [35, p.246, Thm.8.11]

G(λ) = null(T − λI)dimV (2.19)

We now define the (algebraic) multiplicity of λk as dk = dimG(λk) [35, p.255].

Generalized Eigenspace Example

As a toy example of finding generalized eigenvectors, consider the matrix

M =



λ 0 0 0

0 λ 1 0

0 0 λ 1

0 0 0 λ


(2.20)

over the vector space C4. If we solve the roots µ of the characteristic polynomial det(µI−M) = 0

(Equation (2.48)), the only root is the eigenvalue µ = λ. The eigenvectors are those vectors
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v = (a, b, c, d)T which satisfy

(M − λI)



a

b

c

d


=



λ− λ 0 0 0

0 λ− λ 1 0

0 0 λ− λ 1

0 0 0 λ− λ





a

b

c

d


=



0 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0





a

b

c

d


=



0

0

0

0


(2.21)

The eigenvectors are v1 = (1, 0, 0, 0)T and v2 = (0, 1, 0, 0)T (or linear combinations of these).

To find generalized eigenvectors, we can find solutions of the vector equations (M − λI)kv = 0,

for any integer k. One way to do this is to solve the vector equations (M − λI)v = v1 and

(M − λI)v = v2. The first equation, written out for v = (a, b, c, d)T , is

v1 = (M − λI)



a

b

c

d


=



λ− λ 0 0 0

0 λ− λ 1 0

0 0 λ− λ 1

0 0 0 λ− λ





a

b

c

d


=



0 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0





a

b

c

d


=



1

0

0

0


(2.22)

There are no a, b, c, d that satisfy the above equation. We now try solving (M − λI)v = v2:

v2 = (M − λI)



a

b

c

d


=



λ− λ 0 0 0

0 λ− λ 1 0

0 0 λ− λ 1

0 0 0 λ− λ





a

b

c

d


=



0 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0





a

b

c

d


=



0

1

0

0


(2.23)

This equation does have a solution: v3 = (0, 0, 1, 0)T . v3 is a generalized eigenvector of order 2,

since (M − λI)2v3 = 0. Finally, we can solve (M − λI)v = v3:

v3 = (M − λI)



a

b

c

d


=



λ− λ 0 0 0

0 λ− λ 1 0

0 0 λ− λ 1

0 0 0 λ− λ





a

b

c

d


=



0 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0





a

b

c

d


=



0

0

1

0


(2.24)

This equation has the solution v4 = (0, 0, 0, 1)T . It is a generalized eigenvector of order 3,

since (M − λI)3v4 = 0. Hence, we have four linearly independent generalized eigenvectors –

v1, v2, v3, v4 – that correspond to the eigenvalue λ. These span the whole vector space C4. One

can also check that this chain ends with v4 – there is no solution v to the equation v4 = (M−λI)v.
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Generating Generalized Eigenspaces with Jordan Chains

In general, to find generalized eigenvectors which span an entire generalized eigenspace G(λ) of

a linear operator T ∈ L(V ), one can find an eigenvector v1 of T (at least one exists, by definition

of an eigenvalue). Then, for the generalized eigenvector of order m, one recursively solves

vm−1 = (T − λI)vm (2.25)

This is consistent with the definition of a generalized eigenvector of order m (Equation (2.17)).

In total, if G(λ) is a generalized eigenspace of dimension d, then a spanning set of generalized

eigenvectors is realized as a cycle of generalized eigenvectors, or a Jordan chain [36, p.266-7,

Ch.9.4] [41]

0 = (T − λI)v1 = · · · = (T − λI)dvd

v1 = (T − λI)v2 = · · · = (T − λI)d−1vd

v2 = (T − λI)v3 = · · · = (T − λI)d−2vd

...

vd−1 = (T − λI)vd

(2.26)

Decomposition into Generalized Eigenspaces

In a result analogous to one for ordinary eigenvectors,

Theorem 2.2.7. Let V be an n-dimensional vector space, and let T ∈ L(V ) be a linear operator.

Generalized eigenvectors corresponding to distinct eigenvalues λk are linearly independent [35,

p.247, Thm.8.13]

Proof. To prove this, take any generalized eigenvectors v1, . . . , vm, corresponding to distinct

λ1, . . . , λm. Write

0 = a1v1 + · · ·+ amvm (2.27)

To prove that ak = 0, for a given k, note that, for some integer j, (T − λkI)jvk = 0. Let jk be

the largest integer for which (T − λkI)jkvk 6= 0. Define w = (T − λkI)jkvk. Then (T − λkI)w =

0. Furthermore, for any λ ∈ C, (T − λI)nw = (λk − λ)n. Now apply (T − λ1I)n . . . (T −

λkI)jk . . . (T − λmI)n to the linear combination. Now, for vi, with i 6= k, (T − λi)nvi = 0, since
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G(λi) = null(T − λiI)n. Because (T − λiI) and (T − λjI) commute, we get

0 = (T − λ1I)n . . . (T − λkI)jk . . . (T − λmI)n (a1v1 + · · ·+ amvm)

=
(

(T − λ1I)n . . . (T − λmI)n(T − λkI)jkakvk

)
+(

(T − λkI)jk(T − λ1I)n . . . (T − λmI)n
∑
i 6=k

aivi

)
= ak(T − λ1I)n . . . (T − λmI)nw

= ak(λk − λ1I)n . . . (λk − λm)nw

(2.28)

Since the eigenvalues are distinct, then ak = 0. �

Unlike with ordinary eigenvectors (which are merely generalized eigenvectors of order m = 1),

the set of generalized eigenvectors of a linear operator T on a finite-dimensional complex vector

space V does span V [35, p.252]. That is,

Theorem 2.2.8. Let T be a linear operator on a finite-dimensional vector space V . Let

λ1, . . . , λm be the distinct eigenvalues of T . We can decompose V as a direct sum

V = G(λ1)
⊕
· · ·
⊕

G(λm) (2.29)

Proof. This can be proven by induction on dimV . For n = 1, then since T must have an

eigenvalue λ, by Theorem 2.2.6, the result holds vacuously.

Now assume that the result holds for any vector space V with dimV < n. For a vector space

V with dimV = n, and a linear operator T on V , let λ be an eigenvalue of T . We show that

V = null(T − λI)n ⊕ range(T − λI)n (2.30)

First, if v ∈ null(T − λI)n ∩ range(T − λI)n, then since v ∈ range(T − λI)n, (T − λI)nw = v.

Apply (T − λI)n to w, to get 0 = (T − λI)2nw = 0. Then w is a generalized eigenvector of T ,

with eigenvalue λ, so 0 = (T − λI)nw = v, since G(λ) = null(T − λI)n. Thus,

null(T − λI)n ∩ range(T − λI)n = {0}. (2.31)

Second, the sum in Equation (2.30) holds by the nullity-plus-rank theorem (Theorem 2.2.5),

thus proving Equation (2.30).

Now, since λ is an eigenvalue of T , there is at least one eigenvector v of T corresponding

to λ. Thus, (T − λI)nv = 0, so dim null(T − λI)n > 0. Then dim range(T − λI)n < n, by the

nullity-plus-rank theorem, so by the induction hypothesis, we can decompose both the null space
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and the range of (T − λI)n into direct sums of generalized eigenspaces of T , thus proving the

result. �

From this decomposition, we note that a basis for V in terms of the generalized eigenvectors

can always be chosen; one merely chooses bases for each generalized eigenspace, then concate-

nates them together to get a basis for V .

On each G(λk), (T − λkI) is a nilpotent operator, which is an operator N such that N j = 0,

for some integer power j; from the definition of a generalized eigenvector, one sees immediately

that (T − λkI) is nilpotent on G(λk). Then, since (T − λkI) is nilpotent on G(λk), we have

(T − λkI)dk
∣∣
G(λk)

= 0 [35, p.248, Thm.8.18, Ch.8A], where dk = dimG(λk).

One also sees that each G(λk) is invariant under T , since for any element v ∈ G(λk), (T −

λkI)Tv = T (T − λkI)v = 0, so Tv ∈ G(λk). Thus, the decomposition of any v ∈ V as

v = v1 + · · ·+ vm, for vk ∈ G(λk), is invariant under T .

We now write the Jordan Normal Form of the linear operator T on a complex finite-

dimensional vector space V . First, we note that for T , we can always write a decomposition

of V into a direct sum of generalized eigenspaces of T (Equation 2.29). Furthermore, these

generalized eigenspaces of T are invariant under T , so T will not map the elements of one

generalized eigenspace G(λk) into another G(λl), unless l = k. Thus, a matrix representation of

T has the form

T =



(
A1

)∣∣∣∣
G(λ1)

0 . . . 0

0

(
A2

)∣∣∣∣
G(λ2)

. . . 0

...
. . .

0 0 . . .

(
Am

)∣∣∣∣
G(λm)


(2.32)

where each Ak is a square matrix on the subspace G(λk), and λ1, . . . , λm are the eigenvalues of

T .

On each G(λk), we can write T as

T |G(λk) = λkI|G(λk) + (T − λkI)|G(λk) (2.33)

The left term is simply the identity matrix times λk, so it will always have the same identity

matrix form regardless of the choice of basis. Thus, we are left to choose a basis that makes the

matrix form of (T − λkI)|G(λk) as simple as possible.

Recognizing that (T − λkI)|G(λk) is a nilpotent operator on G(λk), we show that a nilpotent

operator N on an n-dimensional vector space V has a matrix representation where it has 0 for

all of its elements, except on the superdiagonal. On the superdiagonal, the entries will be 0 or
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1. To write this explicitly in matrix form, the nilpotent operator N has the matrix form

N =



(
N1

)
0 . . . 0

0

(
N2

)
. . . 0

...
. . .

0 0 . . .

(
Nl

)


(2.34)

where each Nj is a square matrix that has ones on the superdiagonal, and zero everywhere else,

i.e.

Nj =



0 1 0 . . . 0

0 0 1 . . . 0

...
. . .

0 0 . . . 0 1

0 0 . . . 0 0


(2.35)

For each of these Nj , we can see that the column vector uj = (0, 0, . . . , 0, 1)T , of length mj ,

is sent by Nj to Njuj = (0, 0, . . . , 1, 0)T . This cycle continues, up to N
mj
j = (1, 0, . . . , 0, 0)T ,

and terminates at N
mj+1
j uj = 0. Hence, N has this matrix form if there are vectors uj , for

j = 1, . . . , l, and integers mj such that the list

Nm1u1, . . . Nu1, u1, N
m2u2, . . . , Nu2, u2, . . . , N

mlul, . . . , Nul, ul (2.36)

is a basis for V , and if, for all j = 1, . . . , l, Nml+1ul = 0. This basis does exist for any nilpotent

operator N on a finite-dimensional vector space, as proven in [35, Thm.8.55, p.271] and [36,

Chapter 9.4, p.266-72]. In this basis, N has the form given in Equations 2.34 and 2.35.

Returning to Equation 2.33, (T − λkI)|G(λk) is nilpotent on G(λk), so (T − λkI)|G(λk) can

be written in the form of Equations 2.34 and 2.35, for some basis of G(λk). This basis sets

T |G(λk) =



λk t12 0 . . . 0 0

0 λk t23 . . . 0 0

...
. . .

0 0 0 . . . λk t(n−1),n

0 0 0 . . . 0 λk


(2.37)

where tij is either 0 or 1; the superdiagonal consists of 0 and 1. We can then choose m bases,

for each of the G(λk), where T has the form of the Jordan block, and append them together to
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get T into the Jordan Normal Form (c.f. Equation 2.32)

T =



(
J1

)
0 . . . 0

0

(
J2

)
. . . 0

...
. . .

0 0 . . .

(
Jm

)


(2.38)

where each Jp has the Jordan block form

Jp =



λp 1 0 . . . 0 0

0 λp 1 . . . 0 0

...
. . .

0 0 0 . . . λp 1

0 0 0 . . . 0 λp


(2.39)

2.2.4 Characteristic Polynomial

Here, we define the characteristic polynomial of a linear operator T . If λ1, . . . , λm are the distinct

eigenvalues of T , with multiplicities d1, . . . , dm, then the characteristic polynomial is

p(z) = (z − λ1)d1 . . . (z − λm)dm (2.40)

The characteristic polynomial has degree n = dimV , since the multiplicities of the eigenvalues

must sum to dimV , which holds because V decomposes into a direct sum of G(λk). Additionally,

the zeros of p are the eigenvalues of T , by construction. The characteristic polynomial p(z) can

be expanded as4

p(z) = zn − an−1z
n−1 + · · ·+ (−1)na0, ak ∈ C (2.41)

p(z) is a monic polynomial, since the coefficient of the leading term zn is 1.

A fundamental result about the characteristic polynomial is the Cayley-Hamilton theorem,

which states

Theorem 2.2.9. Let p(z) be the characteristic polynomial of a linear operator T : V → V on a

finite-dimensional vector space V . Then p(T ) = 0 [35, p.261, Thm.8.37] [36, p.253, Ch.9.1].

Proof. Let λ1, . . . , λm be the distinct eigenvalues of T . Let v ∈ V arbitrary. V can be decom-

posed as a direct sum of the generalized eigenspaces G(λk), so write v = v1 + · · · + vm, for

4We write the coefficients of zn−k with factors of (−1)n−k to make the coefficients match the elementary
symmetric polynomials of the eigenvalues λj [42].
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vk ∈ G(λk). Since (T −λkI) is nilpotent on G(λk), and dimG(λk) = dk, (T − λkI)dk
∣∣
G(λk)

= 0.

Apply p(T ) to v (and use the pairwise commutativity of the (T − λjI)):

p(T )v =

(
m∏
k=1

(T − λkI)dk

)(
m∑
l=1

vl

)

=

m∑
l=1

∏
k 6=l

(T − λkI)dk

 (T − λlI)dlvl

= 0

(2.42)

�

The coefficients of the characteristic polynomial (Equation (2.41)) are the elementary sym-

metric polynomials in the eigenvalues µ1, . . . , µn, where the µk are allowed to be repeated in

multiplicity. They are [42]

an−1 =

n∑
k=1

µk = Tr(T ) (2.43a)

an−2 =
∑
i<j

µiµj (2.43b)

...

a0 =

n∏
k=1

µk = det(T ) (2.43c)

A distinction that we should make is that, though the characteristic polynomial and the

eigenvalues of a linear operator T are bijectively mapped, the characteristic polynomial and

the eigenvalues do not uniquely determine the linear operator T . For instance, if we consider

the operator M1 =

λ 0

0 λ

, it has λ as its only eigenvalue, and its characteristic polynomial is

p1(z) = (z−λ)2. Another operator that has the same eigenvalue(s) and characteristic polynomial

is M2 =

λ 1

0 λ

. However, M1 and M2 have different minimal polynomials. For a given

operator T , the minimal polynomial q(z) is the (monic) polynomial of smallest degree such that

q(T ) = 0. The minimal polynomial for M1 is q1(z) = (z − λ), and the minimal polynomial for

M2 is q2(z) = (z−λ)2. The roots of the minimal polynomial are precisely the eigenvalues of the

linear operator T [35, p.265, Thm.8.49]. It can be proven that the minimal polynomial divides

the characteristic polynomial [35, p.264, Thm.8.64].

23



2.2. SPECTRAL THEORY CHAPTER 2. SPECTRAL FLOW
NEAR EXCEPTIONAL POINTS

2.2.5 Trace, Determinant, and Discriminant

We can quickly define the trace of a linear operator T on a vector space V as the sum of all of

the eigenvalues of T , with each eigenvalue repeated according to its algebraic multiplicity [35,

p.299]:

Tr(T ) =

m∑
k=1

dkλk (2.44)

We can also define the determinant as the product of all of the eigenvalues, with each eigenvalue

repeated according to (algebraic) multiplicity

det(T ) =

m∏
k=1

λdkk (2.45)

We can relate the characteristic polynomial p(z) of T to the trace and determinant of T via

p(z) = (z − λ1)d1 . . . (z − λm)dm

=

m∏
k=1

(
zdk − dkλkzdk−1 + · · ·+ (−1)dkλdkk

)
= zn − (d1λ1 + · · ·+ dmλm)zn−1 + · · ·+ (−1)n

n∏
k=1

λdkk

= zn − an−1z
n−1 + · · ·+ (−1)n−1a1z + (−1)na0

(2.46)

so [35, p.308]

Tr(T ) = an−1 (2.47a)

det(T ) = a0 (2.47b)

p(z) = zn − Tr(T )zn−1 + · · ·+ (−1)ndet(T ) (2.47c)

We can also show that p(z) is equal to det(zI − T ) [35, p.309]. This is easy to show, since if

λ is an eigenvalue of T , then z − λ is an eigenvalue of zI − T . The determinant is the product

of eigenvalues, so

det(zI − T ) = (z − λ1) . . . (z − λm) = p(z) (2.48)

This is the traditional definition of the characteristic polynomial [36, p.100, Ch.4]. Per this

definition, the algebraic multiplicity of an eigenvalue λk is the multiplicity of the root of the

polynomial det(zI − T ). This is equivalent to the definition given in Section 2.2.3.
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The discriminant is the product

D =
∏
i<j

(µi − µj)2 (2.49)

where µ1, . . . , µn are the n eigenvalues of T , repeated in multiplicity. D = 0 if and only if an

eigenvalue has an algebraic multiplicity greater than 1 (i.e., p(z) has a repeated root).

It can be shown that the determinant can be realized via the matrix [42]

δ =



1 1 . . . 1

µ1 µ2 . . . µn
...

. . .

µn−1
1 µn−1

2 . . . µn−1
n


(2.50)

It can also be shown that the discriminant D = det(δδT ), and that the entries of δδT can

be expressed in terms of the elementary symmetric polynomials. Some discriminant values for

vector spaces of dimension n = 2 and n = 3 are

D = a2
1 − 4a0, n = 2 (2.51a)

D = −4a3
2a0 + a2

2a
2
1 + 18a2a1a0 − 4a3

1 − 27a2
0, n = 3 (2.51b)

Equations (2.52) can be simplified by subtracting Tr(T )/n from the eigenvalues µ1, . . . , µn (or,

equivalently, by subtracting 1
nTr(T ) In×n from the matrix T ). Then the second leading coefficient

of the characteristic polynomial an−1 = 0, and the discriminant for n = 2 and n = 3 is

D = −4a0, n = 2 (2.52a)

D = −4a3
1 − 27a2

0, n = 3 (2.52b)

2.3 n-Mode Spectral Flow

2.3.1 Control Space Ln of Spectra

In this section, we describe the central theoretical aspect of this thesis: the trajectory of the

eigenvalue spectrum when the control parameters are varied around a closed loop. In particular,

we are interested in examining which classes of control loops give rise to eigenvalue trajectories

that are topologically equivalent (more precisely, trajectories that belong to a given isotopy
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(a) (b)

Figure 2.1: a: a path f : [0, 1]→ X in the topological space X.
b: a path homotopy F : [0, 1]× [0, 1]→ X between the paths f(s) and g(s) in X.

class). We use the term “spectral flow” to refer to these classes.

Given an n×n matrix H, which represents the dynamical matrix of a system of n oscillators,

we can consider the n eigenvalues λ1, . . . , λn (where the λk may be repeated, according to

multiplicity) as an unordered subset λ = {λ1, . . . , λn}, where λk ∈ C. Per the discussion of

characteristic polynomials in Section 2.2.4, the eigenvalues of H are determined by the ordered

set of n coefficients (a0, . . . , an−1) of the characteristic polynomial (Equation (2.41)), as they

are the roots of the characteristic polynomial (by the definition given in Section 2.2.4 from [35]).

The coefficients (a0, . . . , an−1) are also determined from the eigenvalues {λ1, . . . , λn} via the

elementary symmetric polynomials (Equation (2.43)). Because we are interested in eigenvalue

degeneracies (i.e., pairwise eigenvalue differences), we are only interested in the n− 1 quantities

λ1 − λ2, λ2 − λ3, . . . , λn−1 − λn. Any other eigenvalue difference λi − λj , j 6= i, can be obtained

with a linear combination of these n − 1 quantities. Thus, this problem only contains n − 1

degrees of freedom. Without loss of generality, we may set the sum of the eigenvalues – the

trace (Section 2.2.5) – to zero. Setting the trace to zero sets an−1 = 0 in Equation (2.41), thus

leaving n − 1 free complex coefficients in the characteristic polynomial. This choice sets the

characteristic polynomial to

p(z) = zn + an−2z
n−2 − · · ·+ (−1)n−1a1z + (−1)na0, (2.53)

We may take the n−1 complex coefficients of the characteristic polynomial (Equation (2.53))

as the control space Ln [1, p.2]. The isomorphism Ln ∼= Cn−1 is obvious. Ln parametrizes the

space of n traceless eigenvalue spectra, so there is also a natural bijective mapping between Ln

and the unordered sets of n eigenvalues (which sum to 0, owing to the assumption of tracelessness)

in C.
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2.3.2 Ln Path Homotopy and Fundamental Group

With this parametrization Ln of spectra, we impose the usual Euclidean metric topology on Ln

[43, p.117, Ch.2, Section 20].5 In addition, we consider paths f : [0, 1]→ X, where X = Ln for

now. The path f has an initial point x0 and a final point x1. That is,

f(0) = x0

f(1) = x1

(2.54)

The path f in Ln smoothly varies the spectra along the path in the complex plane. A cartoon

of the path f is shown in Figure 2.1a. We define an equivalence relation between these paths

called path homotopy, in which two paths f1 and f2 in the space X with the same initial point

x0 ∈ X and final point x1 ∈ X are homotopy equivalent if there is a continuous transformation

F : [0, 1]× [0, 1]→ X, called a path homotopy, such that [43, p.319, Ch.9, Section 51] [44, p.25,

Ch.1.1]

F (s, 0) = f1(s) and F (s, 1) = f2(s) (2.55a)

F (0, t) = x0 and F (1, t) = x1 (2.55b)

A cartoon of path homotopy is shown in Figure 2.1b. Path homotopy is an equivalence relation

[43, p.320, Lemma 51.1, Ch.9, Section 51] [44, p.25, Ch.1.1]. We denote the set of paths equivalent

to a path f as [f ], and call [f ] a path-homotopy class.

We define a product of paths, or path concatenation, of a path f1 from x0 to x1 and

another path f2 from x1 to x2 as (f1 ∗ f2) [43, p.322, Ch.9, Section 51] [44, p.26, Ch.1.1]:

(f ∗ g)(t) =


f(2t) 0 ≤ t < 1/2

g(2t− 1) 1/2 ≤ t ≤ 1

(2.56)

The path concatenation is only defined when the end point of f1 is the starting point of f2. Path

concatenation also induces a product on path homotopy classes [f1] and [f2] [43, p.322, Ch.9,

Section 51]:

[f1] ∗ [f2] = [f1 ∗ f2] (2.57)

We now define a group operation using path homotopy classes and path concatenation.

5A topological space is a set X with a subset T ⊆ X, called a topology, for which {}, X ∈ T , for which any
union of elements of T is in T , and for which any finite intersection of elements of T is in T [43, p.74, Ch.2,
Section 12]. The Euclidean metric d(x, y) = |x− y| sets the topology on Ln where the open sets are generated
by the balls B(x, ε) = {y : d(x, y) < ε} [43, p.76, Ch.2, Section 13] [43, pp.117-8, Ch.2, Section 20]. We do not
use the metric topology in any important way throughout the rest of this thesis, since the topological property
of Ln we use is path homotopy.
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Figure 2.2: Two distinct loop homotopy classes of the complex plane C, minus a single point
(marked by the ×). The loop homotopies in [f̃ ] are marked with solid lines, and the loop
homotopies in [g̃] are marked with dashed lines.

However, the concatenation ∗ is not defined for all path homotopy classes, since they might not

have the same start or end points. To get around this and define a group operation, we can pick

a common base point x0 to serve as the start and end point of all paths that we consider. These

paths are loops based at x0. The set of all path homotopy classes of loops based at x0, with

the path concatenation operation ∗, forms the fundamental group π1(X,x0) [43, p.327, Ch.9,

Section 52] [44, p.26, Ch.1.1].6 It is easy to check that ∗ is a group operation: ∗ is associative;

there is an identity element e ∈ π1(X,x0), defined by e(t) = x0, ∀t ∈ [0, 1]; and every element

has an inverse (i.e., the class [f ], defined by f(t), has an inverse [f−1], defined by a reverse path

f−1(t) = f(1− t)).

X = Ln is topologically trivial, in the sense that for any base point x0, any two loops f1 and

f2 are path homotopy equivalent. That is, π1(Ln, x0) = 1 (i.e., π1(Ln, x0) is the trivial group7),

for all x0 ∈ Ln [44, p.27, Ch.1.1, Example 1.4]. In fact, any loop f based at x0 can be contracted

to a fixed point e(t) = x0,∀t ∈ [0, 1].

2.3.3 Degenerate and Nondegenerate Subspaces of Ln

We partition the control space Ln into subspaces Gn and Vn. Gn is the subspace of Ln in which

the spectra are nondegenerate (i.e., the characteristic polynomial has no repeated roots), and Vn

is the subspace in which the spectra are degenerate. Equivalently, Vn is the space where D = 0

(Equation (2.49)). Vn is determined from one complex constraint, so it has codimension 1 as

a subspace of Ln (i.e., Vn is an (n − 2)-dimensional subspace of the (n − 1)-dimensional Ln).

When we say “codimension 1,” we are counting by complex dimensions.

Gn and Vn need not have trivial fundamental groups. This is because loop homotopies in

a space X, in addition to being continuous, must also keep the loops entirely within X. For

6The subscript 1 in π1(X,x0) refers to the fact that π1(X,x0) is the first homotopy group of X, with respect
to x0. There are other homotopy groups πn(X,x0), for n ∈ Z+ [43, p.327, Ch.9]. A definition of πn(X,x0) is
given in [44, p.340, Ch.4.1].

7The trivial group is denoted 0 in Hatcher [44, p.27, Ch.1.1, Example 1.4]. It can be written as 〈e〉, where e
is the single group element. It can also be written as 0 in the context of abelian groups, or 1 in the context of
non-abelian groups [45] [46].
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example, we consider the complex plane C, with a single point removed from it (say, 0 + 0i),

as shown in Figure 2.2. A loop homotopy F cannot move a loop f(s) to another loop f ′(s)

unless F can avoid having the loop f(s) intersect the removed point 0+0i. Figure 2.2 shows two

distinct loop homotopy classes. One of them – [f̃ ] – is an identity element of the fundamental

group, since concatenating an element of [f̃ ] with any other loop h(s) creates a loop which is loop

homotopic to h(s). The other – [g̃] – is not an identity element, since concatenating two loops g1

and g2 in [g̃] that wrap around the × once produces a loop g2◦g1 that wraps around the × twice.

In fact, [g̃] is a generator of the fundamental group of X = C\{0 + 0i}. An elementary result

in algebraic topology is that, for any x0 ∈ X, the fundamental group π1(X,x0) is isomorphic to

the integers Z [44, pp.29-31, Theorem 1.7] (i.e., any loop homotopy class [h̃] ∈ π1(X,x0) can be

written as the homotopy class of the generator [g̃n], where g is raised to some integer power n).

The nontrivial π1(C\{0 + 0i}, x0) ∼= Z arises from the removal of {0 + 0i} from C.

As with the subspace C\{0 + 0i} of the complex plane C, a loop homotopy in Gn cannot put

a loop in Gn through the other subspace Vn. We can identify the fundamental group of Gn by

looking at the mapping between Gn and eigenvalue spectra of H. As before, varying the control

parameters in Gn via a smooth curve C ⊂ Gn smoothly transports n eigenvalues λ = {λ1, . . . , λn}

in the complex plane. Throughout this thesis, we take C to be a loop with some basepoint at x0.

This causes the spectrum λ corresponding to x0 to map back to itself along C. This evolution

of n points in C is a braid [47] [48] [49]. In analogy to path homotopy of loops in Gn, we define

braid isotopy for two braids: two braids are isotopic if the braids have the same basepoints,

and if one can be continuously deformed into the other without the strands intersecting. Braid

isotopy defines an equivalence relation. We now define spectral flow as the braid isotopy class

b [1, p.3]. Again in analogy with path concatenation, we define a concatenation of braids with

fixed endpoints, by sticking the start and endpoints of braids together. This forms the braid

group Bn [47].

Let us take the mapping of the set Gn of coefficients of traceless, degree-n polynomials with

nondegenerate spectra to the set of n−1 nondegenerate polynomial roots in C to be the function

f̃ : Gn → Cn−1. Path homotopies in Gn correspond to braid isotopies in Bn via the mapping f̃ .

By this correspondence, the fundamental group π1(Gn, x0) for a point x0 ∈ Gn is isomorphic to

the braid group Bn(f̃(x0)). π1(Ln, x0) = 0, so the nontrivial π1(Gn, x0) arises from the structure

of the degenerate subspace Vn; this will be made more concrete for n = 2 in Section 2.4 and for

n = 3 in Section 2.5.

2.4 2-Mode System
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2.4.1 2 Coupled Oscillators

To make concrete the discussion of spectral flow, we consider the eigenvalue braids formed in a

two-mode system. Let us consider two harmonic oscillators (discussed in more detail in Section

3.2). These oscillators have complex amplitudes c1 and c2. If they are uncoupled, they have

independent equations of motion (c.f. Equation (3.19))

ċ1 = −i (ω1 − iγ1/2) c1

ċ2 = −i (ω2 − iγ2/2) c2

(2.58)

These equations of motion are realized from the uncoupled Hamiltonian

H0 =

2∑
j=1

~ωj
(
c†jcj +

1

2

)
(2.59)

Now, we add a coupling term ~g(c1c
†
2 + c†1c2) to the Hamiltonian:

H =

2∑
j=1

~ωj
(
c†jcj +

1

2

)
+ ~g(c1c

†
2 + c†1c2) (2.60)

Define the complex eigenvalues λj = ωj − iγj/2. The c1 and c2 equations of motion, as can be

obtained from input-output theory (Section 3.3.2), are then

ċ1 = −i(λ1c1 + gc2)

ċ2 = −i(gc1 + λ2c2)

(2.61)

As a vector equation, the equation of motion for c′ = (c1, c2)T is

ċ′ = −iH′effc′ (2.62)

where

H′eff =

λ1 g

g λ2

 (2.63)

The solution to the equation of motion can be simplified by subtracting the trace from Equation

(2.63):

H′eff =

λ̄ 0

0 λ̄

+

λ g

g −λ

 (2.64)
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where we define

λ̄ =
λ1 + λ2

2

λ =
λ1 − λ2

2

(2.65)

If we multiply c by U(t) =

eiλ̄t 0

0 eiλ̄t

, to get c = U(t)c′, then the equation of motion is

ċ = −iHeffc (2.66)

where Heff is given by

Heff =

∆− iγ/2 g

g −∆ + iγ/2

 (2.67)

with λ = ∆ − iγ/2. In studying spectral flow in Equation (2.67), we will treat ∆ and g as free

parameters with which to tune the eigenvalues of Equation (2.67).

2.4.2 2-Mode Toy System

The eigenvalues of Equation (2.67) are found from the roots of the characteristic polynomial

(Equation (2.48)):

p(µ) = det(µI2×2 −Heff)

= (µ− λ)(µ+ λ)− g2

= µ2 − λ2 − g2

(2.68)

The roots are

µ± = ±
√
λ2 + g2 (2.69)

The general form for the characteristic polynomial of a traceless 2 × 2 matrix is (c.f. Equation

(2.41), with a1 = 0, and z = −a0)

p(µ) = µ2 − z (2.70)

Comparing Equations (2.68) and (2.70), we see that tuning the complex parameter z = λ2 + g2

tunes the eigenvalues µ± = ±
√
z.

We find qualitatively different eigenvalue trajectories, depending on how we define z(s) as

a function of a parameter s ∈ [0, 1], and if the curve defined by z(s) encloses z = 0. Per the

relation

z = λ2 + g2

= ∆2 + g2 − γ2/4− i∆γ,
(2.71)
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(a) (b)

(c) (d)

Figure 2.3: Eigenvalue braids in the 2-mode system. z wraps around itself from 0 to 2π once in
all plots. LHS shows z and the two eigenvalues in the complex plane, as well as the arguments of
z and the eigenvalues versus the parameter s ∈ [0, 1]. RHS shows the eigenvalues as a function
of s ∈ [0, 1]. Black x’s denote the base points of the control loop z (green), as well as the
eigenvalues (blue and orange). z does not enclose z = 0 in a and b, and z does enclose z = 0 in
c and d. In a and b, r0 = 0.25. In c and d, r0 = 0.75. In all plots, g0 = 1, γ = 1.

z = 0 when

γ∆ = 0, and (2.72a)

∆2 + g2 − γ2/4 = 0. (2.72b)

The choice that γ be a fixed parameter forces ∆ = 0, which then forces g = γ/2 at z = 0.

Now define curves ∆(s) and g(s), by

∆(s) = r0 sin(2πs) (2.73a)

g(s) = g0 + r0 cos(2πs) (2.73b)

For this section, let us assume that z(0) 6= 0 and z(1) 6= 0. The trajectories of the eigenvalues

µ±(s) = ±
√
z(s) = ±

√
λ(s)2 + g(s)2 depends on how many times the trajectory of z encloses

z = 0. For instance, in Figure 2.3, there are two loops performed in the parameter z(s) =
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λ(s)2 + g(s)2. In a loop in which the curve defined by z(s) does not enclose z = 0 (e.g., Figure

2.3 a and b), µ± return to themselves;

µ+(0) = µ+(1)

µ−(0) = µ−(1)

(2.74)

In a loop in which z(s) does enclose z = 0 (e.g. Figure 2.3 c and d), even though z(0) = z(1),

the eigenvalues permute

µ+(0) = µ−(1)

µ−(0) = µ+(1)

(2.75)

Somewhat more generally, for all choices of g0 and r0, the loops defined by Equation (2.73)

which permute eigenvalues are path homotopic to one another, with the path homotopy realized

by simply scaling r0 to any value for which

|g0 − r0| < γ/2; g0 + r0 > γ/2 (2.76)

All of these loops which leave the eigenvalues fixed are also path homotopic with each other, so

long as the complement of Equation (2.76) holds. In both of these cases, the homotopy does not

have the loop pass through z = 0 (i.e., through V2). By the isomorphism between braids and

control loops of the characteristic polynomial coefficients, two braid isotopy classes are formed

from these: one class of braids which permute eigenvalues, and another which do not. Braids

from the two isotopy classes cannot be deformed into one another without having the 2 strands

pass through one another; this happens happen precisely when the loop passes through z = 0.

The toy example defined by the curves in Equations (2.73) has focused on the loops permuting

the eigenvalues by winding around the exceptional point zero times or one time. However,

permuting the eigenvalues is not the full story; more generally, control loops can wind around

the exceptional point n times. For instance, we can define curves ∆n(s) and gn(s) by

∆n(s) = r0 sin(2πn · s) (2.77a)

gn(s) = g0 + r0 cos(2πn · s) (2.77b)

If this curve does not enclose z = 0, then the eigenvalues return to themselves again. However,

if this curve does enclose z = 0, then the eigenvalues permute only if n is an odd integer. For

instance, in Figure 2.4, with n = 2, in a and b, the loop does not enclose the exceptional point,

so the eigenvalues return to themselves; in c and d, the loop does enclose the exceptional point,

yet the eigenvalues returned to their initial values. However, the two braids formed by the
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(a) (b)

(c) (d)

Figure 2.4: Eigenvalue braids in the 2-mode system. z wraps around itself from 0 to 4π once in
all plots (n = 2 in Equation (2.77)). LHS shows z and the two eigenvalues in the complex plane,
as well as the arguments of z and the eigenvalues versus the parameter s ∈ [0, 1]. RHS shows
the eigenvalues as a function of s ∈ [0, 1]. Black x’s denote the base points of the control loop z
(green), as well as the eigenvalues (blue and orange). z does not enclose z = 0 in a and b, and z
does enclose z = 0 in c and d. In a and b, r0 = 0.25. In c and d, r0 = 0.75. In all plots, g0 = 1,
γ = 1.
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spectral flow are isotopically distinct from each other. This motivates the winding number of

the control loop, or the number of times the loop encloses z = 0. The winding number of the

loop uniquely determines the isotopy class of the braid formed from the loop. Thus, for the

space G2 of nondegenerate spectra, the fundamental group π1(G2) ∼= Z.

2.4.3 2-Mode Jordan-Arnol’d Form

We now find the eigenvector(s) of Heff subject to z = λ2 + g2. For z 6= 0, the eigenvectors

v± = (a±, b±)T are the solutions of

Heff

a±
b±

 =

λ− µ± g

g −λ− µ±


a±
b±

 =

0

0

 (2.78)

A set of linearly independent eigenvectors are determined by the vector components

a± = (λ+ µ±)/g

b± = 1

(2.79)

From the eigenvectors v± = ((λ+ µ±)/g, 1)T , a change-of-basis matrix S0 is constructed

S0 =

(
v+|v−

)
=

(λ+ µ+)/g (λ+ µ−)/g

1 1

 (2.80)

The change-of-basis S0 diagonalizes Heff :

S−1
0 HeffS0 =

µ+ 0

0 µ−

 (2.81)

When z = 0, the situation changes, in that Heff cannot be diagonalized. Indeed, at z = 0,

∆ = 0, g = γ/2, and µ+ = µ− = 0. If we follow the prescription of Equation (2.78), the single

eigenvector (up to multiplication by a scalar) is a = g = 1, b = −λ = +i. As discussed in Section

2.2.3, the eigenspace corresponding to µ = 0 has dimension 1. If we wish to find a basis in which

to write Heff in terms of only its eigenvalue µ = 0, we seek a generalized eigenvector of order 2

for µ = 0. This is found with

−iγ/2 γ/2

γ/2 +iγ/2


a2

b2

 =

 1

+i

 (2.82)

A solution is a2 = 0 and b2 = 2/γ. This vector satisfies (Heff − 0I)2(a2, b2)T = 0 (see Section
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2.2.3). Let us take v′2 = (γ/2)v2, which is also a generalized eigenvector of order 2. We then

write a similarity transformation

S = (v1|v′2) =

 1 0

+i 1

 (2.83)

with which

S−1Heff,z=0S =

0 1

0 0

 (2.84)

Equation (2.84) is a Jordan block, an “almost-diagonal” matrix.

In both cases, where the parameter z = 0 and z 6= 0, a matrix which has the same charac-

teristic polynomial as Equation (2.67), is

J2 + δJ =

0 1

z 0

 (2.85)

J2 +δJ is a Jordan block, plus an additional z term. When z 6= 0, then the eigenvalues are ±
√
z,

and the eigenvectors are v±(1,±
√
z)T . A similarity transformation that diagonalizes J2 + δJ is

T−1 = (v+|v−) =

 1 1

√
z −

√
z

 (2.86)

with inverse

T =
1

2

1 1/
√
z

1 −1/
√
z

 (2.87)

Then TJ2T
−1 = Diag(+

√
z,−
√
z). Now we may bring Heff into the form of J2 + δJ with

S2 = S0T (Equations (2.80) and (2.87)):

S2 = S0T =

λ/g 1/g

1 0

 (2.88)

S2 does not have a singularity at z = 0, unlike S and T . Then this transformation puts Heff as

a matrix in terms of its characteristic polynomial p(µ) = µ2 − z, regardless of the value of z:

S−1
2 HeffS2 =

 0 1

g2 + λ2 0

 =

0 1

z 0

 (2.89)

The above is the Jordan-Arnol‘d form for the 2 × 2 system [14] [15]. At z = 0, Equation
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(2.89), and thus Equation (2.67), is not diagonalizable. z = 0 is an exceptional point, at

which the eigenvalues and the eigenvectors become degenerate.8

The Jordan-Arnol‘d form (Equation (2.89)) is the most general possible perturbation to the

2× 2 Jordan block, up to a similarity transformation [14] [15]. To see this, we follow [14, p.355]

and write a perturbation δJ to the Jordan block:

δJ =

δJ11 δJ12

δJ21 δJ22

 (2.90)

and we see which δJ can be written as a similarity transformation from J =

0 1

0 0

. Under this

assumption, we seek a similarity transformation 1 + δS near the identity. Then (1 + δS)−1J(1 +

δS)−1 ≈ J + δJ , or

(1 + δS)−1J(1 + δS)−1 ≈ (1 + δS)−1J(1− δS)

= J + δS · J − J · δS

= J + [δS, J ]

(2.91)

We identify those perturbations δJi = [δS, J ] as the perturbations which can be generated

“internally” from a similarity transformation near the identity. Write δS as

δS =

A B

a b

 (2.92)

Then

δJi = [δS, J ]

=

−a A− b

0 a

 (2.93)

In contrast, the perturbations δJn cannot be written in terms of a similarity transformation near

the identity:

δJn =

0 0

z y

 (2.94)

The subscript n means “non-internally” generated. We can take y = 0, since we are considering

8In terms of algebraic and geometric multiplicities (Sections 2.2.2 and 2.2.3), an exceptional point is a point
in parameter space at which the algebraic multiplicity is strictly greater than the geometric multiplicity. If the
eigenvalues become degenerate, but the algebraic and geometric multiplicities remain equal, the system is instead
at a diabolic point, where the eigenvectors remain nondegenerate.
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traceless matrices. Adding δJn to the Jordan block, we have

J2 + δJn =

0 1

z 0

 (2.95)

Because the characteristic polynomial of a traceless 2× 2 matrix is p(µ) = µ2− z, we can regard

the perturbation z as a perturbation to the characteristic polynomial (as well as the minimal

polynomial) of the Jordan block.

We conclude this discussion of the 2-mode exceptional point with three remarks. The first

is that z spans the eigenvalue control space around the exceptional point at z = 0. Thus, one

complex parameter, or two real parameters, are needed to realize full control of the eigenvalue

control space for a 2-mode system. The second is that, for a general 2 × 2 traceless Hamilto-

nian H2×2(ξ1, ξ2), for two real parameters ξ1, ξ2, one can calculate this Jordan-Arnol’d control

parameter z with (c.f. Equation (2.47))

z = −det
(
H2×2(ξ1, ξ2)

)
(2.96)

Solving for values of ξ1 and ξ2 for which z = 0 determines where the exceptional point lies. The

third is that, since the discriminant D is equal to 4z, solving Equation (2.96) is equivalent to

solving for zeros of the discriminant.

2.4.4 π1(G2) ∼= B2
∼= Z

In Section 2.4.2, we considered a system in which we realize two eigenvalue braids: one in which

the eigenvalues permute, and one in which they do not. The braid isotopy classes which these

two braids define are two elements of the infinite-dimensional braid group B2.

Let the two braids in Section 2.4.2 be e and σ1. e is just the identity braid. σ1 is a generator

of the braid group B2, since any braid isotopy class in B2 can be written as the braid isotopy

b = σj1, for j ∈ Z. j is allowed to be a negative integer, signifying that the inverse element of

σ1 may generate the braid instead. Since j solely determines the braid isotopy class of b, we see

that B2
∼= Z.

We compare the result that B2
∼= Z with π1(G2). The loop homotopy class of a loop in G2

is determined by the integer number of times a loop wraps around V2 = {0}. Thus, G2 has the

same fundamental group as the unit circle S1. Then π1(S1) = Z [44, p.29-31], in agreement with

π(G2) ∼= Z.
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2.5 3-Mode System

2.5.1 3-Mode Control Space

In a manner similar to the 2-mode system, we consider three coupled modes c1, c2, and c3, which

are coupled by a Hamiltonian

H =

3∑
j=1

~ωj(c†jcj + 1/2) +
∑
i6=j

~gij(c†i cj + cic
†
j) (2.97)

This leads to coupled equations of motion

c = −iHeffc (2.98)

where (c.f., Equation (2.63))

Heff =


λ1 g12 g13

g12 λ2 g23

g13 g23 λ3

 (2.99)

The characteristic polynomial of any traceless 3× 3 matrix is (c.f. Equation (2.41))

p(µ) = µ3 + a1µ− a0 (2.100)

Its discriminant is (from Equation (2.52))

D = −4a3
1 − 27a2

0 (2.101)

The Jordan block for a traceless 3×3 matrix with exactly one eigenvalue λ = 0 and eigenvector

is

J3 =


0 1 0

0 0 1

0 0 0

 (2.102)

It can be shown that the most general possible perturbation to the Jordan block (2.102) is given

by [14, p.350-1]:

J + δJ =


0 1 0

0 0 1

x y z

 ; x, y, z ∈ C (2.103)

J + δJ in (2.103) has three complex parameters, so it has six real parameters. These six

real numbers independently span the space of eigenspectra of a 3 × 3 complex matrix. For our
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experiment, it suffices to consider J + δJ with an overall trace of zero, so we set z = 0. This

yields the Jordan-Arnol’d form for a 3× 3 traceless matrix:

J + δJ =


0 1 0

0 0 1

x y 0

 ; x, y ∈ C (2.104)

We can remark that since x, y are two complex numbers that independently control the set

of matrices J + δJ (2.104), the complex dimension of the set of J + δJ is two, and the real

dimension is four. Thus, these x, y ∈ C parameters realize the entire control space of eigenvalues

of 3× 3 traceless complex matrices (which can be non-Hermitian).

We note some properties of J + δJ (2.104). Its characteristic polynomial is

p(µ) = −µ3 + µy + x (2.105)

Its discriminant polynomial is

d(x, y) = 4y3 − 27x2 (2.106)

Per Equation (2.49), at least two of the three eigenvalues of J + δJ are equal if and only if

d(x, y) = 0. A special case of this is when x = y = 0; then all three eigenvalues are equal.

We can also see that, at d(x, y) = 0, for x 6= 0, the three eigenvectors of the Jordan-Arnol’d

form (Equation (2.104)) will not span the full 3D vector space. For d(x, y) = 0, the roots of the

characteristic polynomial (Equation (2.105)) are (as found in in Appendix E):

λ1 = 2
(x

2

)1/3

λ2 = λ3 = −
(x

2

)1/3
(2.107)

An eigenvector corresponding to the nondegenerate λ1 is v1 = ((x/2)1/3, 0, 2x)T . The only eigen-

vector corresponding to λ2 = λ3 (up to a scalar multiple) is v2 = (2(x/2)2/3,−x, (x4/2)1/3)T .

Thus, J + δJ is not diagonalizable when d(x, y) = 0. A generalized eigenvector of order 2 cor-

responding to λ2 = λ3 is v3 = (2(x/2)1/3, 0,−x)T . These three vectors together define a change

of basis S = (v1|v2|v3) that sets

J + δJ ∼=


0 0 0

0 0 1

0 0 0

 (2.108)

Because d(x, y) = 0 makes the eigenvectors of the 3 × 3 matrix fail to span C3, the 3 × 3

matrix is at an exceptional point if and only if d(x, y) = 0. These points are EP2 points, where
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Figure 2.5: The trefoil knot (green), parameterized by Equations (2.112) and (2.113). The trefoil
knot is wound around a torus of radii r and ρ (blue). The coordinates t and φ parameterize the
circles of radii r and ρ, respectively.

the subscript 2 indicates a 2nd order degeneracy in the eigenvalues as well as the eigenvectors.

A special case is when, in addition, x = y = 0. Then Equation (2.104) is already a Jordan block;

it is an EP3 point, or third-order exceptional point.

Because x and y are the only two complex parameters needed to fully parameterize the

eigenvalue control space of a 3-mode system, we need only four real parameters in order to reach

arbitrary control of this full space. Two useful relations for an arbitrary traceless Heff arise from

the similarity relation to Equation (2.104):

x = det
(
Heff

)
(2.109a)

y =
1

2
Tr
(
H2

eff

)
(2.109b)

Then, solving for d(x, y) = 0 yields EP2 points, and solving for x = y = 0 yields the EP3 point.

Numerically solving these scalar equations is far simpler than directly finding the roots of the

characteristic polynomial p(λ) = det(Heff − λI) in the hopes of numerically finding exceptional

points.

2.5.2 The Knotted Topology of EP2 in a 3-Mode System

The subspace of the parameters x and y for which d(x, y) = 0 (2.106) possesses a trefoil knot

structure. To see this, we follow an argument in [9]. We can write x, y in polar form:

x = reit

y = ρeiφ
(2.110)

Then d(x, y) = 0 implies that

27r2ei2t = 4ρ3ei3φ (2.111)
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We can look at the magnitudes and the arguments of this equation:

27r2 = 4ρ3

2t = 3φ

(2.112)

Thus, r, ρ, t, φ are four real parameters that, when they satisfy the constraints of Equation 2.112,

realize the space of doubly degenerate eigenspectra of 3 × 3 complex matrices. Since there are

two constraint equations, this space has real dimension 2.

Now, if we restrict our attention to a hypersurface in L3, which has real dimension 4, we set

a constraint equation F (r, ρ, t, φ) = 0. The intersection of this space with the space of doubly

degenerate eigenspectra has three constraint equations, so it has real dimension 1.

For instance, if we restrict our attention to a hypersphere, we set a constraint equation

|x|2 + |y|2 = ε2 (2.113)

This sets r2 +ρ2 = ε2. We can sweep this one-dimensional space with one parameter, θ ∈ [0, 2π),

and setting

t = 3θ

φ = 2θ

(2.114)

Figure 2.5 shows the curve traced out by t, φ, r, ρ, as defined in Equations (2.114), (2.112), and

(2.113). In Figure 2.5, we see that, as θ goes from 0 to 2π once, t goes from 0 to 6π, and φ goes

from 0 to 4π. This (3,2) covering defines a trefoil knot.

We can remark that, from (2.114), θ = t − φ. Thus, θ can be obtained directly from the x

and y control parameters:

θ = Arg

(
x

y

)
(2.115)

Because x and y are functions of the system eigenvalues, this relation is very useful in providing

a single coordinate to parameterize the knot (c.f., Figure 6.22).

2.5.3 EP2 Manifold

In Section 2.5.2, we took the EP2 manifold and restricted it to a 3-sphere (Equation (2.113)).

Here, we discuss considerations in the choice of hypersurface (which is delineated concretely in

Section 6.3), as well as the full EP2 manifold.
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The solutions to d(x, y) = 0 form an algebraic variety [50]. d(x, y) scales such that when

x 7→ ax

y 7→ by

(2.116)

where a2 = b3, then

d(x, y) 7→ a2d(ax, by) (2.117)

so any root (x0, y0) of d(x, y) corresponds to a root (ax0, by0) of d(x, y). We see then that this

algebraic variety is a cone K × R>0 in C2. K is the trefoil knot (Section 2.5.2), and R>0 is a

“radial distance” from the x = y = 0 origin (the EP3 point).

The EP2 manifold is a 2-parameter algebraic variety in the full control space L3
∼= C2. The

full control space has real dimension 4, so the algebraic variety has real codimension 2. Thus,

we can loop around the 2-dimensional space of EPs. To make this easier to visualize, we can

restrict the full EP2 manifold to a hypersurface of our choosing; the space of EPs on this surface

is then a 1-dimensional curve. One possible hypersurface – the 3-sphere – is considered in Section

2.5.2, which follows [9]. In practice, any cross-section of the EP2 cone which is realized as the

intersection of the EP2 cone with a hypersurface will suffice, so long as [1, Supplement, Section

1]

1. The hypersurface encloses x = y = 0 (the EP3 point). We require this because the theorem

by [9] is stated for surfaces which enclose the origin (0, 0) of the space C2.

2. The hypersurface does not intersect itself. This could cause the EP2 curve to trace out

something other than a trefoil knot.

3. Has the topology of the 3-sphere. Except perhaps on a set of measure zero, the hypersurface

should locally “look like” a 3-sphere.

4. Is everywhere transverse to an infinitesimal scaling by a 7→ (1 + ε)a. That is, the scaling

should never “run parallel” to the surface.9 A more mathematically rigorous description

of transversality can be found in [51, pp.27-32, Chapter 1, Section 5].

These criteria are chosen so that the system eigenvalues are a one-to-one function of the

position on the hypersurface. When these criteria are realized, then the R>0 part of the K×R>0

EP2 manifold is sliced out, and we are left with the trefoil knot K. Another choice which suffices

9The hypersurface which we choose in experimental space (described in Chapter 6) violates this condition
in a few spots. The condition can be numerically approximated as: for any small continuous section of the
hypersurface, there is only one continuous cluster of eigenvalues. A numerical check of the surface found that at
least 99% of the surface satisfies this condition, and the points which violate this condition are away from the
EP2 points measured in Chapter 5.
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Figure 2.6: A: A depiction of the EP2 manifold in the L3 control space (gold), which contains
EP3 (blue). L3 is depicted here as R4 ∼= C2. We look at the S3 hypersurface (green), on which
the EP2 manifold is a trefoil knot.
B: three loops in the control space G3, which realize three braids in distinct braid isotopy classes
in B3. Left: the braid exchanges zero eigenvalues; middle: the braid exchanges two eigenvalues;
right: the braid exchanges three eigenvalues.

is a 4D hyperrectangle (see Section 6.3.2, which discusses the choice of hypersurface in the

experiment).

2.5.4 Braid Group B3

In Figure 2.6, we show a cartoon10 of the full EP2 manifold, intersecting with a hypersurface S

in the L3
∼= C2 control space. On this hypersurface S – chosen to be a 3-sphere – the EP2 surface

is a trefoil knot, as guaranteed in Sections 2.5.2 and 2.5.3. We also show braids that arise from

control loops on this hypersurface. These braids generate B3.

Thus far, we have viewed the space L3 as a complex vector space isomorphic to C2, with

complex dimension 2. If we instead view L3 as a real vector space R4, then it has a real dimension

of 4. The hypersurface of a 4D control space, which has one real constraint, is a 3D space. Thus,

a 1D control loop on the hypersurface can enclose the EP2 curve, which has codimension 2 in real

dimensions. As discussed more generally in Section 2.3, loop homotopy classes in G3 correspond

to braid isotopy classes in B3. Thus, the fundamental group of the complement of the knot K

in G3 ∩ S is B3.

We remark that B3 is a nonabelian group, whereas B2 is abelian (in fact, B2
∼= Z, while Bn is

nonabelian for n ≥ 3 [47]). Thus, control loops in the 3-mode system are noncommutative. We

also remark that the system which we assume – a system of non-reciprocally coupled, damped

harmonic oscillators – is quite ubiquitous, yet has the striking features of a trefoil knot topology,

as well as noncommutative eigenvalue braids. To access Ln in a physical system, we require

coupling, damping, and nonreciprocity. In Chapter 3, we discuss the theoretical details of the

system of coupled oscillators that we choose for this experiment, yet there is nothing in this

chapter that requires the choice to be an optomechanical platform; as discussed in this chapter,

braids and knots are completely generic features of coupled harmonic oscillators.

10A mathematically poor, but nonetheless attractive cartoon.
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Chapter 3

Optomechanics Theory

In this chapter, we discuss the physical system that we use to realize exceptional point physics.

Namely, we describe the optomechanical interaction, which couples a mechanical oscillator to a

cavity electromagnetic field. The optomechanical interaction is the workhorse that enables us

to couple and tune three membrane mechanical modes.

3.1 Overview of Optomechanics

Cavity optomechanics couples an (optical or microwave) electromagnetic field in a cavity with a

mechanical oscillator [52]. This coupling arises from the momentum carried by photons in the

field as the radiation pressure force.

Applications of the radiation-pressure force can be found on the micro- and macroscale.

On the atomic scale, the radiation-pressure force can be used for laser cooling, which is the

basis for atomic clocks and ion traps[53] [54] [52]. For instance, laser cooling, combined with

evaporative cooling of 87Rb atoms, were used to obtain the first experimental observation of a

Bose-Einstein condensate [55]. On the kg-scale, the radiation-pressure force can act on a movable

cavity end-mirror and move it via the momentum that the photons impart (e.g., a microwave

sapphire resonator coupled to a 1 kHz niobium membrane acoustic oscillator [56], bistability in a

cavity induced by radiation-pressure force [57] [52]). The quantum fluctuations in the radiation-

pressure force also impose limits on the sensitivity of interferometers [58], and these had to be

taken into account in the measurement of gravitational waves by LIGO and VIRGO (with the

first detection in September 2015 [59]) [60].

The Harris group uses optomechanics in a wide variety of domains. One recent experiment

is the construction of a system of magnetically levitated drops of superfluid 4He; the experiment

probes the drop’s optical and mechanical modes, its temperature, and its evaporation, as an
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avenue toward creating an optomechanical system that can be used for quantum optomechanics

[61] [62]. Another recent experiment is the measurement of high-order phonon correlations in a

superfluid 4He resonator by measuring the arrival of photons scattered by the resonator’s acoustic

modes [63]. The goals of these two experiments are quantum in nature, yet because of the diverse

utility of optomechanics, we can probe other areas of physics, such as non-Hermitian physics, with

essentially the same radiation-pressure-force mechanism. The experiments conducted with the

membrane-in-the-middle experiment to explore topological transport in non-Hermitian physics

since 2016 were completely classical (Section 4.4), and they all use radiation-pressure force to

drive the modes of a square membrane inside its cavity.

3.2 Mechanical Oscillator

3.2.1 Linear Response: the Mechanical Transfer Function

In discussing the physical origin of the optomechanical interaction, the ubiquitous harmonic

oscillator plays a fundamental role. Thus, we begin our discussion of the optomechanical inter-

action with a short discussion of the harmonic oscillator. Specifically, we discuss the mechanical

transfer function of a harmonic oscillator.

Suppose we have a point mass m oscillating at a frequency ωm, which suffers a mechanical

damping γm. We drive it with an applied force F . The oscillation force is given by Hooke’s law

[2, Ch.5, p.161]:

Fspring = −kx (3.1)

where the spring constant is k = mω2
m. The damping force is proportional to ẋ:

Fdamping = −mγmẋ (3.2)

The equation of motion follows from Newton’s Second Law:

mẍ =
∑
i

Fi = −mω2
mx−mγmẋ+ F (3.3)

Equation (3.3) is easily solved by moving to the Fourier domain. The Fourier transform

definition we use is such that for a time-domain function f(t), the Fourier transform operator

F [f(t)](ω) performs

F [f(t)](ω) ,
∫ ∞
−∞

f(t)eiωtdt (3.4)
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This functional mapping is often denoted

f̃ [ω] , F [f(t)](ω) (3.5)

For our purpose of solving Equation (3.3), a useful property of the Fourier transform (Eq.

(3.4)) is that a time derivative in the time domain corresponds to multiplication in the frequency

domain:

F
[
d

dt
f(t)

]
(ω) = −iωF [f(t)](ω) (3.6)

This turns the differential equation (3.3) into an algebraic equation

−mω2x̃[ω] = −mω2
mx̃[ω] + iωmγmx̃[ω] + F̃ [ω] (3.7)

Now we immediately have the displacement x̃[ω] as a function of the applied force F [ω]:

x̃[ω] = χx[ω]F̃ [ω] (3.8)

where the proportionality factor is the mechanical transfer function:

χx[ω] =
1/m

ω2
m − ω2 − iγmω

(3.9)

In the high-Q regime, we focus especially on frequencies ω near ωm. Then we can approximate

ω2
m−ω2 = (ωm+ω)(ωm−ω) ≈ 2ωm(ωm−ω) to get the mechanical transfer function 1 near

resonance:

χx[ω] ≈ 1/2mωm
ωm − ω − iγm/2

(3.10)

3.2.2 The High-Q Regime: Reducing the 2nd Order ODE to a 1st

Order ODE

The classic equation in Equation (3.3) is a second-order differential equation in x. In the limit

where the quality factor Q, given by

Q = ωm/γm, (3.11)

is very large, then Equation (3.3) can be reduced to a first-order differential equation, which

considerably simplifies the dynamics. In the membrane-in-the-middle experiment considered

in this thesis, when the membranes were first installed in the cryogenic system in 2013, the

1This is also called the mechanical susceptibility. However, to avoid confusion with the later definition of
mechanical susceptibility (Equation (3.135b)) when we discuss optomechanics, we refer to this susceptibility
factor as the mechanical transfer function.
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mechanical oscillators had Q ∼ 106 at room temperature, and Q ∼ 20 × 106 at cryogenic

temperatures [33, p.35-6] [64, p.87]. More recently, the Q factors were ∼ 105 in 2019 (Section

4.1.3). Thus, this thesis indeed operates in the high-Q regime.

Take the momentum p = mẋ, and define the complex amplitude

c =
1

2xZPF

(
x+

ip

mωm

)
(3.12)

where xZPF is the zero-point fluctuation amplitude of a quantum mechanical oscillator:

xZPF ,

√
~

2mωm
(3.13)

Admittedly, xZPF is merely a scaling factor which ensures that c is dimensionless. The choice

could have been any quantity with dimensions of length. Though this thesis does not operate

in any quantum mechanical regime, we nonetheless choose this scaling factor, as this is the

convention in both classical and quantum optomechanics [52, pp. 8].

We can write x and p in terms of c:

x = xZPF(c+ c∗) (3.14)

p = −imωmxZPF(c− c∗) (3.15)

We can write Equation (3.3) and p = mẋ in terms of c and c∗ to obtain

xZPF(ċ+ ċ∗) = −iωmxZPF(c− c∗)

−imωmxZPF(ċ− ċ∗) = −mω2
mxZPF(c+ c∗) + iγmmωmxZPF(c− c∗) + F

(3.16)

These equations can be solved in terms of c and c∗ to obtain two equations:

ċ = −iωmc−
γm
2

(c− c∗) + cin (3.17)

and the complex conjugate of Equation (3.17), where we have defined

cin ,
+iFxZPF

~
=

+iF

2mωmxZPF
(3.18)

We can simplify Equation 3.17 even further by using the high Q of the resonator; since the

resonator is high-Q, for a drive cin[ω] at a frequency ω which is near ωm, plus or minus a few

integer multiples of γm/2, c∗[ω] is very small, so it can be ignored. For a proof of this assertion,

see Appendix A. Thus, by dropping the c∗ term in Equation 3.17, we reduce the number of
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coupled first-order differential equations from two to one:

ċ = −
(
iωm +

γm
2

)
c+ cin (3.19)

In the high-Q limit, we can take the Fourier transform of Equation (3.19) to get

− iωc[ω] = −
(γm

2
+ iωm

)
c+ cin[ω] (3.20)

We then define the mechanical susceptibility

χm[ω] =
1

γ/2 + i(ωm − ω)
(3.21)

so that the frequency space solution is simply

c[ω] = χm[ω]cin[ω] (3.22)

3.2.3 Hamiltonian of the Mechanical Oscillator

The kinetic energy of the harmonic oscillator is

K =
1

2
mv2 =

1

2

p2

m
(3.23)

The potential energy is

U =
1

2
kx2 =

1

2
mω2x2 (3.24)

The total energy is simply

E = K + U =
1

2

(
p2

m
+mω2x2

)
(3.25)

This gives the Hamiltonian

H = E =
1

2

(
p2

m
+mω2x2

)
(3.26)

In terms of the dimensionless mechanical oscillator amplitudes c and c∗ (Equation (3.12)), it is

a simple algebraic exercise to write the Hamiltonian as

H = ~ω
(
c∗c+

1

2

)
(3.27)

If we have multiple oscillators, where the jth oscillator has frequency ωj , then the Hamiltonian

for all of these oscillators is

H =
∑
j

~ωj
(
c∗jcj +

1

2

)
(3.28)
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3.3 Fabry-Pérot Cavity

3.3.1 Fabry-Pérot Cavity Fields and Hamiltonian

In this section, we review the electric and magnetic fields inside a Fabry-Pérot cavity. We follow

an approach from [65, p.7-10] to derive the electromagnetic field as a harmonic oscillator.

Recall Maxwell’s equations for the electric field E(r, t) and magnetic field B(r, t) in free space

(i.e., with no charge or current densities ρ(r, t) or J(r, t) present):

∇ ·E(r, t) = 0 (3.29a)

∇×E(r, t) = −∂B(r, t)

∂t
(3.29b)

∇ ·B(r, t) = 0 (3.29c)

∇×B(r, t) =
1

c2
∂E(r, t)

∂t
(3.29d)

We also recall the magnetic vector potential A(r, t), which is defined such that it satisfies

the equations

B(r, t) = ∇×A(r, t) (3.30a)

E(r, t) = −∂A(r, t)

∂t
−∇φ(r, t) (3.30b)

where φ(r, t) is the scalar potential. In the absence of an external field, φ(r, t) is constant.

We can plug the two defining equations of the vector potential, Equations (3.30a) and (3.30b),

into Equation (3.29d) (known as the Ampère-Maxwell law) to get

∇×∇×A(r, t) = ∇ (∇ ·A(r, t))−∇2A(r, t)

=
1

c2

(
−∂

2A(r, t)

∂t2
− ∂∇φ(r, t)

∂t

) (3.31)

where we have utilized the vector identity ∇×∇× v = ∇(∇ · v)−∇2v. 2

We can simplify Equation (3.31) by choosing a gauge 3 that sets

∇ ·A(r, t) = 0 (3.32)

2These vector calculus identities need not be memorized, if one instead remembers that the ith component of
∇×v is (∇×v)i = εijk∂jvk, where εijk is the Levy-Civita symbol, and the identity εijkεilm = δjlδkm− δjmδkl,
one can derive (∇ × ∇ × v)i = εijk∂jεklm∂lvm = ∂i∂jvj − ∂2j vi = ∂i(∇ · v) − ∇2vi. Repeated indices are
understood to indicate summation over the repeated index, as in the Einstein summation convention.

3A is not completely determined from Equations (3.30a) and (3.30b) alone. We can change A(r, t) and φ(r, t)

via a scalar function ψ(r, t) (where ψ is differentiable in space and time) via A 7→ A +∇ψ; φ 7→ φ − ∂ψ
∂t

. One
can show that this does not change the values of B(r, t) or E(r, t) in Equations (3.30a) and (3.30b). We refer to
this choice of A and φ that still satisfies Equations (3.30a) and (3.30b) as choosing a gauge.
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Equation (3.32) is called the transversality condition. Since φ is constant, ∂t∇φ = 0, so A(r, t)

satisfies the wave equation,

∇2A(r, t)− 1

c2
∂2A(r, t)

∂t2
= 0 (3.33)

We now proceed by considering the field in a cube of length L and volume V = L3, and then

Fourier expanding A(r, t)4:

A(r, t) =
∑
k

(
~

2ωkε0

)1/2 (
a′kuk(r)e−iωkt + a∗

′

k u∗k(r)e+iωkt
)

(3.34)

These vectors k are a discrete set of vectors. The functions uk(r) satisfy the wave equation

(
∇2 +

ω2
k

c2

)
uk(r) = 0 (3.35)

as well as the transversality condition

∇ · uk(r) = 0 (3.36)

Furthermore, uk(r) are a complete orthogonal set of functions:

∫
V

u∗k(r) · uk′(r) d3r =
1

V
δkk′ (3.37)

With reflective boundary conditions, the functions uk(r) take the form

uk(r) = V −1/2
∑
µ=±1

c
(µ)
k exp(ik · r) ê

(µ)
k (3.38)

where ê
(µ)
k is a unit polarization vector, and µ = ±1 is a polarization index. We see from the

transversality condition (Equation (3.36)) that, for all k,

k · ê(µ)
k = 0 (3.39)

We also see that the orthogonality condition (Equation (3.37)) becomes an orthonormality con-

dition

ê
(µ)∗
k · ê(µ)

k = δkk′ (3.40)

Because of the reflective boundary conditions, the components of k = (kx, ky, kz) will all be of

4The coefficients a′k are chosen, along with these factors
(

~
2ωkε0V

)1/2
, to agree with the conventions in

quantum mechanics, even though ~ plays no fundamental role in this discussion.
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the form

kx =
π

L
nx, ky =

π

L
ny, kz =

π

L
nz, nx, ny, nz ∈ Z (3.41)

We also see from Equation (3.35) that the magnitude |k| satisfies

|k| = ωk
c

(3.42)

Thus, the permissible values of ωk are

ωk =
πc

L
nk =

2πc

λk
, nk ∈ Z+ (3.43)

where the wavelength λk is

λk = 2L/nk, nk ∈ Z+ (3.44)

We can rewrite Equation (3.34) as

A(r, t) =
∑
k

∑
µ=±1

(
~

2ωkε0V

)1/2 (
a

(µ)
k ê

(µ)
k e+ik·r−iωkt + a

(µ)∗
k ê

(µ)∗
k e−ik·r+iωkt

)
(3.45)

and plug Equation (3.45) into Equation (3.30a) and (3.30b) to obtain E(r, t) and B(r, t):

E(r, t) = +i
∑
k

∑
µ=±1

(
~ωk

2ε0V

)1/2 (
a

(µ)
k ê

(µ)
k e+ik·r−iωkt − a(µ)∗

k ê
(µ)∗
k e−ik·r+iωkt

)
(3.46a)

B(r, t) = +i
∑
k

∑
µ=±1

(
~ωk

2c2ε0V

)1/2 (
a

(µ)
k k̂× ê

(µ)
k e−iωkt − a(µ)∗

k k̂× ê
(µ)∗
k e+iωkt

)
(3.46b)

The Hamiltonian of the electromagnetic field is given by

H =
ε0

2

∫
V

dV
(
|E|2 + c2 |B|2

)
(3.47)

Using the orthonormality relation (3.40) (and the vector identity (a × b) · (a × c) = k2a · b −

(a · b)(a · b)), we can evaluate the integrals and inner products in the Hamiltonian to obtain

H =
1

2

∑
k,µ

~ωk

(
a

(µ)
k a

(µ)∗
k + a

(µ)∗
k a

(µ)
k

)
(3.48)

At this point, we may impose commutation relations on the complex amplitudes

[a
(µ)
k , a

(µ)
k′ ] = 0, [a

(µ)∗
k , a

(µ)∗
k′ ] = 0, [a

(µ)
k , a

(µ)∗
k′ ] = 1, (3.49)
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in agreement with the bosonic commutation relations of quantum mechanics5, and obtain the

Hamiltonian in a form recognizable as the Hamiltonian of a simple harmonic oscillator

H =
∑
k,µ

~ωk

(
a

(µ)∗
k a

(µ)
k +

1

2

)
(3.50)

3.3.2 Input-Output Theory

In this subsection, we obtain the equation of motion for the interaction of a single cavity mode

with an external multi-mode electromagnetic field.

We follow the treatment in [65, pp.93-9, Ch.6.1] and [65, pp.127-31, Ch.7.1], which follows

[66] and [67].6 For consistency with these sources, we interchangeably use a∗ and a† to denote

the complex conjugate of the complex amplitude/operator a. This is fine, since this thesis does

not consider quantum mechanics.

We assume that the cavity Hamiltonian is described by HS, and the external electromagnetic

field comprises a bath, described by HB. For this section, we do not describe HS; we discuss it

in more detail in Section 3.3.3. HB can be modelled as a collection of bosonic modes. Finally,

the interaction between the system and the bath is given by a time-varying potential V (t). Let

the single cavity mode be given by a time-varying complex amplitude a(t), and the multi-mode

electromagnetic field have complex amplitudes bj that correspond to mode j of frequency ωj .

Thus, the total Hamiltonian is

H(t) = HS +HB + V (t) (3.51)

For this discussion, we assume that the external electromagnetic field propagates in the x-

direction, and we consider only one polarization axis. For simplicity, we look at the positive

frequency components of the electromagnetic field given in Equation (3.46a):

E(+)(x, t) = +i
∑
j

(
~ωj

2ε0V

)1/2

bje
+ikjx−iωjt (3.52)

where bj is the complex amplitude for mode j, and kj = ωj/c. We assume that the modes of the

external electromagnetic field exist in a narrow band about a very large center carrier frequency

Ω. This is always valid in quantum optics [66, p.30]. We shall assume that all modes are

centered around a carrier frequency Ω, which is the cavity resonance frequency, and Ω � 1 Hz.

5In a true quantum mechanical treatment, we would also promote the complex amplitudes a
(µ)
k and a

(µ)∗
k

to operators â
(µ)
k and â

(µ)†
k that act on a bosonic Hilbert space of Fock states. However, since this thesis does

not consider quantum mechanics, we opt not to do this, and content ourselves with the commutation relations
in Equation (3.49). In particular, for a complex amplitude, or operator a, we do not distinguish between the
complex conjugate a∗ and the “dagger” a†.

6Caveat lector : there are numerous sign errors and missing square roots in the formulae of [65, pp.127-31,
Ch.7.1].

53
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This assumption renders Equation (3.52) as

E(+)(x, t) = +i

(
~Ω

2πε0Ac

)1/2√
∆ωFSR

∑
j

bje
−iωj(t−x/c) (3.53)

where A is a transverse area of the cavity. Recall that the free-spectral range frequency is

∆ωFSR =
πc

L
, (3.54)

where L is the length of the cavity. Note that the prefactor of the sum in Equation (3.53) has

dimensions of newtons per coulomb (i.e., an electric field).

The Hamiltonian corresponding to the bath electromagnetic field (3.53), rewritten here, is

HB =
∑
j

~ωj
(
b†jbj +

1

2

)
(3.55)

The interaction potential V (t) exchanges photons between the cavity and the environment.

Equivalently, we destroy a photon in the environment to create one in the cavity, and vice versa.

This Hamiltonian is given by [65, p.95]

V (t) = ~
(
a†Γ(t)eiΩt + aΓ(t)†e−iΩt

)
(3.56)

where

Γ(t) =
∑
j

gjbje
−iωjt (3.57)

We now take the continuum limit. We do this by following the approach in [68, Appendix

B], by using the conversion (
∆ω

∑
ω

)
→
(∫

dω

)
(3.58)

This sets Equations (3.53) and (3.50) to

E(+)(x, t) = +i

(
~Ω

2πε0Ac

)1/2 √
∆ωFSR

∆ω

∫ ∞
0

dω b(ω)e−iω(t−x/c) (3.59a)

HB =
1

∆ω

∫ ∞
0

dω ~ω
(
b†(ω)b(ω) +

1

2

)
(3.59b)

In the equations of Equations (3.59), b(ω) and b†(ω) have units of unity. To simplify the formulae

of Equations (3.59), we scale b(ω), similarly to [68, Appendix B], via

b(ω)→ b̃(ω) = eiξ
√

1

∆ω
b(ω) (3.60)

54
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The phase ξ does not change HB (3.59b), and multiplies E(+)(x, t) (3.59a) by a phase factor

e−iξ. The choice of ξ does not affect the dynamics qualitatively. We choose ξ = π in Equation

(3.60) to remove the +i factor in Equation (3.59a), and obtain

E(+)(x, t) =

(
~Ω

2πε0Ac

)1/2
√

∆ωFSR

∆ω

∫ ∞
0

dω b̃(ω)e−iω(t−x/c) (3.61a)

HB =

∫ ∞
0

dω ~ω
(
b̃†(ω)b̃(ω) +

1

2

)
(3.61b)

We remark that the units of b̃(ω) in Equation (3.60) are (2π × Hz)−1/2. For the rest of this

section, we suppress the tilde in the b̃(ω), and simply write b(ω) in the continuum limit.

In analogy to the positive-frequency electric field amplitude in Equation (3.61a), and following

[65, Ch.7.1], we define a field b(x, t) with complex amplitude

b(x, t) =
1√
2π

∫ ∞
0

dω b(ω)e−iω(t−x/c)

= e−iΩ(t−x/c) 1√
2π

∫ ∞
−∞

dω b(ω)e−iω(t−x/c)
(3.62)

where we used the change of variables ω → ω + Ω, and set the lower limit of integration from

−Ω to −∞, since Ω� 1. b(ω) has units of (2π×Hz)−1/2, so this gives b(x, t) units of
√

Hz. The

moment n(x, t) =
〈
b†(x, t)b(x, t)

〉
has units of Hz, and it can be interpreted as the probability

per unit time to detect a photon at point x and at time t [65, p.128, Ch.7.1].

In considering the time dynamics of the modes a and b(ω), we note that since the cavity

can have matter inside of it (e.g. this experiment’s square membrane), the cavity mode a can

have a time dependence a(t) that reflects the motion of the matter. Similarly, the external

electromagnetic field amplitudes b(ω) can have a time dependence b(t, ω) which does not simply

arise from the harmonic oscillator Hamiltonian HB. Thus, we treat the equations of motion in

an interaction picture, by changing the bath operators b(x, t) and b†(x, t) to a rotating frame

b(x, t)e+iΩt and b†(x, t)e−iΩt. We can take V (t) (Equation (3.56)) in the continuum limit, with

the prescription given in Equation (3.60), to get

V (t) = +i~
∫ ∞
−∞

dω g(ω)
(
a(t)b†(ω)− a†(t)b(ω)

)
(3.63)

To obtain the dynamics of a(t) and b(t, ω), we use the coupled Heisenberg equations of motion

ȧ(t) =
1

i~
[a,HS + V (t)] (3.64a)

ḃ(t, ω) =
1

i~
[b(ω),HB + V (t)] (3.64b)
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3.3. FABRY-PÉROT CAVITY CHAPTER 3. OPTOMECHANICS THEORY

We can either solve Equations (3.64) based on the initial values at time t0 (i.e., the input), and

solve for t0 < t, or based on the final values at time t1 (i.e., the output), and solve for t < t1.

With Equations (3.61b) and (3.63), Equation (3.64b) becomes

ḃ(t, ω) = −iωb(ω) + g(ω)a (3.65)

which has an input solution

b(t, ω) = e−iω(t−t0)b0(ω) + g(ω)

∫ t

t0

dt′ e−iω(t−t′)a(t′) (3.66)

where t0 < t and b0(ω) = b(t0, ω). The output solution is

b(t, ω) = e−iω(t−t1)b1(ω)− g(ω)

∫ t1

t

dt′ e−iω(t−t′)a(t′) (3.67)

for t < t1 and b1(ω) = b(t1, ω).

Equation (3.64a), in terms of the input at t0, is

ȧ =
1

i~
[a,HS]−

∫ ∞
−∞

dω g(ω)b(t, ω)

=
1

i~
[a,HS]−

∫ ∞
−∞

dω g(ω)e−iω(t−t0)b0(ω)−
∫ ∞
−∞

dω g(ω)2

∫ t

t0

dt′ e−iω(t−t′)a(t′)

(3.68)

We now assume, as in [67] and [65, p.130, Ch.7.1], that the bath spectrum g(ω) is flat in

frequency over a wide range centered around ω = Ω in the lab frame (or ω = 0 in the rotating

frame we chose). Thus, we set

g(ω)2 =
γ

2π
(3.69)

We now use the equation

∫ ∞
−∞

dω e−iω(t−t′) = 2πδ(t− t′) (3.70)

as well as7 ∫ t

t0

dt′ δ(t− t′)f(t′) =
1

2
f(t) (3.71)

In Equation (3.68), we simplify the third term by interchanging the ω and t′ integrals and using

7We can derive this Dirac delta equation by considering a small time δt > 0, and using the Dirac delta equations∫ t
t0−δt

δ(t − t′)f(t′) = f(t) and
∫ t
t0+δt

δ(t − t′)f(t′) = 0. We take the arithmetic mean of these equations, and

use limδt→0+
∫ t
t0−δt

(.) = limδt→0+
∫ t
t0+δt

(.) =
∫ t
t0

(.) to arrive at Equation (3.71).
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Equations (3.70) and (3.71). This yields

∫ ∞
−∞

dω g(ω)2

∫ t

t0

dt′ e−iω(t−t′)a(t′) =
γ

2
a(t) (3.72)

We define the second term of Equation (3.68) as an input field operator

ain(t) = − 1√
2π

∫ ∞
−∞

dω e−iω(t−t0)b0(ω) (3.73)

The minus sign is a phase convention that [65, p.130, Ch.7.1] follows, such that left-going fields

are negative, and right-going fields are positive. ain(t) has units of
√

Hz, since b0(ω) has units

of (2π × Hz)−1/2. From Equations (3.68), (3.72), (3.73), we finally arrive at the input equation

of motion

ȧ(t) =
1

i~
[a,HS] +

√
γ ain(t)− γ

2
a(t) (3.74)

If we choose instead to solve Equation (3.64a) in terms of the output for t < t1, we find

ȧ =
1

i~
[a,HS]−

∫ ∞
−∞

dω g(ω)e−iω(t−t1)b1(ω) +

∫ ∞
−∞

dω g(ω)2

∫ t1

t

dt′ e−iω(t−t′)a(t′) (3.75)

When we define the output field operator

aout(t) = +
1√
2π

∫ ∞
−∞

dω e−iω(t−t1)b1(ω) (3.76)

we get, from Equation (3.75), the output equation of motion

ȧ(t) =
1

i~
[a,HS]−√γ aout(t) +

γ

2
a(t) (3.77)

Lastly, we can obtain a boundary condition on the input and output fields ain(t) and aout(t)

by subtracting Equations (3.74) and (3.77):

ain(t) + aout(t) =
√
γ a(t) (3.78)

In closing this section, we remark that this theory was largely developed in the papers by

Collett and Gardiner [66] and [67], in 1984 and 1985, respectively. For a more in depth discussion

of input-output theory and stochastic mechods in quantum optics, the reader may consult the

2004 textbook by Gardiner and Zoller [69].
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3.3.3 Cavity Equation of Motion via Input-Output Theory

In this section, we treat the Fabry-Pérot cavity with input-output theory and find the equation of

motion for an optical cavity mode. We find essentially the same equation of motion as Equation

(3.19) for the mechanical resonator.

We begin with the input-output theory formalism discussed in Section 3.3.2. Now, we assume

that the cavity is coupled to a mechanical resonator, placed inside the cavity. We assume for

now that the system Hamiltonian has a form

HS = Hcavity +Hmechanics + V (3.79)

where the cavity and mechanical oscillators have Hamiltonians (as motivated in Sections 3.2 and

3.3):

Hcavity =
∑
j

~ωj
(
a†jaj +

1

2

)
(3.80)

Hmechanics =
∑
j

~ωj
(
c†jcj +

1

2

)
(3.81)

and the potential V = V (aj , a
†
j , cj , c

†
j) couples the mechanics and the cavity field. Here, we focus

on one cavity mode aj = a, and treat the cavity mode in zeroth order of the mechanical modes.

Thus, we take

HS ≈ Hcavity|single-mode = ~ωc
(
a†a+

1

2

)
(3.82)

and plug Equation (3.82) into Equation (3.74):

ȧ(t) =
1

i~

[
a, ~ωc

(
a†a+

1

2

)]
− κ

2
a+
√
κin ain

= −
(
iωc +

κ

2

)
a+
√
κin ain

(3.83)

where we have taken κ as the total loss rate of the cavity, and κin as the input coupling rate of

the cavity to an external electromagnetic field. ain is the complex amplitude of the light incident

on the cavity. We can immediately see that Equation (3.83) is nearly identical to Equation (3.19)

for the mechanical resonator.

We typically supply ain via a laser of some power P . These are related by

P = ~ωc
〈
a†inain

〉
(3.84)

ain has units of
√

photons/Hz, so P has units of joules per second, as expected.

To solve the differential equation of motion (Equation (3.83)), we will assume that the input
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Figure 3.1: A plot of the ratio of output to input field amplitude, as the laser detuning ∆ is
swept. This is plotted for multiple values of κin/κ. Left: the absolute value of the amplitude.
Right: the real and imaginary parts in the complex plane.

light field is monochromatic with frequency ωL, applied by a laser. Hence, ain(t) is given by

ain(t) = āine
−iωLt (3.85)

We now seek solutions of the form

a(t) = āe−iωt (3.86)

We plug Equations (3.85) and (3.86) into Equation (3.83):

− iωā = −
(
iωc +

κ

2

)
ā+
√
κin aine

−i(ωL−ω)t (3.87)

We take the time average 〈.〉T ,

〈f(t)〉T =
1

T

∫ T

0

dt f(t) (3.88)

of Equation (3.87), where T is sufficiently large (at least many periods of ω and ωL). If ω 6= ωL,

then Equation (3.87) becomes

− iωā = −
(
iωc +

κ

2

)
ā (3.89)

which has only the trivial solution ā = 0. If ω = ωL, i.e., the cavity field frequency is exactly

resonant with the input laser frequency, we find that

ā =

√
κin

κ/2− i∆
āin (3.90)

where the cavity-laser detuning is

∆ = ωL − ωc (3.91)
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We can apply the boundary condition of input-output theory (Equation (3.78)) to obtain the

reflected field amplitude:

āout = −
(

1− κin

κ/2− i∆

)
āin (3.92)

Figure 3.1 shows the ratio of aout to ain, plotted as the laser detuning ∆ is swept, and for

multiple values of κin/κ. For κin < κ/2, the laser is undercoupled to the cavity; for κin > κ/2,

the laser is overcoupled to the cavity; when κin = κ/2, the laser is critically coupled to the

cavity. In this last case, at ∆ = 0, the ratio of output to input light is exactly zero. In fact, the

minimum in the absolute value is given by

∣∣∣∣ āout

āin
(∆ = 0)

∣∣∣∣ =

∣∣∣∣1− κin

κ/2

∣∣∣∣ (3.93)

so the depth grows/shrinks linearly in κin. As Figure 3.1a shows, the absolute value of the

reflection does not distinguish between an underdamped or an overdamped cavity-laser coupling.

To distinguish the two, we also look at the phase information, and plot the ratio in the complex

plane (Figure 3.1b). The underdamped curve in the complex plane does not enclose the origin,

as ∆ is swept; the overdamped curve does enclose the origin.

3.3.4 Cavity Spectrum

In this section, we describe the cavity spectrum. Instead of using input-output theory (Section

3.3.2), it suffices to use classical electromagnetism in this discussion.

The cavity in the experiment has two mirrors of reflectivities r1 = .9998 and r2 = .99997.[70,

pp. 111]

To see how much light gets reflected from the cavity, suppose that the incident light has

frequency ω. We seek an expression F (ω) that measures how much light gets reflected. The

incident electric field Einc can be represented with an electric field

Einc = E0e
−iωt (3.94)

where E0 is a complex electric field amplitude.

When light of frequency ω reflects back, we must consider whether it reflects off of mirror

1 or mirror 2. It has an amplitude r1 to reflect off the first mirror, so this contribution to the

reflection is

− r1E0e
−iωt (3.95)

where the π-phase shift comes from the fact that the cavity mirror has an index of refraction

n > 1. In addition, the light can transmit through mirror 1 with amplitude t1 =
√

1− r2
1, then
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reflect off of mirror 2 with amplitude r2, and then transmit back through mirror 1. The time it

takes for this to happen is 2L/c, which is 1/∆νfsr, where ∆νfsr is the free-spectral range of the

cavity. Then this contribution is

t1r2t1E0e
−iω(t+1/∆νfsr) = (1− r2

1)r2E0e
−iω(t+1/∆νfsr) (3.96)

In general, we can find that the light bounces k times back and forth inside the cavity before it

gets transmitted back in the direction that the incident light came from. The time it takes for

this to happen is k/∆νfsr. This contribution is then

t1r
k
2r
k−1
1 t1E0e

−iω(t+k/∆νfsr) = (1− r2
1)rk2r

k−1
1 E0e

−iω(t+k/∆νfsr) (3.97)

Superimposing the above contributions together, we find an expression for the total reflected

field:

Eref = −r1E0e
−iωt + (1− r2

1)E0e
−iωt

∞∑
k=1

rk2r
k−1
1 e−iωk/∆νfsr

= r1E0e
−iωt + (1− r2

1)r2E0e
−iω(t+1/∆νfsr)

∞∑
k=0

(r2r1)ke−iωk/∆νfsr

(3.98)

Recognizing the geometric series
∑∞
k=0 ar

k = a/(1− r), for |r| < 1, we get

Eref =
E0e

−iωt (−r1 + r2e
−iω/∆νfsr

)
1− r2r1e−iω/∆νfsr

(3.99)

We then get an expression F (ω) = Eref/Einc:

F (ω) =
−r1 + r2e

−iω/∆νfsr

1− r2r1e−iω/∆νfsr
(3.100)

Expression (3.100) is calculated and plotted in Figure 3.2. What we see is that F (ω) has

a near constant amplitude of 1, except at ω = n∆νfsr, for n ∈ Z. At these values, F dips

to minima in amplitude, and the phase rolls sharply from positive to negative (and the phase

wraps back from −π to +π for ω = (n+ 1/2)∆νfsr). This reflects our intuitive understanding of

a Fabry-Pérot cavity, that when light shines into the cavity, all of the light gets reflected back,

unless the frequency of the light is resonant with one of the cavity modes n∆νfsr, for some n ∈ Z.

3.4 Optomechanical Coupling
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Figure 3.2: The cavity reflection coefficient, equation (3.100), as a function of the laser frequency,
in units of the free spectral range ∆νfsr. For this simulation, r1 = 0.8, and r2 = 0.85.

3.4.1 Effect of the Mechanics on the Optics

In Section 3.2 and Section 3.3, we discussed both the mechanical resonator and the Fabry-Pérot

cavity as harmonic oscillators. A central concept of this thesis is the discussion of coupled

harmonic oscillators. In this section, we describe the optomechanical interaction, which couples

the mechanical and the electromagnetic (i.e., optical) oscillators.

We begin with the two equations of motion for the mechanical and optical oscillators (Equa-

tions (3.19) and (3.83), respectively), and we also consider the interaction of the mechanical

motion with the optical field. In essence, we consider the assumed Hamiltonian of Equation

(3.79), and obtain the interaction potential V . This discussion largely adapts Aspelmeyer’s

review [52] and Mason’s thesis [33, Ch.1] on the optomechanical interaction.

Recall from Section 3.3.1 and Equation (3.43) that the frequency of the optical field, ω
(n)
c , is

ω(n)
c =

πcn

L
, n ∈ Z+ (3.101)

where L is the separation between the cavity mirrors. Now, we assume that the cavity mirrors are

movable. Without loss of generality to this theoretical discussion, suppose that only one mirror

moves by a displacement x. This sets the cavity length to L+x, so the allowed frequencies take

the form

ω(n)
c (x) =

πcn

L+ x
= ω(n)

c (0)
1

1 + x/L
(3.102)
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Furthermore, if x� L, we can Taylor expand ω
(n)
c (x) as

ω(n)
c (x) ≈ ω(n)

c (0)−Gx (3.103)

where

G = ω(n)
c (0)/L (3.104)

is the optical frequency shift per displacement x.

We can write the equation of motion for the cavity field amplitude a (Equation (3.83)) in

terms of the shifted optical frequency (Equation (3.103)) as8

ȧ = −
(κ

2
+ i(ωc −Gx)

)
a+
√
κin ain (3.105)

(having rewritten ω
(n)
c (0) $ ωc for brevity of notation). Furthermore, we can take the expression

for x in terms of the dimensionless mechanical amplitude c (Equation (3.14)) and plug it into

Equation (3.105):

ȧ = −
(κ

2
+ i
(
ωc −GxZPF(c+ c†)

))
a+
√
κin ain

= −
(κ

2
+ i
(
ωc − g0(c+ c†)

))
a+
√
κin ain

(3.106)

where we have defined the optomechanical coupling strength per single photon

g0 = GxZPF (3.107)

g0 is often simply referred to as the optomechanical coupling constant.

3.4.2 Effect of the Optics on the Mechanics

In this section, we describe the mechanical force that the light exerts on a mirror of the optical

cavity, to cause a displacement x of the mirror. This force is known as the radiation pressure

force. We then write down an equation of motion for the mechanical amplitude c with this force.

Recall from quantum mechanics that a photon that possesses frequency ωc has energy E =

~ωc and momentum p = E/c = ~kc, where kc = ωc/c is the wavenumber. If the photon

collides with the mirror and bounces in the opposite direction in a perfectly elastic collision, the

momentum is now −~kc. The momentum imparted to the photon is −2~kc. By conservation of

8Replacing ωc by ωc(x) in Equation (3.105) amounts to a Born-Oppenheimer approximation [71] [72, p.369,
Ch.10]. In quantum chemistry, this assumes that because atomic nuclei are much heavier than electrons, atomic
nuclei can be treated as stationary relative to electrons, so their wavefunctions can be treated separately. Analo-
gously, in this system, the cavity wavelength ωc(x) is much larger than the mechanical mode wavelengths ωn, so
the mirror position x(t) changes much more slowly than a(t).
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momentum, the momentum imparted to the mirror is

∆Pmirror, single-photon = +2~kc (3.108)

Recall also that the change in momentum per change in time is the force:

F =
∆P

∆t
(3.109)

The round-trip time for a single photon in the cavity is

∆t = 2L/c (3.110)

where c in Thus, the force imparted on the mirror by one photon is

Fradiation, single-photon = ~ckc/L

= ~c(ωc/c)/L

= ~ωc/L

= ~G

(3.111)

where we used Equation (3.104) in the last line of Equation (3.111).

The cavity we consider in this experiment contains many orders of magnitude more than one

photon, so to obtain the total radiation pressure force, we simply multiply Equation (3.111) by

the average number of photons nc =
〈
a†a
〉
. Since these equations of motion are being treated

in the classical regime, it suffices to take nc = |a|2, so the total radiation pressure force on the

cavity mirror is

Frad = ~G |a|2 (3.112)

For the mechanical equation of motion, we plug Equation (3.112) into Equation (3.18):

cin = +ig0 |a|2 + c̃in (3.113)

where c̃in is any additional force on the mirror. We simply use c̃in = cin to denote this additional

force:

ċ = −
(
iωm +

γ

2

)
c+ ig0 |a|2 + cin (3.114)
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3.4.3 Optomechanical Equations of Motion: An Alternate Derivation

from Input-Output Theory

In Sections 3.4.1 and 3.4.2, we obtained Equations (3.106) and (3.114) for the mechanical and

optical fields c and a. We record them here:

ȧ = −
(κ

2
+ iωc

)
a+ ig0(c+ c†)a+

√
κin ain (3.115a)

ċ = −
(γ

2
+ iωm

)
c+ ig0 |a|2 + cin (3.115b)

An alternative, quicker derivation of Equations (3.115) can be found by using the discussion

of the radiation pressure force in Section 3.4.2 and applying it directly to input-output theory

(Section 3.3.2). Indeed, we can take the optical Hamiltonian (Equation (3.82)) and expand ωc

in terms of the membrane mirror shift x via Equation (3.103):

Hoptical(x) = ~ωc(x)(a†a+ 1/2)

≈ ~(ωc(x = 0)−Gx)(a†a+ 1/2)

= Hoptical(x = 0)− ~Gx(a†a+ 1/2)

(3.116)

The second term in Equation (3.116) is the potential associated with the radiation pressure force

Vrad = −~Gx(|a|2 + 1/2)

= −~g0(c+ c†)(|a|2 + 1/2)

(3.117)

Indeed,

Frad = −dVrad

dx
= ~G |a|2 , (3.118)

in agreement with Equation (3.112) Now, plug Equation (3.117) into Equation (3.79), and turn

the crank of input-output theory for c:

ċ =
1

i~
[c,Hmechanical + Vrad]− γ

2
c+ cin

= −iωmc+ ig0 |a|2 −
γ

2
c+ cin,

(3.119)

which agrees with Equation (3.115b). Similarly, for a,

ȧ =
1

i~
[a,Hoptical + Vrad]− κ

2
a+
√
κin ain

= −iωca+ ig0(c+ c†)a− κ

2
a+
√
κin ain,

(3.120)
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in agreement with Equation (3.115a).

Qualitatively, another way to understand the physical light-matter coupling is to consider

laser beatnotes. The laser at frequency ωL sends light into the cavity. Then the motion of the

mechanical mode at frequency ωm produces motional sidebands at frequencies near ωL ± ωm.

These sidebands then beat with the laser tone, and this produces an intensity beatnote near

ωm. The magnitude of this beatnote is influenced by the cavity susceptibility at the motional

sideband frequency. This is a spring, with some (complex) spring constant, in that the beatnote

produces oscillatory motion at frequency ωm, which produces an oscillatory force at frequency

ωm.

3.4.4 Linearizing the Optomechanical E.O.M.’s

Frequently, we linearize the equations of motion such that they do not contain products of a or

c. This makes the equations of motion easy to solve with Fourier analysis. We begin with a

driving laser of frequency ωL:

ain(t) = āine
−iωLt (3.121)

Without taking the optomechanical interaction into account, the cavity field is a(t) = āe−iωLt,

where ā is given by Equation (3.90). Now, we suppose that the optomechanical interaction

places small fluctiuations onto ā:

ā→ ā+ d(t) (3.122)

Thus,

a(t) = (ā+ d(t))e−iωLt (3.123)

We assume that the fluctuations d(t) are of the same order as the mechanical mode amplitude

c. Thus, we can use perturbation theory to analyze the motion in orders of d(t). Without loss

of generality, set the origin of the x-axis such that c(t) has a mean fluctuation of c̄ = 0.

We now plug Equation (3.123) into Equation (3.115a):

ȧ = −
(κ

2
+ iωc

)
a+ ig0(c+ c†)a+

√
κin ain (3.124)

which becomes

− iωL(ā+ d(t)) + ḋ(t) = −
(κ

2
+ iωc

)
(ā+ d(t)) + ig0(c+ c†)(ā+ d(t)) +

√
κin ain (3.125)

Since c and d(t) are assumed to be of the same order, we see a 0th-order and a 1st-order equation
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in d(t) and c from Equation (3.125):

(0) : − iωLā = −
(κ

2
+ iωc

)
ā+
√
κin ain (3.126)

(1) : −iωLd(t) + ḋ(t) = −
(κ

2
+ iωc

)
d(t) + ig0ā(c+ c†) (3.127)

Equation (3.126) is just Equation (3.83), with the same solution (Equation (3.90)). Write

∆ = ωL − ωc (3.128)

α = āg0 (3.129)

Then Equation (3.127) becomes

ḋ(t) = −
(κ

2
− i∆

)
d(t) + iα(c+ c†) (3.130)

We remark that since ā =
√
nc , the optomechanical coupling strength α can be arbitrarily

enhanced by driving the cavity with higher laser power (i.e., more photons). Often, α is written

as g [52, p.1394].

We may also plug Equation (3.123) into the equation of motion for c(t) (Equation (3.115b)):

ċ = −
(γ

2
+ iωm

)
c+ ig0

(
|ā|2 + ād†(t) + ā†d(t) + |d(t)|2

)
+ cin

≈ −
(γ

2
+ iωm

)
c+ ig0

(
ād†(t) + ā†d(t)

)
+ cin

(3.131)

where we drop the ig0 |ā|2 term, since it just adds a constant frequency offset to c(t), and we

also drop the ig0 |d(t)|2 term, since we are only considering terms that are 0th or 1st order in

d(t).

Thus, we have a set of equations of motion that are linear in d(t):

ḋ(t) = −
(κ

2
− i∆

)
d(t) + iα(c+ c†) (3.132a)

ċ(t) = −
(γ

2
+ iωm

)
c(t) + iαd†(t) + iα∗d(t) + cin (3.132b)
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3.4.5 Optomechanical Spring: Solution to the Linearized E.O.M.’s

Equations (3.132) are now very simple to solve with the Fourier transform . The Fourier trans-

forms of Equations (3.132), per the definition in Equation (3.4), are

−iωd[ω] = −
(κ

2
− i∆

)
d[ω] + iα(c[ω] + c†[ω]) (3.133a)

−iωc[ω] = −
(γ

2
+ iωm

)
c[ω] + iαd†[ω] + iα∗d[ω] + cin[ω] (3.133b)

With simple algebra, these can be rewritten as

[κ
2
− i(ω + ∆)

]
d[ω] = iα(c[ω] + c†[ω]) (3.134a)[γ

2
− i(ω − ωm)

]
c[ω] = iαd†[ω] + iα∗d[ω] + cin[ω] (3.134b)

We define the optical and mechanical susceptibilities

χc[ω] =
1

κ/2− i(ω + ∆)
(3.135a)

χm[ω] =
1

γ/2− i(ω − ωm)
(3.135b)

In fact, χm[ω] (Equation (3.135b)) and χx[ω] (Equation (3.10)) are related by

χm[ω] = −2imωmχx[ω] (3.136)

The susceptibilities (Equations (3.135)) recast Equations (3.134) as

d[ω] = iαχc[ω](c[ω] + c†[ω]) (3.137a)

χm[ω]−1c[ω] = iαd†[ω] + iα∗d[ω] + cin[ω] (3.137b)

We remark that Equation (3.137a) is a direct consequence of the initial assumption that

the mechanical fluctuations c(t) and the optical fluctuations d(t) are on the same order. Per

Equation (3.14),

d[ω] = +i
√
ncGχc[ω]x[ω] (3.138)

so d[ω] is indeed proportional to x[ω].

In Equations 3.137, because we are measuring mechanical motion of the mechanical resonator,

we want to solve for c[ω] without involving d[ω] or d†[ω]. Equation (3.137a) already gives d[ω] in

terms of c[ω] and c†[ω]. However, as noted by Equations A.3 and A.2 in Appendix A, we solve
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for d†[ω] by first taking the complex conjugate of Equation (3.132a):

ḋ†(t) = −
(κ

2
+ i∆

)
d(t)− iα∗(c+ c†) (3.139)

Now we Fourier transform Equation (3.139):

− iωd†[ω] = −
(κ

2
+ i∆

)
d†[ω]− iα∗(c[ω] + c†[ω]), (3.140)

whence

d†[ω] = −iα∗
(κ

2
+ i(−ω + ∆)

)−1

(c[ω] + c†[ω])

= −iα∗χ∗c [−ω](c[ω] + c†[ω])

(3.141)

Substitute Equations (3.137a) and (3.141) into Equation (3.137b):

χm[ω]−1c[ω] = iα
(
− iα∗χ∗c [−ω](c[ω] + c†[ω])

)
+ iα∗

(
+ iαχc[ω](c[ω] + c†[ω])

)
+ cin[ω] (3.142)

In Appendix A, we argued that we can drop the counter-rotating c†[ω] terms, since we are

in the high-Q limit. Thus, we drop them in Equation (3.142):

χm[ω]−1c[ω] = |α|2
(
χ∗c [−ω]− χc[ω]

)
c[ω] + cin[ω] (3.143)

Define the optomechanical self-energy as

Σ[ω] = −i |α|2
(
χc[ω]− χ∗c [−ω]

)
(3.144)

and write Equation (3.143) as

(
χm[ω]−1 + iΣ[ω]

)
c[ω] = cin[ω] (3.145)

In analogy with Equation (3.22), we can define a modified mechanical susceptibility as

χ̃m[ω] =
1

γ/2− i(ω − ωm) + iΣ[ω]

=
1

(γ − 2 Im{Σ[ω]})/2− i(ω − ωm − Re{Σ[ω]})

(3.146)

Thus, we finally arrive at the core phenomena of optomechanical coupling: the optical spring
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and damping:

δωm = +Re
{

Σ[ω]
}

(3.147a)

δγm = −2 Im
{

Σ[ω]
}

(3.147b)

That is, the optomechanical interaction modifies the mechanical mode frequency and damping,

via the complex spring formed by the light-matter coupling.

We move back to the time domain by noting that the mechanical linewidth γm is much

smaller than the cavity linewidth κ. Σ[ω] is written in terms of the cavity susceptibility, so it

can only vary significantly for a range of ω that is of order κ. Thus, Σ[ω] ≈ Σ[ωm], and so

δωm = +Re
{

Σ[ωm]
}

(3.148a)

δγm = −2 Im
{

Σ[ωm]
}

(3.148b)

We summarize this section, and leave the results in a convenient closed form, in terms of the

applied laser power P and detuning from the cavity mode ∆.9 Recall from Equation (3.129)

that

α = āg0

Recall also Equation (3.90):

ā =
√
κin

1

κ/2− i∆
āin,

which we use here, just as with the nonmechanically coupled cavity (Section 3.3), since it is the

solution of Equation (3.126), which is 0th order in d(t). Then recall Equation (3.84):

|ain| =
√

P

~ωc

Plug these into Equations (3.148) and (3.144) to get

δωm(P,∆) = g2
0κin

1

(κ/2)2 + ∆2

P

~ωL

{
∆ + ωm

(κ/2)2 + (∆ + ωm)2
+

∆− ωm
(κ/2)2 + (∆− ωm)2

}
(3.149a)

δγm(P,∆) = g2
0κin

1

(κ/2)2 + ∆2

P

~ωL

{
κ

(κ/2)2 + (∆ + ωm)2
− κ

(κ/2)2 + (∆− ωm)2

}
(3.149b)

Equations 3.149 is plotted in Figure 3.3, for various values of ωm/κ. We see two regimes:

9The reader may find this form useful if they wish to fit measured optical spectra to obtain optomechanical
coupling parameters.
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Figure 3.3: The optomechanical interaction plotted in the resolved sideband and the unresolved
sideband regimes. The left-hand sides show the optomechanical frequency and damping shifts
versus the swept laser detuning ∆, and the right-hand sides show these shifts in the complex
plane, defined by the frequency and damping shifts. In each plot, ωm = 1 kHz,

√
κin |ain| =

100 kHz, g0 = 1 Hz.
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the resolved sideband regime, for which ωm � κ; and the unresolved sideband regime, for which

ωm � κ [52, p.1413]. Figure 3.3 progresses through these regimes, from resolved to unresolved.10

In the resolved sideband regime, the mechanical linewidth changes by the maximum amount

at ∆ = ±ωm; it is maximally damped at ∆ = −ωm, and maximally antidamped at ∆ = +ωm.

The mechanical frequency changes by the most near ∆ = 0, or near ∆ ≈ ±∆. However, at

∆ = ±ωm, the frequency change δω crosses zero.

In the unresolved sideband regime, the optomechanical shift is simpler; in the vicinity of

∆ ≈ ± κ
/2
√

3
, the mechanical frequency shifts by a maximal amount, and the damping shift is

less than the frequency shift by a factor of ωm/κ. This can be understood as follows: in the

resolved sideband regime, there are three “wings” for the optomechanical frequency shift, and

one peak and one antipeak in the damping. As ωm/κ decreases, the damping peak and antipeak

move closer to ∆ = 0, and destructively interfere when they approach ∆ = 0. The “wings” of the

optomechanical frequency shift destructively interfere as ωm/κ decreases, so that they become

only one “wing.”

We should remark on the complex plane C spanned by the real and imaginary parts of the

optomechanical shift in both the resolved (ωm � κ) and unresolved (ωm � κ) regimes. In the

resolved sideband regime, sweeping ∆ in a range that includes ∆ = ±ωm will sweep all four

quadrants of the complex plane, as seen in Figure 3.3. Since P simply scales δω and δγ linearly,

tuning ∆ and P will span essentially all of C. However, in the unresolved sideband regime,

sweeping ∆ will only include the upper left and lower right quadrants of the complex plane, so

in the unresolved sideband regime, the optomechanical shift does not span the whole complex

plane. In the asymptotic limit of ω/κ→ 0, the optomechanical shift is only on the real line.

3.5 Two-Mode Optomechanics

3.5.1 Nearly Degenerate Two-Mode Optomechanical Coupling

In this section, we use the optomechanical interaction introduced in Section 3.4 to couple two

mechanical modes. This mechanical-mode-coupling is a key phenomenon for this thesis, as we

find exceptional points in this system by tuning the mechanical mode frequencies and dampings

to an exceptional point degeneracy.

We develop the theory of two-mechanical-mode coupling (herein simply called “two-mode

coupling”) from the same physics as discussed in Section 3.4. Similar to Equation (3.79), the

10In practice, for this thesis, an optomechanical system can be considered in the resolved sideband regime if
ωm is merely greater than κ by a factor of 2 or so. This is sufficient to realize an optomechanical span similar to
Figure 3.3a. Similarly, it is considered to be in the unresolved sideband regime if ωm < κ.
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total Hamiltonian with two mechanical modes, with annihilation operators c1 and c2, is

H = ~ωc
(
a†a+

1

2

)
+

2∑
j=1

~ωj
(
c†jcj +

1

2

)
+ Vrad (3.150)

Each mechanical mode c1 and c2 is coupled to the same optical mode a. Thus, the radiation-

pressure potential Vrad is given by linear superposition of the two radiation-pressure potentials

for c1 and c2 (c.f. Equation (3.117)):

Vrad = −
2∑
j=1

~gj
(
a†a+

1

2

)(
cj + c†j

)
(3.151)

When we follow input-output theory, as in Section 3.4.3, we obtain the equations of motion:

ȧ = −
(κ

2
+ iωc

)
a+

2∑
j=1

igj(cj + c†j)a+
√
κin ain (3.152a)

ċ1 = −
(γ1

2
+ iω1

)
c1 + ig1 |a|2 + cin,1 (3.152b)

ċ2 = −
(γ2

2
+ iω2

)
c2 + ig2 |a|2 + cin,2 (3.152c)

By again invoking an argument of linear superposition, we can linearize Equations (3.152),

following the prescription in Section 3.4.4 to write the linearized equations of motion:

ḋ(t) = −
(κ

2
− i∆

)
d(t) +

2∑
j=1

iαj(cj + c†j) (3.153a)

ċ1(t) = −
(γ1

2
+ iω1

)
c1(t) + iα1d

†(t) + iα∗1d(t) + cin,1 (3.153b)

ċ2(t) = −
(γ2

2
+ iω2

)
c2(t) + iα2d

†(t) + iα∗2d(t) + cin,2 (3.153c)

where

ain(t) = āine
−iωLt (3.154)

a(t) = (ā+ d(t))e−iωLt (3.155)

αj = āgj , j = 1, 2 (3.156)

In the absence of any optical field in Equations (3.153) (i.e., d(t) = 0), then Equations (3.153)

become a compact matrix equation:

Ċ(t) =

−(γ1/2 + iω1) 0

0 −(γ2/2 + iω2)

C(t) + Cin(t) (3.157)
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where

C(t) = (c1(t), c2(t))T (3.158a)

Cin(t) = (cin,1(t), cin,2(t))T (3.158b)

The solution to Equation (3.157), in the frequency domain, is

C[ω] =

χ1[ω] 0

0 χ2[ω]

Cin(t) (3.159)

where the mechanical susceptibility of mode j is

χj [ω] =
1

γj/2− i(ω − ωj)
(3.160)

This solution contains no hybridization between modes 1 and 2; an excitation of mode 1 (2)

remains in mode 1 (2) for all values of t. For the rest of this discussion, we look at the effect of

the (linearized) optical mode d(t), and see that it hybridizes modes 1 and 2.

With nonzero d(t), we follow the prescription of Section 3.4.5, by taking the Fourier transform

(Equation (3.4)) of Equations (3.153), solve out the d[ω] and d†[ω], and drop the counter-rotating

c†j [ω] terms in the high-Q limit. We obtain

(γ1

2
− i(ω − ω1)

)
c1[ω] = (χ∗c [−ω]− χc[ω])(|α1|2 c1[ω] + α∗1α2 c2[ω]) + cin,1[ω] (3.161a)(γ2

2
− i(ω − ω2)

)
c2[ω] = (χ∗c [−ω]− χc[ω])(|α2|2 c2[ω] + α∗1α2 c2[ω]) + cin,2[ω] (3.161b)

Note that we have used the fact that

αj = āgj , j = 1, 2, (3.162)

so

α∗1α2 = α1α
∗
2 = |α1α2| . (3.163)

In analogy with the definition of the self-energy term (Equation (3.144)) of Section 3.4, we

define the self-energy matrix

Σ[ω] =

 −i |α1|2 −i |α1α2|

−i |α1α2| −i |α2|2

(χc[ω]− χ∗c [−ω]
)

(3.164)

Take Equation (3.164), Equations (3.161), and use the definition in (3.158) to write a matrix
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equation of motion in the Fourier domain:

− iωC[ω] = −i

ω1 − iγ1/2 0

0 ω2 − iγ2/2

C[ω]− iΣ[ω]C[ω] + Cin[ω] (3.165)

Since χc[ω] only changes appreciably over a range of ω comparable to κ, Σ[ω] is approximately

constant near the values of ω that drive the two mechanical modes. Thus, we easily move back

to the time-domain:

Ċ(t) = −iHeff [P,∆]C(t) + Cin(t) (3.166)

where the “effective Hamiltonian” is given by

Heff [P,∆] =

ω1 − iγ1/2 0

0 ω2 − iγ2/2

+ Σ[P,∆] (3.167)

Σ[P,∆] is the coupling term:

Σ[P,∆] =

 −ig2
1 −ig1g2

−ig1g2 −ig2
2

σ[P,∆] (3.168a)

σ[P,∆] =
P

~ωL

κin

(κ/2)2 + ∆2

[
1

κ/2− i(ω0 + ∆)
− 1

κ/2 + i(−ω0 + ∆)

]
(3.168b)

and where ω0 = (ωa + ωb)/2.

If we take the bare eigenvalues of the system to be

λj = ωj − iγj/2 (3.169)

then the eigenvalues of Heff (Equation (3.167)) are

µ± =
1

2
(λ1 + λ2 − ig2

1σ − ig2
2σ)

± i

2

√
(iλ1 + iλ2 + (g2

1 + g2
2)σ)2 − 4i(iλ1λ2 + g2

2λ1σ + g2
1λ2σ),

(3.170)

and the corresponding eigenvectors are

v± =

(
iλ1−iλ2+g21σ−g

2
2σ±
√

(iλ1+iλ2+(g21+g22)σ)2−4i(iλ1λ2+g22λ1σ+g21λ2σ)

2g1g2σ
, 1

)T
(3.171)

It can be shown algebraically that the eigenvalues and eigenvectors become equal if σ (Equation
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(3.168b)) satisfies

σ → (ω1 − iγ1/2− ω2 + iγ2/2)
(
−i(g2

1 − g2
2)± 2g1g2

)
/(g2

1 + g2
2) (3.172)

Setting σ to this value sets the discriminant in Equations (3.170) and (3.171) to zero, which sets

the square root terms to zero.

The condition in Equation (3.172) can be satisfied in the resolved sideband regime (κ < ω1,2).

In this regime, P and ∆ control the springs and dampings in a linearly independent manner.

However, in the unresolved sideband regime (κ > ω1,2), P and ∆ appear in σ (Equation (3.168b))

as the product P ×∆. One needs two linearly independent real parameters to make a (traceless)

set of complex values equal, so the experiment in this thesis must operate in the resolved sideband

regime.

When the condition on σ (Equation (3.172)) is realized, the single eigenvalue of the system

has only one eigenvector. This brings Heff to an exceptional point (as described in Section 2.4.2)

in the (P,∆) parameter space.

We should note that, fundamentally, there is no restriction on which mechanical modes can

be coupled with this interaction. However, the interaction described in this section can only

be used with mechanical modes that are already “nearly degenerate.” Precisely, this means

that their bare detuning |ω2 − ω1| is less than the largest feasible optomechanical spring. For

the experiment in [6], which uses the physics described in this system, this amounts to a bare

splitting of 400 Hz, for a cavity of κ = 170 kHz, and the experiment input laser powers of several

hundred microwatts. If we wish to use this scheme to couple two modes that are much farther

away, we would need to use much more laser power, which may not be practical.11 Thus, in

Section 3.5.2, we describe a method with Floquet modes to couple mechanical modes that have

an essentially arbitrary bare splitting.

3.5.2 Nondegenerate Two-Mode Coupling via Floquet Theory: Writ-

ing the Hamiltonian

The discussion of two-mode coupling with an optical mode in Section 3.5.1 is central to this

thesis work. In particular, in this thesis, we couple three mechanical modes together. However,

the three nearly degenerate mechanical modes of our membrane – the (5,5), (7,1), and the (1,7)

modes (see Section 4.1 for details on the mechanical membrane) – are difficult to address with

the optical alignment of our cavity with our membrane. 12 Thus, it is most practical to use the

11One practical problem with applying too much laser power is that it can destabilize the control laser lock
(Section 5.2).

12The experiment best addresses the (2,2), (1,2), (2,1) and (1,1) modes for the ground-state cooling experiment
[64]
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Figure 3.4: Two highly nondegenerate mechanical modes, coupled by two laser tones. A me-
chanical drive is applied at frequency ω = ω1 (red Lorentzian). The motion at ω1 creates a
motional sideband (red-white Lorentzian) with the red laser tone (rightmost red arrow), which
is detuned from the cavity resonance ωc by −ω1. The motional sideband beats with the blue
laser tone (blue arrow), which is detuned by −ω2 from the same cavity resonance. This beatnote
is at ω = ω2 (leftmost red arrow), and drives the membrane at ω = ω2.

existing experimental setup to couple the mechanical modes that the setup is best at driving

and reading out – even if those modes are highly nondegenerate.

Highly nondegenerate mechanical modes can be coupled with a time-dependent Hamiltonian

H(t), which oscillates at a frequency near the frequency difference between modes. For instance,

we realize this H(t) to couple two modes with two laser tones: laser tone j has a detuning

∆j ≈ −ωj from the cavity mode, which is nearly resonant with the mode of frequency ωj . This

H(t) also effects light-matter coupling on the modes (Section 3.5.1), which tunes the modes to

an exceptional point in the (rotating) Floquet frame. In the following, we use ω̃j to denote

mechanical mode j, j ∈ Z+, in the (nonrotating) lab frame, and H̃ to denote the Hamiltonian in

the (nonrotating) lab frame. We use ωj to denote mechanical mode j, j ∈ Z+, in the (rotating)

Floquet frame, and H to denote the Hamiltonian in the (rotating) Floquet frame.

Suppose that we have two mechanical modes, given by frequencies ω1 and ω2, with mechan-

ical dampings γ1 and γ2, and optomechanical coupling constants g1 and g2. Then apply two

optical laser tones of laser powers P1 and P2, detuned from the cavity mode Ωc by ∆1 and ∆2,

respectively (i.e., the laser frequency is ωj,L = Ωc + ∆j). These laser detunings will be set to

roughly

∆j = −ωj + δ + ηj , j = 1, 2. (3.173)

Thus, tone 1 (2) will optomechanically control mode 1 (2). δ is a common frequency shift between

the tones, which we are free to tune. ηj is a fixed frequency shift, for each j = 1, 2, which is

on the order of the optomechanically shifted γj . ηj is set in order to tune the bare mechanical

mode splitting in the rotating frame.

Throughout this analysis, we will need to assume that the laser tone splitting is closed to the

bare mechanical mode splitting. That is, we must assume that

|∆1 −∆2| − |ω2 − ω1| = O(γj,O.M.)j=1,2 (3.174)
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which is to say that the laser splitting is within a few (optomechanically dampened) mechanical

linewidths of the bare frequency splitting.

The physical coupling that the two laser tones create is described as follows: when mode 1

(2) is mechanically driven, mode 1 (2) will produce a motional sideband with laser tone 1 (2).

This motional sideband of mode 1 (2) has frequency

ωside 1(2) = Ωc + ∆1(2) + ω1(2)

= Ωc + δ + η1(2),

(3.175)

and is resonant with the cavity mode. This sideband then beats with tone 1 (2), producing an

oscillating intensity beatnote (and hence a force) at frequency

ωbeat 1(2) = ωside 1(2) − (Ωc + ∆1(2))

= ω1(2),

(3.176)

which is approximately resonant with mode 1 (2). This beatnote optomechanically controls

mechanical mode 1 (2), with the same optomechanical interaction described in Section 3.4. 13

In addition to the beatnote at frequency ωbeat 1(2) that gets produced from the beat of the

tone at Ωc + ∆1(2) and the sideband at ωside 1(2), the same sideband at ωside 1(2) beats with the

other laser tone at Ωc + ∆2(1), and produces a second beatnote at frequency

ω′beat 2(1) = ωside 1(2) − (Ωc + ∆2(1))

= ω2(1) + η1(2) − η2(1)

(3.177)

This beatnote at ω′beat 2(1) is nearly resonant with mode 2(1), so this beatnote drives the mem-

brane at mechanical mode 2(1), in addition to the initial drive at mode 1(2). This beating

couples mode 1(2) to mode 2(1). This additional beatnote drive is depicted in Figure 3.4.

We can write down the essential elements of the interaction Hamiltonian

Hint =

H11 H12

H21 H22

 (3.178)

from this physical intuition. Let the cavity susceptibility be given by

χ[ω] =
1

κ/2− iω
(3.179)

13Of course, mode 1(2) can also produce a motional sideband with tone 2(1), and then this sideband can beat
with tone 2(1) to produce an additional intensity beatnote at the frequency of mode 1(2). This is why, in the
on-diagonal terms of Equation (3.178), there is a summation over the two laser tones.
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(note that χ[ω]∗ = χ[−ω]). We first consider the off-diagonal term H12. Mode 1 produces a

motional sideband of tone 1 at frequency ∆1 + ω1, relative to the cavity mode. This sideband

picks up a factor of −iχ[∆1+ω1] (with the −i factor coming in, in analogy with the self-energy of

the 1-tone optomechanical interaction of Section 3.4, Equation (3.144)). It oscillates at frequency

∆12 , ∆1 −∆2. We also multiply by the optomechanical single-photon coupling strengths for

the two modes, g1 and g2, as well as by amplitudes of the annihilation and creation operators

for modes 1 and 2, respectively:

a1 = a1,in χ[∆1] =

√
P1

~ω1,L

√
κin χ[∆1] =

√
P1

~ω1,L

√
κin

κ/2− i∆1
(3.180a)

a†2 = a†2,in χ[∆2]∗ =

√
P2

~ω2,L

√
κin χ[−∆2] =

√
P2

~ω2,L

√
κin

κ/2 + i∆2
(3.180b)

The amplitudes of the creation and annihilator operators given in Equations (3.180) follow from

the steady-state cavity field amplitudes found in Equation (3.90), in Section 3.3.3 (to 0th order

in the mechanical mode amplitudes, as described in Section 3.4). Altogether, this product sets

H12(t) ≈ −ig1a1g2a
†
2 χ[∆1 + ω1]e+i∆12t

= −ig1g2κin

√
P1P2

~ωL
χ[∆1]χ[−∆2]χ[∆1 + ω1]e+i∆12t

(3.181)

We drop the numerical subscript from ωj,L, j = 1, 2, since the laser wavelength is 1064 nm, which

has frequency 281 THz, and is much larger than any detunings used in this thesis. H21(t) can

be written down with the same argument, with the roles of modes 1 and 2 reversed. This yields

H21(t) ≈ −ig1a
†
1g2a2 χ[∆2 + ω2]e−i∆12t

= −ig1g2κin

√
P1P2

~ωL
χ[∆2]χ[−∆1]χ[∆2 + ω2]e−i∆12t

(3.182)

The on-diagonal terms can be written with the same argument as for the off-diagonal terms.

However, since each laser tone induces its own 1-tone optomechanical interaction on mode j, we

sum the contributions to obtain the self-couplings. Thus,

Hnn = −ig2
n

2∑
j=1

Pj
~ωL

κin |χ[∆j ]|2 χ[∆j + ωn] (3.183)

Equation (3.178), with entries given by Equations (3.181), (3.182), and (3.183), is essentially

the interaction Hamiltonian between two highly nondegenerate mechanical modes, which are

coupled via the beatnote (though it misses one motional sideband term, as described in the

following section; we will derive a self-energy matrix that goes into these matrix terms, in

place of the cavity susceptibility factor −iχ[∆j + ωj ]). In the following section, we justify the
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Hamiltonian in Equation (3.178) more rigorously, from the optomechanical equations of motion.

3.5.3 Nondegenerate Two-Mode Coupling: Equations of Motion

In this subsection, we will derive Equation (3.178) via the optomechanical equations of motion.

This derivation adapts Mason’s derivation [33, Ch.5.2], though we expand it slightly.

If we drive the cavity with two laser tones, with frequencies

ωj,L = ωc + ∆j , j = 1, 2 (3.184)

where ωc is a single cavity mode frequency that both lasers are near, and powers P1 and P2,

then the input field is

ain(t) = ā1,in e
−iω1,Lt + ā2,in e

−iω2,Lt

= e−iωct
(
ā1,in e

−i∆1t + ā2,in e
−i∆2t

) (3.185)

The differential equations of motion for the cavity field and the two mechanical modes remain

unchanged from Section 3.5.1; they are given by Equations (3.152). The Hamiltonian is given

by Equation (3.150), with the radiation-pressure force potential given by Equation (3.151).

If there were only one laser tone, the solution would be given by Equation (3.90). By linear

superposition, the solution for a(t) is a superposition of the two fields given in Equation (3.90):

a(t) = e−iωctā(t) (3.186)

where ā(t), rather than being a steady-state amplitude, is a time-fluctuating mean amplitude:

ā(t) = ā1e
−i∆1t + ā2e

−i∆2t (3.187a)

āj =

√
κin

κ/2− i∆j
āj,in, j = 1, 2 (3.187b)

Now that we know, to 0th order in the mechanical fluctuations c(t), that the cavity optical

field is given by the mean field in Equation (3.186), we can linearize the equations of motion by

following the prescription of Section 3.4.4. Thus, we write

a(t) = e−iωct(ā(t) + d(t)) (3.188)

where d(t) are small fluctuations of motions about the mean fluctuating field ā(t). d(t) is again

assumed to be of the same order as the mechanical field fluctuations c(t). However, since ā(t)

is itself a time-varying field, the solution of the equations of motion in Equation (3.152) is more

complicated than in Section 3.5.1. Nonetheless, the solution with the previous process is still
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straightforward and tractable.

First, we plug Equation (3.188) into the cavity field equation of motion (Equation (3.152a)):

d

dt

(
e−iωct(ā(t) + d(t))

)
=−

(κ
2

+ iωc

)
e−iωct(ā(t) + d(t))

+ i
∑
j=1,2

gj(cj + c†j)e
−iωct(ā(t) + d(t)) +

√
κin ain(t)

(3.189)

We apply perturbation theory in orders of c(t) and d(t) to separate Equation (3.189) into 0th

and 1st order equations:

e−iωct
(
−iωcā(t) +

dā

dt
(t)

)
= e−iωct

(
−
(κ

2
+ iωc

)
ā(t) +

√
κin ain(t)

)
(3.190a)

e−iωct
(
−iωcd(t) + ḋ(t)

)
= e−iωct

−(κ
2

+ iωc

)
d(t) + i

∑
j=1,2

gj(cj + c†j) ā(t)

 (3.190b)

Equation (3.190b) has the solution given by Equation (3.186). Equation (3.190b) simplifies to

ḋ(t) = −κ
2
d(t) + i

∑
j=1,2

gj(cj + c†j) ā(t) (3.191)

We also plug the linearized optical field (Equation (3.188)) into Equation (3.152b) and Equa-

tion (3.152c):

ċj(t) = −
(γj

2
+ iωj

)
cj(t) + igj |ā(t) + d(t)|2

= −
(γj

2
+ iωj

)
cj(t) + igj

(
|ā(t)|2 + ā(t)d(t)† + ā(t)d(t)† + |d(t)|2

) (3.192)

We ignore |d(t)|2 in Equation (3.192), since it is of order O(d(t)2). As for the |ā(t)|2, since

it is not constant in time, we cannot immediately drop it. We expand |ā(t)|2:

|ā(t)|2 = |ā1,in|2 + |ā1,in|2 + 2 Re
(
ā1,in(ā2,in)†e−i(∆1−∆2)t

)
(3.193)

The oscillating term in Equation (3.193) can be dropped if

|∆1 −∆2| − ωj � γj , j = 1, 2 (3.194)

This ensures that the term is off-resonant with any mechanical mode frequency. If this holds,

we may drop |ā(t)|2 in Equation (3.192), and have

ċj(t) = −
(γj

2
+ iωj

)
cj(t) + igj

(
+ ā(t)d(t)† + ā(t)d(t)†

)
(3.195)
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We now write Equations (3.191) and (3.195) as a summation over the laser indices:

ḋ(t) = −κ
2
d(t) + i

2∑
j=1

gj(cj + c†j)

2∑
k=1

āke
−i∆kt (3.196a)

ċj(t) = −
(γj

2
+ iωj

)
cj + igj

2∑
k=1

(
ākd(t)†e−i∆kt + ā∗kd(t)e+i∆kt

)
(3.196b)

3.5.4 Nondegenerate Two-Mode Coupling: Solving the Equations of

Motion

To solve the equations of motion (Equations (3.196)), we take the Fourier transform (defined in

Equation (3.4)). Per our definition of the Fourier transform, for any function f(t) and a phase

shift ∆, we have

F [e−i∆tf(t)](ω) = F [f(t)](ω −∆) (3.197)

With this, we can write

d[ω] = +iχ[ω]

2∑
l=1

2∑
m=1

glām(cl[ω −∆m] + c†l [ω −∆m]) (3.198a)

d†[ω] = −iχ[ω]

2∑
l=1

2∑
m=1

glā
∗
m(cl[ω + ∆m] + c†l [ω + ∆m]) (3.198b)

χj [ω]−1 cj [ω] = +igj

2∑
k=1

(ākd
†[ω −∆k] + ā∗kd[ω + ∆k]) (3.198c)

where the cavity susceptibility χ[ω] is given by Equation (3.179), and the mechanical suscepti-

bility χj [ω] = (γj/2− i(ω − ωj))−1 is given in Equation (3.135b).

As in previous systems discussed in this chapter, we algebraically solve out the d[ω] and d†[ω]

terms in Equations (3.198) to get an equation for cj [ω]. To make the equation more compact,

we define relative laser detunings

∆km = ∆k −∆m, k,m = 1, 2. (3.199)

Then

j [ω]−1 cj [ω] = +igj

2∑
k=1

(
(−i)ākχ[ω −∆k]

2∑
l=1

2∑
m=1

glā
∗
m(cl[ω −∆km] + c†l [ω −∆km]) (3.200)

+iā∗kχ[ω + ∆k]

2∑
l=1

2∑
m=1

glām(cl[ω + ∆km] + c†l [ω + ∆km])
)
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which becomes

j [ω]−1 cj [ω = gj

2∑
k=1

2∑
l=1

2∑
m=1

(
+ ākglā

∗
mχ[ω −∆k]

(
cl[ω −∆km] + c†l [ω −∆km]

)
(3.201)

− ā∗kglāmχ[ω + ∆k]
(
cl[ω + ∆km] + c†l [ω + ∆km]

))

In the last line of Equation (3.201), note that we can swap the k and m indices, note that

∆km = −∆mk, and get

χj [ω]−1 cj [ω] = gj

2∑
k=1

2∑
l=1

2∑
m=1

glā
∗
kām

(
χ[ω −∆m]− χ[ω + ∆k]

)
(
cl[ω + ∆km] + c†l [ω + ∆km]

) (3.202)

We can define a self-energy matrix (in analogy with the optomechanical self energy matrix of

Equation (3.144)):

Σkm[ω] = −iā∗kām
(
χ[ω + ∆k]− χ[ω −∆m]

)
(3.203)

so that Equation (3.201) becomes

χj [ω]−1 cj [ω] = −igj
2∑
k=1

2∑
l=1

2∑
m=1

glΣkm[ω]
(
cl[ω + ∆km] + c†l [ω + ∆km]

)
(3.204)

We can simplify Equation (3.204) by breaking the summation into diagonal and off-diagonal

parts Dj and Oj , and using the fact that ∆jj = 0 and ∆jk = −∆kj :

χj [ω]−1 cj [ω] = −igj(Dj [ω] +Oj [ω]) (3.205)

where

Dj [ω] =

2∑
l=1

gl

(
Σ11[ω] + Σ22[ω]

)(
cl[ω] + c†l [ω]

)
(3.206a)

Oj [ω] =

2∑
l=1

gl

{
Σ12[ω]

(
cl[ω + ∆12] + c†l [ω + ∆12]

)
+ Σ21[ω]

(
cl[ω −∆12] + c†l [ω −∆12]

)}
(3.206b)

We treat the on-diagonal term Dj (Equation (3.206a)) first by noting that, since the me-

chanical resonator has Q � 1, we can drop the c†l [ω] terms, per the discussion in Appendix A.

Second, since ω1 and ω2 are well-separated by multiple mechanical linewidths, cl,l 6=j [ω] will be
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small at ω ≈ ωj . Thus, we get

Dj [ω] = gj

(
Σ11[ω] + Σ22[ω]

)
cj [ω] (3.207)

We treat the off-diagonal term Oj (Equation (3.206b)) with the assumption that the laser

tone splitting is within a few mechanical linewidths of the bare mechanical mode splitting (see

Equation (3.174)). With this assumption, we again drop the counter-rotating c†l [ω±∆12] terms,

since they resonate at −ωl and −2ωl + ωm,m 6=l, respectively, which are both negative and can

be dropped under the high-Q approximation.

Next, we break the summation in Equation (3.206b) by considering the summation index l

when l = j and l 6= j. For l = j, and j = 1, then since c1[ω] and c1[ω + ∆12] peak at ω1 and

ω2, respectively, c1[ω+ ∆12] can be dropped. Similarly, c1[ω−∆12] peaks at 2ω1−ω2, so it can

be dropped as well. Then, for l = j and j = 2, it can be similarly argued that c2[ω ±∆12] are

negligible. Thus, we next consider l 6= j.

For l 6= j in the summation in Equation (3.206b), we note that if j = 1, then l = 2, and

c2[ω + ∆12] peaks at ω = ω1, since c2[ω] peaks at ω = ω2. Thus, this term is not negligible.

Similarly, for j = 2, and l = 1, c1[ω −∆12] peaks at ω = ω2. Thus, we find

Oj [ω] =
{
glΣ12[ω]cl[ω + ∆12] + Σ21[ω]cl[ω −∆12]

}
l,l 6=j

(3.208)

Finally, we’ll note that only one term in the above peaks at the same frequency as cj [ω]. Thus,

the off-diagonal terms are simply

O1[ω] = g2Σ12[ω]c2[ω + ∆12] (3.209a)

O2[ω] = g1Σ21[ω]c1[ω −∆12] (3.209b)

The equations of motion (Equation (3.205)) can now be written as

χ1[ω]−1c1[ω] = −ig2
1

(
Σ11[ω] + Σ22[ω]

)
c1[ω]− ig1g2Σ12[ω]c2[ω + ∆12] (3.210a)

χ2[ω]−1c2[ω] = −ig1g2Σ21[ω]c1[ω −∆12]− ig2
2

(
Σ11[ω] + Σ22[ω]

)
c2[ω] (3.210b)

Under the high-Q approximation for the mechanical resonator, and since the mechanical linewidths

γj are much smaller than κ,and since Σjk[ω] only varies appreciably on the order of κ, we can
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treat Σjk[ω] as constant:

(γ1

2
− i(ω − ω1)

)
c1[ω] = −ig2

1

(
Σ11[ω1] + Σ22[ω1]

)
c1[ω]− ig1g2Σ12[ω1]c2[ω + ∆12] (3.211a)(γ2

2
− i(ω − ω2)

)
c2[ω] = −ig1g2Σ21[ω2]c1[ω −∆12]− ig2

2

(
Σ11[ω2] + Σ22[ω2]

)
c2[ω] (3.211b)

where we have replaced χj [ω]−1 with its definition. Now, we easily take the inverse Fourier

transform of Equations (3.211):

ċ1(t) = −i
{

(ω1 − iγ1/2) c1 + g2
1

2∑
k=1

Σkk[ω1]c1[ω] + g1g2Σ12[ω1]e+i∆12tc2

}
(3.212a)

ċ2(t) = −i
{

(ω1 − iγ2/2) c2 + g2
2

2∑
k=1

Σkk[ω2]c2[ω] + g1g2Σ21[ω2]e−i∆12tc1

}
(3.212b)

Let C(t) = (c1(t), c2(t))T be a vector quantity. Equation (3.212) can be written with a

Hamiltonian.

Ċ(t) = −iH(t)C(t) (3.213)

where

H(t) = H0 +Hint(t) (3.214a)

H0 =

ω1 − iγ1/2 0

0 ω2 − iγ2/2

 (3.214b)

Hint(t) =

 σ11 σ12e
+i∆12t

σ21e
−i∆12t σ22

 (3.214c)

and the σjk terms are given by

σjj = g2
j

2∑
k=1

(Σkk[ωj ]) (3.215a)

σjk = gjgkΣjk[ωj ] (3.215b)

and where Σjk[ω] is given by Equation (3.203).

3.5.5 Nondegenerate Two-Mode Coupling: Time-Independent Floquet

Frame

Understanding the dynamics of Equation (3.214) is greatly simplified if we choose a basis in

which it is time-independent. We refer to this as entering the rotating frame.
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By way of illustration, we consider a 2× 2 unitary transformation

U(t) =

ei(θ+T/2)t 0

0 ei(−θ+T/2)t

 (3.216)

where θ and T are free parameters, for the time being. Clearly U(t) is unitary, since UU† =

U†U = I. Furthermore,

0 =
d

dt
(I) = U̇U† + UU̇† (3.217)

Define a change-of-basis

C ′(t) = U(t)C(t) (3.218)

Then, from Equation (3.213),

d

dt
(U†C ′) = H(t)(U†C ′) (3.219)

Multiply both sides on the left by U(t). Then the left-hand side is

UU̇†C ′ + UU†C ′ = −U̇U†C ′ + Ċ ′ (3.220)

Then

Ċ ′ = −UiHU†C ′ + U̇U†C ′

= −iHrotC
′

(3.221)

where the rotating-frame Hamiltonian is given by

Hrot = UHU† + iU̇U† (3.222)

This simplifies to

Hrot(t) =

ω1 − iγ1/2 0

0 ω2 − iγ2/2


 σ11 σ12e

+i(∆12+2θ)t

σ21e
−i(∆12+2θ)t σ22

−
θ + T/2 0

0 −θ + T/2


(3.223)

We make Hrot(t) time-independent by setting θ = −∆12/2. T is an overall trace, which has no

effect on the dynamics. Let us presciently set T = ω1 + ω2, and get

Hrot =

ω1 + ∆12/2− T/2− iγ1/2 0

0 ω2 −∆12/2− T/2− iγ2/2

+

σ11 σ12

σ21 σ22

 (3.224)
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Figure 3.5: The three lasers used to optomechanically control three mechanical modes, plotted
as intensity versus laser frequency. The laser frequency axis is set to zero at the cavity resonance
for the control laser. The blue Lorentzian represents the cavity linewidth.

Lastly, we note that ∆12 ≈ −ω1+ω2. In fact, in Equation (3.173), we can set η1 = 0 and η2 = −η,

for some η on the order of the mechanical linewidths. Then the rotating frame Hamiltonian is

Hrot =

+η/2− iγ1/2 0

0 −η/2− iγ2/2

+

σ11 σ12

σ21 σ22

 (3.225)

Thus, we see that the bare frequency splitting has reduced considerably from ω2 − ω1 to +η.

This Hamiltonian was used in [31], where ω1 = 557.4 kHz, ω2 = 705 kHz, and η = 100 Hz, and

the mode splitting in the Floquet frame was reduced by 3 orders of magnitude, from 148 kHz

to 100 Hz. The laser powers used in that experiment were sufficient that the optomechanical

interaction, captured in the σjk parameters, was sufficient to bring the system to a degeneracy

in the Floquet frame.

3.6 Three-Mode Hamiltonian

In this section, we describe the Hamiltonian of the system used in this thesis experiment. This

Hamiltonian uses the optomechanical interaction and Floquet theory to couple three mechanical

modes.

We consider three mechanical modes: ω1, ω2, and ω3. We optomechanically control their

frequencies and dampings with three laser tones (the experimental implementation of these laser

tones is described in Sections 5.1.1 and 5.3). With respect to a cavity mode Ωc, these laser tones

have powers P1, P2, and P3, and frequencies

ωj,L = Ωc + ∆j (3.226)

where ∆j is a detuning from the cavity mode. Figure 3.5 In analogy with Section 3.5.2, we will

define these detunings ∆j by

∆j = −ωj + δ + ηj (3.227)
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where δ is a parameter that we tune. ηj is a fixed frequency shift, which is on the order of

the optomechanically damped mechanical dampings, that sets the position of the degeneracy in

the Floquet frame. We choose η1/2π = 0, η2/2π = −100 Hz, and η3/2π = 0 (and simply set

η , η2 = 2π ×−100 Hz).

In this experiment, we choose modes with frequencies

ω1/2π = 352.243 kHz (3.228a)

ω2/2π = 557.217 kHz (3.228b)

ω3/2π = 704.837 kHz, (3.228c)

dampings

γ1/2π = 4.4 Hz (3.229a)

γ2/2π = 3.8 Hz (3.229b)

γ3/2π = 3.6 Hz, (3.229c)

The measured values of κ and κin are

κ/2π = 190 kHz (3.230a)

κin = 0.267κ (3.230b)

The optomechanical coupling rates are

g1/2π = 0.198 Hz (3.231a)

g2/2π = 0.304 Hz (3.231b)

g3/2π = 0.300 Hz, (3.231c)

These values were measured via 1-tone optomechanical shift measurements, as described in

Appendix C.

With the laser tone setup described above, and in Figure 3.5, the mechanical modes will

couple with one another pairwise, with the same physical processes as described in Section 3.5.2:

lasers 1 and 2 will couple modes 1 and 2, but not mode 3; lasers 1 and 3 will couple modes 1

and 3, but not mode 2; and lasers 2 and 3 will couple modes 2 and 3, but not mode 1. Take

∆jk = ∆j−∆k. From Section 3.5.2, we know that the system Hamiltonian will take the periodic
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form

H =


ω1 − iγ1/2 0 0

0 ω2 − iγ2/2 0

0 0 ω3 − iγ3/2

+


σ11 σ12e

+i∆12t σ13e
+i∆13t

σ21e
−i∆12t σ22 σ23e

+i∆23t

σ31e
−i∆13t σ32e

−i∆23t σ33


(3.232)

The σjk terms are precisely the same as those given in Equations (3.215).

Let us now choose a change of basis that puts H into a time-independent rotating frame.

Define the change of basis matrix

U(t) =


ei(T−θ)t 0 0

0 eiT t 0

0 0 ei(T−ρ)t

 (3.233)

Per the discussion in Section 3.5.5, we obtain the rotating frame Hamiltonian

Hrot(t) =


ω1 − iγ1/2− T + θ 0 0

0 ω2 − iγ2/2− T 0

0 0 ω3 − iγ3/2− T + ρ

+


σ11 σ12e

+i(∆12−θ)t σ13e
+i(∆13−θ+ρ)t

σ21e
−i(∆12−θ)t σ22 σ23e

+i(∆23+ρ)t

σ31e
−i(∆13−θ+ρ)t σ32e

−i(∆23+ρ)t σ33


(3.234)

To make the above equation time-independent, we set

θ = ∆12 (3.235a)

ρ = −∆23 (3.235b)

Then, since ∆13 = ∆12+∆23 = θ−ρ, this rotating frame Hamiltonian is indeed time-independent.

T is a free parameter that does not affect the dynamics. We can choose to set T to

T = ω2 (3.236)

Then the time-varying change-of-basis matrix is

U(t) =


ei(ω1+η)t 0 0

0 eiω2t 0

0 0 ei(ω3+η)t

 (3.237)
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The system Hamiltonian in the Floquet frame is given by

Hrot

(
δ, P1, P2, P3

)
=


−η − iγ1/2 0 0

0 −iγ2/2 0

0 0 −η − iγ3/2

+


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (3.238)

where the σjk terms are given in Equations (3.215).
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Chapter 4

Membrane-in-the-Middle

Platform

4.1 Membrane

4.1.1 Membrane Mechanical Modes

In this section, we describe the mechanical mode frequencies for the 2D membrane that we

employ in this experiment.

The vibrational frequencies of the mechanical modes for a 2D rectangular membrane with

side lengths Lx and Ly are given by

νm,n = ν1,1

√
(m/Lx)2 + (n/Ly)2

(1/Lx)2 + (1/Ly)2
, m, n ∈ Z+ (4.1)

where ν1,1 is the fundamental vibrational mode.1 See Appendix B for a derivation of Equation

4.1.

A special case of Equation 4.1 is when the membrane is a square, in which case, Lx = Ly = L.

Then Equation 4.1 becomes

νm,n = ν1,1

√
m2 + n2

2
, m, n ∈ Z+ (4.2)

Another special case is when the membrane is nearly square. Then we can write the side lengths

as Lx = L(1 + δx/2) and Ly = L(1− δx/2), for some small asymmetry term δx� 1. Then we

can use a Taylor expansion to write the membrane vibrational frequencies (4.1), to first order in

1If one prefers, one can write these frequencies in terms of ωm,n = 2πνm,n, where ωm,n is the angular
frequency, and νm,n is the ordinary frequency.
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Figure 4.1: The vibrational modes of the square membrane (Equation 4.4). The blue color is
the high value, the red color is the low value, and the white color is the zero.

δx, as

νm,n ≈ ν1,1

√
m2(1 + δx) + n2(1− δx)

2

≈ ν1,1

√
m2 + n2

2

(
1 +

m2 − n2

2(m2 + n2)
δx

) (4.3)

Thus, the side-length asymmetry introduced by the δx term lifts the degeneracy between the

(m,n)-th and the (n,m)-th modes.

Figure 4.1 depicts the vibrational modes of the square membrane (c.f. Equation 4.2). The

(m,n)-th mode has displacement

f(x, y) = sin
(mπx

L

)
sin
(nπy
L

)
(4.4)

(see Appendix B for a derivation of Equation 4.4). In Figure 4.1, we see that (4.4) is a standing

wave, and the (m,n)-th mode has m antinodes and m + 1 nodes along the x-axis, as well as n

antinodes and n+ 1 nodes along the y-axis.

4.1.2 Experimental Membrane and Mount

This subsection describes the experimental membrane used in this experiment. Because the

membrane was situated inside of a cryogenic cavity before I joined the experiment, I largely

summarize past theses [64, 33, 70] in this subsection.
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Figure 4.2: The membrane, mounted on its membrane mount.

In this experiment, we use a nearly square, nearly 2D, high-stress 1 mm×1 mm×50 nm Si3N4

membrane, manufactured by Norcada, and with model number NX5100AS. [64, p.77] [33, p.35]

[70, p.51]. This membrane has a fundamental mode frequency ν1,1 = 352.3 kHz.

The membrane is not perfectly square due to small manufacturing imprecisions, so the me-

chanical mode frequencies are given by Equation 4.3. The splitting between the (2, 1) and the

(1, 2) modes is approximately 400 Hz, so the value of the δx parameter for our membrane in

Equation 4.3 is approximately δx ≈ 0.001.

Before mounting this membrane inside a cavity, the membrane and the other membranes

in the same batch were cleaned with acetone, methanol, isopropyl alcohol, and O2-plasma [33,

p.35]. Then, the membrane used in this work was selected from the batch based on its quality

factor at room temperature. These quality factors were measured via mechanical ringdowns

(Section 4.1.3). At the time of the selection, the quality factors were on the order of 106 [33,

p.35] [64, p.134]. Quality factors decreased to the order of 105 over the lifetime of this setup (see

Section 4.1.3).

The SI3N4 membrane chip is secured to a mount, depicted in Figure 4.2. The chip is attached

to a circular oxygen-free high-conductivity copper plate. [33, p.35] This plate is used to create

a good thermal link to the heat sinking wires. The copper plate is attached to a rectangular

titanium block. This titanium block sits on top a ring-shaped piezo actuator. Finally, both the

piezo and the titanium block that contains the membrane chip as well as the copper plate are

mounted on a titanium “bridge” [64, p.94].2 Figure 4.2 shows the membrane secured with a

leaf spring. However, in subsequent experiments [64, p.94] [33, p.35], the membrane is secured

with Stycast 2850 epoxy at three of its corners, since it was found that the desired mechanical

2This titanium “bridge” sits on top of a PiezoKnob-based mirror mount, for in situ adjustment of the membrane
position [64, p.94]. This feature was not used in the experiments discussed in this thesis.
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Figure 4.3: Left: a ringdown train of the 557.4 kHz mode. The sampling rate is 1800 samples per
second, and the bandwidth on the lock-in amplifier is 100 Hz. The blue lines are the membrane
mode motion. The orange vertical lines are where the drive was turned off. The green vertical
lines are where the drive was turned on. These aid in the analysis. Right: a fit of the averaged
motion over all of these ringdowns to the fit function (4.6). A value of γ = 2π × 2.0 Hz is
extracted from this fit.

properties of square membranes were achieved by securing them with epoxy instead of a leaf

spring [64, p.94].

The ring piezo is used in this experiment to adjust the position of the membrane. At cryogenic

temperatures, the ring piezo offers approximately 200 nm of translation range. We tune its

position with an applied voltage in order to tune the cavity-membrane-mode coupling. Because

we want to optimize this coupling for the experiment in this thesis (see Section 5.2.3 for a

discussion on the choice of applied voltage), we send a DC signal to this piezo.3 This signal is

sent via batteries and strong low-pass filtering.4 All ∼200 nm of the ring piezo’s range could be

realized with a voltage range of ∼0 V to ∼200 V, so we either use roughly twenty 9V batteries,

or an SRS928 programmable DC voltage supply to set and fix the ring piezo position.

4.1.3 Membrane Mechanical Ringdowns

To characterize the linewidths of the membrane’s mechanical modes, we perform ringdown mea-

surements, by exciting the mode of interest, then turning off the excitation, and subsequently

measuring the decay time τ . The linewidth γ is given by

γ = 2/τ (4.5)

3One can also use this ring piezo to excite a membrane mode. However, we instead drive the membrane using
an AOM, as described in Section 5.1.1, since the noise stability of the AOM method is superior to the direct
piezo-driving method.

4The low-pass filtering is achieved by putting a 1 MΩ resistor in series with the batteries, since the membrane
piezo can be considered a 50 nF capacitor to ground [33, p.36].
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Figure 4.4: Ringdown trains for four mechanical modes.

Figure 7.1 depicts a ringdown train for the (2,1) mode, which has a frequency of 557.4 kHz

(heterodyne lock-in detection of signals such as this is discussed in detail in Section 5.3.1). A

drive to the membrane is applied at 557.4 kHz via an AOM (as described in Sections 5.1.1 and

5.3.1), which brings the amplitude to a high value. Then the drive is turned off, and the motion is

allowed to relax. The green lines depict where the drive is turned on, and the orange lines depict

where the drive is turned off. To aid in analysis, the green and orange lines are algorithmically

selected: first, the data is smoothed via a rolling average; second, the rises and fall indices in

the data are selected based on when the rolling average crosses threshold values. The green and

orange lines delineate individual ringdowns, which are then averaged and fit to

f(t) =
√
a2 exp(−2(t− t0)/τ) + b2, (4.6)

as discussed in more detail in [64, p.133-4]. The most important characteristic of this function

is τ , which determines the mechanical linewidth via (4.5).

The decay time τ is used to compute the quality factor

Q =
ω

γ
=
ωτ

2
= πfτ, (4.7)

where we have written ω = 2πf , for the mode frequency f in ordinary units.5 The averaged

ringdown motion of several mechanical modes is depicted in Figure 4.4; the ringdowns are

annotated with their mode numbers, frequencies, and quality factors. These quality factors are

an order of magnitude lower than the quality factors found in [33, p.36, Fig.2.3]. This decrease

happened over the eight years that the same membrane was continuously installed in the cryostat.

5It is very easy to mistakenly forget to multiply by 2π, if one inadvertently uses the ordinary frequency f as
the angular frequency ω...
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Figure 4.5: The optical cavity, with the membrane ”bridge” (Figure 4.2) mounted inside.

4.2 Optical Cavity

The optical cavity used in this experiment, as well as in [70, p.53] [33, p.34-5] [64, p.95-6], is

described in this section.

4.2.1 Description of the Optical Cavity

Figure 4.5 shows the membrane titanium ”bridge” assembly (Section 4.1.2 and Figure 4.2). The

optical cavity consists of two high-reflectivity mirrors, mounted on a titanium spacer. These

mirrors were manufactured from a stack of alternating dielectric coatings, and deposited on a

glass substrate. These mirrors are clamped between two plates, which are held together by

screws and spring washers. These spring washers ensure that the screws provide even clamping

force during a cooldown, despite the fact that the screws may have different thermal contractions

from the mirror substrate [64, p.95]. One piece of Kaptonr tape separates the mirrors from the

spacer, as a buffer between the mirror glass and the spacer metal [33, p.34]. In Figure 4.5, one

can see a hole on the bottom side of the titanium stage, which allows wires for the PiezoKnob

actuators to pass through; these PiezoKnob actuators were used to tune the membrane’s tip,

tilt, and translation in situ [64, p.95], though this feature was not used in the experimental work

of this thesis.

The two mirrors have reflectivities routput = 0.99997 and rinput = 0.9998 [70, p.53] [64, p.90,

p.96, Figure 26]. Figure 4.6 shows a batch of the mirrors used in this optical cavity. The

output mirror is visible in Figure 4.5. The input mirror is under the cavity and is not visible

in Figure 4.5. Because routput is much greater than rinput, this is nearly a “single-sided” cavity.

Since cavity measurements in this experiment are done in reflection, the transmission out of the

output cavity mirror is not used. The titanium spacer separates the two mirrors by 3.7 cm; this
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Figure 4.6: A batch of the mirrors used in the optical cavity of this experiment. Purchased from
ATFilms.

corresponds to a free spectral range of ∼4 GHz [70, p.53] [33, p.35]. The cavity decay rate for

the cavity in this experiment is κ = 177 kHz, and the cavity input coupling rate is κin = 0.267κ.

κ and κin can be found by measuring the cavity linewidth via its reflection spectrum (see Section

3.3.3, 3.3.4, and 4.2.2). κ may alternatively be measured from the optomechanical spring and

damping (see Appendix C for descriptions of these measurements).

4.2.2 Characterizing the Cavity with a Cavity Scan

In this section, we characterize the cavity by sweeping one of the two lasers which couple to our

cavity via our optical table setup (Section 5.1.1), and measuring the amplitude of the reflected

light. We seek dips in the reflection, which correspond to cavity resonances. In addition, we

sweep the ring piezo position (Section 4.1.2), which varies the cavity resonances. We tune

these parameters together to find a laser-frequency-membrane-position configuration which best

optimizes the laser-cavity coupling, in order to best facilitate heterodyne signal measurements

(Section 5.3.1).

We begin by measuring the frequency tunability of the Prometheus Nd-YAG laser. We do this

by using a wavelength meter which could measure wavelengths l near 1064 nm, then converting

to frequency with the relation f = c/l. Then we change the laser temperature to change the

laser frequency. The stated range of laser frequency control with this method is ∼60 GHz. In

Figure 4.7, we see the measured laser frequency versus the laser temperature. The relationship is

negatively sloped, aside from some “mode hop” discontinuities. In choosing laser frequencies, we

would like the laser frequency fluctuations to remain small (in particular, these should be small

relative to any feedback applied to lock the lasers; see Section 5.2). The initial laser frequency

is therefore chosen carefully to avoid these mode hop points.

Next, we measure the reflection of the input light, as a function of the laser frequency and
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Figure 4.7: The control laser frequency versus the control laser temperature.

(a) (b)

Figure 4.8: A cavity scan measurement. a) the reflection is measured both while the temperature
is ramped up and down. b) the reflection is measured only while the temperature is ramped up.
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Figure 4.9: The scan of our cavity modes. The color axis shows the cavity reflection. The piezo
voltage sweeps the membrane ring piezo voltage, which sweeps the membrane piezo position on
a 1D axis. The laser frequency is swept by sweeping the laser temperature via an applied DC
voltage.
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the membrane ring piezo position (Section 4.1.2). We refer to this as a cavity scan. To step

the ring piezo position, we use a Stanford Research Systems programmable DC voltage supply

(SRS SIM928). The output range of the SIM928 is −20 V to 20 V. The membrane ring piezo

admits 0 to 200 V, so we use an operational amplifier (opamp) with a gain of -18.71 to achieve

the desired 200 V range.

To step the laser frequency, we use a Rigol function generator, which outputs to the laser

temperature control box. We apply a ramp from 0 V to 2.4 V to step the laser temperature

by 2.1 K, as the tuning coefficient is approximately 1 K/V. The ramp-up time is set to 32.5 s,

to ensure that the laser frequency settling time is sufficient (though no systematic effort was

made to determine a minimum effective temperature ramp time that would ensure sufficient

laser frequency settling).

As the laser frequency is swept, the cavity reflection is measured, and the minimum value

of the reflection is tracked. This is done with a National Instruments DAQ, which samples the

reflection at 10 kS/s. This is a very large sampling rate, relative to the set ramping time of

32.5 s, so we bin the temperature axis, and plot the minimum value of the reflection in that bin.

The reflection minima can be plotted for either or both of the ramp rise and fall. Figure

4.8 show two configurations: on the left, the reflection minima are plotted for both the rise and

fall of the ramp; on the right, only the minima corresponding to the rise are plotted. In order

to avoid seeing two apparent “higher-order” cavity modes, in this measurement, we only record

reflection minima on the rising portion of the temperature ramp.

Given that the Rigol function generator only has a DC output range of 5 V, and also that we

wish to avoid blindly sweeping through mode-hop frequencies (Figure 4.7), we perform a large

cavity scan measurement by manually setting the laser temperature, then performing program-

matic cavity scan measurements. We then convert the Rigol voltage axis to laser temperature

(via Figure 4.7), and then concatenate the cavity scan measurements together in the laser fre-

quency axis. Figure 4.9 shows the result of this concatenation.

The sinusoidal curves in the cavity reflection minima of Figure 4.9 show the cavity modes.

These could be fundamental TEM0,0 modes, as well as higher-order modes. We assume that the

fundamental modes are those that have the deepest reflection minima, since the initial alignment

of the cavity and the optical fiber (Section 4.3) was such that the fiber was well-coupled with

the fundamental modes. Based on this assumption, we assume that at piezo voltages of 0 V, the

TEM0,0 mode frequencies in Figure 4.9 are approximately 20 V, 24 V, 27.5 V, 32.5 V, 36 V, 41 V,

45 V.

When choosing a membrane piezo voltage and a laser frequency, we would like the probe

laser (Section 5.1.1) to couple easily to a cavity mode, so that it is easy to PDH-lock the probe

100



4.3. CRYOSTAT CHAPTER 4. MEMBRANE-
IN-THE-MIDDLE PLATFORM

(a) (b)

Figure 4.10: a) an image of our cryostat. b) a schematic of the 3He cryostatic environment.
Figure b from [33, p.33, Figure 2.1] and [70, p.54, Figure 3.5].

laser (Section 5.2). Thus, we choose to set the probe laser at 25 GHz in Figure 4.9, and the

membrane piezo position at 0 V. The control laser is locked by a frequency offset from the probe

laser frequency, so it does not need to couple as strongly to its cavity mode, since we can simply

increase the applied control tone power as needed (Section 5.3.2). The control laser frequency

needs to be two FSR’s away from the probe laser, to ensure that it addresses its cavity mode

as the probe laser frequency tracks its mode (Section 5.2.2). Thus, we choose to set the control

laser frequency at 32.5 GHz.

4.3 Cryostat

4.3.1 Description of the Cryostat

The optical cavity and the membrane in the optical cavity are placed in a “wet” 3He fridge.

This Janis fridge is shown in Figure 4.10a. A schematic of this fridge is shown in Figure 4.10b.

The fridge has an interval vacuum chamber (IVC), which is submerged in a 4He bath. This 4He

is at 4.2 K. It is replenished approximately every 9 or 10 days from an external source. This is

distinct from “dry” fridges, which continually boil and recondense the 4He in a closed cycle; this

requires continuous use of compressors, which causes vibrations that add unwanted noise to the
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(a) (b)

Figure 4.11: The cryogenic platform used for this experiment. a. Schematic of the platform. b.
Photo of the platform. Figure adapted from [33, p.34, Figure 2.2] and [70, p.56, Figure 3.6].

experiment.6

The IVC is connected to a chamber called the 1K pot (Figure 4.10b). The 1K pot has a

vent that is either be vented or pumped. Pumping the 1K pot can be used to bring the 3He

pot to a base temperature of 300 mK (see [70, pp.54-5], [33, pp.33-4], [64, p.88] for a description

of how this was done in past experiments). For the experimental work in this thesis, the 1K

pot was never pumped, since the non-Hermitian dynamics do not fundamentally depend on the

bath temperature. Thus, the only regular maintenance the fridge undergoes is the transfer of

4He into the bath space, to replace the boiled-off 4He.

A single mode fiber from the optical table (Section 5.1.1) is directed into the fridge (Figure

4.11). This fiber enters a collimator, which is a long, narrow tube that focuses the fiber light

in free space in the direction of the cavity. Specifically, the collimator sends the light from the

fiber in free space to a 45 degree adjustable steering mirror. This light then goes to a separate

nonadjustable 45 degree mirror, which then directs the light into the input mirror of the cavity

(Section 4.2.1).

The collimator and the adjustable steering mirror are mounted on 3-axis piezo-electrically

controlled mounts, manufactured by JPE. The mounts have been highly stable with respect to

long-term position drift; from 2018 to 2021, we never had to tune the motors for the collimator

and mirror mounts.

6In particular, the noise from compressors for a dry fridge was undesired for the ground-state cooling experi-
ment.[64]
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Figure 4.12: The springs, the collimator, and the optical cavity, removed from the helium insert.
These were removed when the setup was disassembled and moved from SPL to YSB.

A strong thermal link needs to be maintained between the 3He plate and the experimental

optical cavity. Thus, roughly 1000 very thin, gold-coated copper wires connect these two, as

shown in Figure 4.11. The connections are somewhat loose, so that the plate and the cryogenic

platform are vibrationally isolated.

The Janis fridge is placed on pneumatic nitrogen gas supports (Newport S-2000A-128 [70,

p.56]). This provides seismic isolation for the contents of the fridge. In addition, the cavity is

built on a ∼1 kg Ti plate in the IVC. Titanium has low thermal contraction and high thermal

conductivity in a cryogenic setting. This plate is suspended on critically damped springs, to

further isolate the optical cavity from vibrations inside and outside the cryostat. The critical

damping is achieved with eddy currents that come from the copper fins on the platform and

permanent magnets fixed underneath the platform. Figure 4.12 shows the magnet, the springs,

the collimator, and the optical cavity removed from the helium insert.

4.3.2 4He Recovery in the “Wet” Fridge

Because the fridge used in this experiment is a “wet” 3He fridge, we do not continuously boil

off and recondense the 4He via adjacent compressors. Instead, we must bring an external dewar

of 4He to the fridge, and transfer the 4He into the 4He bath. This could be achieved by placing

orders for 100 L dewars of liquid 4He every week. However, this is cumbersome7 and very

expensive.8 Thus, we opt instead to take the 4He boil off from the fridge bath, and reliquefy the

boil off in-house.

7To obtain these dewars for a given week, we would have to place dewar orders with Airgas by Thursday the
week before.

8One 100 L dewar cost 1676.48 USD, on 2021 May 17.
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The 4He boil-off is collected via a recovery system. This recovery system is connected to a

vent on the dewar bath. The recovery system takes the gaseous 4He from the bath vent to a

separate “recovery room.” The recovery system has both a “small” and a “large” recovery line;

the large line allows ∼16 oz/in2, and a typical pressure in the small line is ∼3 oz/in2. For normal,

day-to-day operation of the fridge, the small recovery line is open, and the large line is shut. For

4He transfers, the small line is shut, and the large line is open.

In the recovery room, the recovery line collects the gaseous 4He into a series of tanks. These

tanks can hold up to 8 bar of gas; any excess of this is released into the environment.

The helium tanks are connected to a Quantum Design ATP80 (Advanced Technology Purifier,

80 L).9 This gas can contain water vapor, nitrogen vapor, and other impurities. Thus, the ATP

cools the gas down to about 13 K, which is enough to condense any liquid or nitrogen vapor,

but still above the liquefaction point of 4He at 4.2 K. The impurities are collected in the ATP

purifier cartridge. If this cartridge is saturated, the ATP will block the flow of gas. A compressor

and coldhead provide the cooling (detailed in [73, Section 1.3.2]). The ATP outputs 4He with a

purity of better than 99.999%.

The output of the ATP goes to an ATL160 (Advanced Technology Liquefier, 160 L). The

ATL has a 1.5 W coldhead, which actively cools the 4He gas to below 5 K [74, p.1-2]. Any gas

which is not liquefied is redirected back to our tanks, which then goes back to the ATP in a

closed cycle. The ATL maintains the dewar at 1 psig, which allows the dewar to be ready for a

helium transfer at will.

Over the course of the experiment, the ATL generally holds 80 L to 110 L (its capacity is

160 L). When the Janis fridge is low on liquid 4He (as measured by a level-meter that measures

the liquid 4He level in the bath), the ATL liquefaction is stopped, and the ATL is carted over to

the fridge. A transfer line is stuck into the ATL dewar and the fridge,10 then the ATL transfer

function is turned on. When 100 L is transferred from the ATL to the fridge, the next transfer

is in 9-10 days. If done correctly, the transfer efficiency is such that gas 4He cylinders need only

be purchased every three months.

4.4 History of the MIM Experiment

The membrane-in-the-middle (MIM) setup used for this experiment was designed in 2012 for

two major experiments: quadratic optomechanics and ground-state cooling [64] [33]. In the

9As necessary, we can supplementally order 10 L cylinders of 4He gas, and supply these to the ATP. This puts
10 L into the recovery circulation system. Each of these cylinders cost 96.26 USD on 2020 December 4.

10More specifically, a transfer line is put into the ATL. The line is slowly inserted until the cold 4He gas being
expelled on the other side of the transfer line shows a “white flame;” this is a signature that the line has hit the
liquid 4He, and that air has been flushed out of the line. The other end of the line is then put into the fridge
4He bath vent.
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quadratic optomechanics experiment [75], two cavity modes were coupled to the motion of a

single mechanical oscillator at avoided crossings in the cavity spectrum (c.f., Section 4.2.2). In

the ground-state cooling experiment [76], a vibrational mode (at ωm = 705 kHz, with effective

mass 43 ng) was cryogenically and optomechanically cooled close to its quantum ground state

(to a phonon occupancy of 0.84±0.22). The ground-state cooling experiment presented a major

technical challenge with the laser noise, which set a fundamental limit on optomechanical cooling,

which was overcome with two carefully locked filter cavities.

The MIM setup had been carefully engineered to achieve quantum ground-state cooling;

ironically, the experiments performed after the ground-state cooling experiment were entirely

classical. In 2016, the experiment was used to demonstrate energy transfer between two nearly-

degenerate mechanical modes, with an optically-mediated coupling produced by one laser tone,

by quasiadiabatically encircling a degeneracy known as an exceptional point [6]. Later in 2017

and 2018, the setup was extended to couple any two modes [31] with two laser tones, as well as to

produce nonreciprocal, tunable, and continuous coupling between two modes via four laser tones

[32]. All of these experiments only required coupled harmonic oscillators with an exceptional

point degeneracy, and were essentially possible with any system of coupled harmonic oscillators

besides the optomechanical MIM setup.

When I joined the MIM experiment in 2018, the main focus of the experiment was to ex-

plore higher-order exceptional points in coupled-oscillator systems. Specifically, the goal of the

experiment was to experimentally demonstrate a third-order exceptional point (EP3 ), and ex-

plore the extended EP2 space near the EP3 point. Restricted to a manifold surrounding EP3 ,

the extended EP2 space is known, from algebraic geometry [14] [9], to form a trefoil knot. The

experimental goal was to measure this EP2 trefoil knot, and to measure eigenvalue braids around

closed loops enclosing the knot.
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Chapter 5

Data Acquisition

5.1 Optical Table

5.1.1 Optical Paths

Figure 5.1: Detailed optical diagram. The red path is the probe laser path. The blue path is
the control laser path. The purple path is the probe and control laser paths combined. Black
lines denote electronics.

In this section, we provide an overview of the optical setup used in this experiment. This

optical setup is responsible both for optomechanically controlling the membrane, which lives in

a Fabry-Pérot cavity inside a 4K cryostat, as well as for driving and reading out the response of

the membrane.

The full optical setup is shown in Figure 5.1. There are are two Nd:YAG lasers on the optical

table: one laser is used to drive and read out the response of the mechanical membrane, and

the other is used to optomechanically control the frequencies and dampings of the membrane’s

vibrational modes.
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Figure 5.2: A: A simplified diagram of the experimental setup. B (upper): The control laser tones
used in this experiment. The horizontal axis gives the detuning with respect to the cavity mode
addressed by the control laser. The AOM produces three optical tones which optomechanically
control the membrane mechanical modes. B (lower): The probe laser tones. The probe laser
is approximately two FSR’s red-shifted from the control laser frequency. The LO (grey) is
−79.5 MHz away from the mechanical drive. The mechanical drive is produced by an AOM. The
15 MHz sidebands are produced by an EOM, and are used for PDH locking.

Probe Laser Path

The probe laser (Figure 5.1, red path) is used to mechanically drive the membrane, as well as

read out its motion. The probe laser first goes through an isolator (which helps with frequency

stability), then goes through a free-space polarizing beam splitter that splits into two paths:

one responsible for the driving and probing, and another that is used for frequency-locking the

control laser frequency to the probe laser frequency (with an RF frequency offset, as described

in Section 5.2.2).

From the first beam splitter, the probe path is further split by a second free-space polarizing

beam splitter (before this beam splitter, another isolator is used). This polarizing beam splitter

creates the heterodyne measurement, by splitting the laser into a local oscillator (LO) path, and

a modulated path that contains the mechanical drive.1 The mechanical drive is produced as

the output of a free-space acosto-optic modulator (AOM), which takes as its inputs the probe

beam, and an RF tone created from a lock-in amplifier (Zurich HF2LI) and an electronic circuit

(Section 5.3). This RF tone contains the mechanical drive, and has a frequency of approximately

1Before this polarizing beam splitter, the beam passes through a half-wave plate that rotates the polarization
direction of the probe beam. We rotate this half-wave plate to tune the power in the LO, since the LO is created
from the polarizing beam splitter.
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79.5 MHz. Before the AOM, the probe beam is modulated by an electro-optic modulator (EOM),

which adds phase modulation sidebands at ±15 MHz. These sidebands are used to lock the probe

laser frequency to the cavity mode, as described in Section 5.2.2. These tones are shown in Figure

5.2 (red).

The free-space local oscillator and the AOM-driven paths are then put into fibers, which then

get recombined via a fiber coupler. This path is recombined with the control-laser path (Figure

5.1, blue path) via another fiber coupler, and this three-path combination is sent to the cavity

(Figure 5.1, purple path).

Control Laser Path

The control laser is produced from a second Nd:YAG laser. This control laser is also split by a

polarizing beam splitter into two paths: one responsible for the control, and another that beats

the control laser with the probe laser. The beatnote of these two lasers is used in a PI-loop to

frequency-lock the control beam at the probe laser frequency, plus a frequency offset (Section

5.2.2). For the remainder of this section, we will talk about the second control-beam path, which

is used for optomechanical control.

The control-beam intensity is regulated by a variable optical attenuator (VOA)-based feed-

back loop (Section 5.2.4). The purpose of this loop is to keep the control laser intensity fixed,

before any control tones are created from RF inputs (discussed in Section 5.3.2).

With the intensity and the frequency of the control laser having been regulated by two PI

feedback loops, we send this control beam as the input of another AOM. This AOM is driven by

three RF tones, which produce the three optical tones responsible for optomechanically control-

ling the membrane mechanical modes considered in this experiment (Section 5.3). These three

optical tones are shown in Figure 5.2 (blue), where they are determined by four experimental

parameters: three laser powers Pk, k = 1, 2, 3, as well as a common detuning parameter δ (η is

a fixed parameter that specifies the rotating frame R, which is described in Section 3.6.

This AOM-modulated control beam is sent to a fiber, which is split by a 90:10 fiber-based

nonpolarizing beam splitter. The 10% path is sent to a photodiode, which is used to measure

the control tone powers, and ensure that the control tone powers are what is desired for the

experiment (Section 5.3.3). The 90% path is then combined with the heterodyne signal from the

probe beam path via a fiber coupler (Figure 5.1, red path), and this combined signal is sent to

the cavity (Figure 5.1, purple path).
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Probe and Control Paths Combined

The combination of the probe and control beam paths (Figure 5.1, purple path) is sent to the

cavity in order to drive and read out the motion in a heterodyne measurement. Before this, the

beam is sent to a fiber AOM, which is used as part of the frequency lock for both the probe and

the control lasers (Section 5.2).

The output of the fiber AOM is sent into a circulator (Figure 5.1, port 1 of the circulator).2

The input of port 1 of the circulator is output at port 2, which sends the beams to the cavity via

a fiber. This fiber goes from the room-temperature optical table to the 4K cryostat, in which

the cavity lives. The measurement is done in reflection, and the reflection is input to port 2,

which is then output at port 3. The signal is then read out by a fiber photodiode, and the

electronic signal is sent to a lock-in amplifier (Section 5.3). This same lock-in amplifier is the RF

source used to drive the membrane (Section 5.3.1). The electronic signal is also used to generate

a Pound-Drever-Hall (PDH) error signal, by mixing with the 15 MHz tones mentioned above.

This signal is used to lock the probe laser to a cavity mode.

5.2 Laser Locking Methods

In this section, we describe the techniques that we employ to lock the lasers’ frequencies and

the control laser’s intensity. We frequency-lock the probe laser frequency to a cavity resonance

because temperature and mechanical fluctuations can cause the cavity resonance frequency to

vary with time. This stabilizes the relative frequency between the probe laser and the cavity

resonance, and minimizes the effect of these fluctuations on the frequencies of the driving and

readout tones applied in this experiment. Additionally, we frequency-lock the control laser to

the probe laser frequency, shifted by two free-spectral ranges (FSR’s) of the cavity, so that the

control laser addresses a separate cavity mode, and can be used for optomechanical control of

the membrane mechanical modes. In addition to frequency-locking, we stabilize the intensity of

the control laser beam, to minimize unwanted power fluctuations in the RF control tones.

5.2.1 PDH Locking the Probe Laser

To frequency-lock the probe laser to a cavity mode frequency, we employ a common locking

technique called PDH laser frequency stabilization [77].

In principle, to lock the probe laser to a Fabry-Pérot cavity mode of interest, we can raster

the laser frequency around, and look for a frequency where the reflection dips to zero. This

2Before this circulator input, the output of the fiber AOM is sent to a 99:1 fiber-based nonpolarizing beam
splitter. The 1% path is sent to a photodiode for a power measurement. This measurement was historically used
to measure the control beam and probe beam powers [6, 31, 32]. In this experiment, it was only used to measure
the probe beam power, but it does not play a critical role in this experiment.
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happens only if the laser frequency is resonant with the cavity mode, and for symmetric, lossless

cavities. For a non-symmetric cavity with loss, the reflection has a minimum. When one identifies

where the reflection is at a minimum, then one can track fluctuations in the reflection versus

the laser frequency, and if the reflection rises, then the laser frequency can be adjusted to bring

the reflection back to zero, and maintain the lock. The problem with this first approach is that

there is an ambiguity in the sign of the fluctuation in frequency: since the reflection coefficient

is symmetric about the resonance (Figure 3.2), we cannot tell whether the frequency increased

or decreased from the resonance just from an increase in the reflection.

The PDH technique is essentially this technique just described, yet it measures the signal

phase by beating the signal with the +15 MHz and −15 MHz tones. The phase is linear in the

detuning ∆ from the resonance. This technique has the advantage that, though the reflection

coefficient is symmetric about a cavity resonance (Figure 3.2), the phase is antisymmetric near

resonance, so keeping track of the phase tells which way the laser frequency drifts from the cavity

resonance.3

In the experiment, we achieve PDH modulation by sending a sine wave of frequency 14.848 MHz

from a function generator as an RF input to an electro-optic modulator (EOM), which also takes

the probe laser as an input (Figure 5.1). The EOM phase modulates the laser tone, as described

in Appendix D, and produces 14.848 MHz sidebands on the pure laser tone. Then the AOM

subsequently frequency shifts this superposition by approximately 79.5 MHz.

To produce the PDH error signal, we demodulate the signal from the cavity readout with

another 14.848 MHz sinusoidal waveform. In principle, this demodulation sine wave could be

0 degrees phase-shifted from the modulation waveform (see Appendix D or [78, pp.83]). In

practice, the phase shift that produces a PDH signal that looks like Figure D.1 might not be 0

degrees, due to the lengths of the cables that connect the function generators to the EOM and

to the mixer, respectively.4 Fortunately, this phase shift is stable for multiple months, so long

as the cables remain unchanged. To find the correct phase shift, one can modulate the EOM

with a sine wave, then seek a phase offset that makes the PDH signal “maximally bad,” in the

sense that it is zero at the cavity resonance. This means that the real part of Equation D.9 is

zero at the resonance, so the correct phase shift is 90 degrees from this maximally incorrect one

(see Appendix D).

We should also note that this PDH signal is actually used for two probe laser locks: one

fast lock, and one slow lock. First, the fast lock: the PDH error signal itself is sent to a

proportional-integral-differential (PID) controller. This PID device is a Mokulabs Liquid In-

struments Moku:Lab device. The PID settings we use are P = −48.0 dBm, I = 3.000 kHz,

3For a detailed description and mathematical derivation, see Appendix D and reference [78].
4As of this writing, the phase shift is 110 degrees.
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D = 25.00 kHz, I+ = 1.000 kHz. The output of this PID controller is low-pass filtered to

<10 kHz, and is sent to a voltage-controlled-oscillator (VCO), the RF output of which is sent

as the RF input to a 200 MHz AOM that all the laser beams go through (Figure 5.1, purple

path). This AOM is used to stabilize all laser beams together, with respect to the cavity mode.

Second, the slow lock: the output of the first PID controller is also used as an input to a second

PI controller, which happens to be the second input on the same Mokulabs device. The second

PI controller has settings P = 0.0 dBm, I = 1.000 Hz. The output of this controller is low-pass

filtered to <1 kHz, then sent to the probe laser piezo. This second lock accounts for slow drifts

in the laser frequency and the cavity resonance.

5.2.2 Shifted Locking (“Slocking”) the Control Laser

In addition to a probe laser, there is a separate control laser that addresses a separate cavity

mode. We do this so that we can independently drive and read out the membrane motion

with one laser, and optomechanically control the membrane mechanical modes with other laser

tones, without having to worry about intracavity beatnotes. Instead of locking the control laser

directly to a cavity mode, we instead lock it at a frequency offset away from the probe laser

frequency. The main reason we do this is because, for control tones, we do not want any beams

near resonance. However, PDH locking works best when locking close to a cavity resonance, so

we do not use PDH locking for the control beam. Additionally, this simplifies the locking circuit,

in that we avoid needing a second PDH lock for the second laser. In this section, we describe

the frequency-offset locking, and in the subsequent section, we describe how we ensure that the

control laser indeed addresses an additional cavity mode.

As depicted in Figure 5.1, we take the probe laser through a polarizing beam splitter (red

path), and the control laser through another polarizing beam splitter (blue path). One of those

paths is used to drive the membrane, and the other is used to control the membrane modes. The

other two paths of those beam splitters are combined together through another beam splitter.

The polarizations of these beams are tuned with half-wave plates such that most of the beams’

power is used for the probe and control, and only a small portion is used in the probe-control

combination. The beat between the probe and control lasers at the output of the beam splitter

is detected on a high-frequency photodiode. The control laser frequency is a priori set at

nearly 2 free spectral ranges of the cavity, or about 8.2 GHz, upshifted from the probe laser

frequency. The 8.2 GHz beatnote is then downconverted with a mixer and a Rohde-Schwartz

SMB100A function generator. We use this downconverted signal for a “frequency-Shifted Lock,”

affectionately known in the Jack Harris Lab as the “Slock.”

In previous years of this experiment, an older Slock circuit was used. However, it did not
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Figure 5.3: A simulation of sweeping the control laser frequency to find the cavity resonance.
Top: the blue ramp is the frequency of the control laser (dashed blue line is the mean of the
ramp), and orange is the cavity resonance. Bottom: cavity reflection in red. The reflection dips
to minima whenever the ramped control laser frequency matches the cavity resonance (simulation
done with cavity mirror reflections r1 = .9, r2 = .95).

provide enough stability in control laser detunings for this experiment, so we switched it out for

several new ones. For discussions on the old Slock circuit, see [70] and [33, pp.45-46].

This new locking scheme takes the downconverted beatnote and sends it to a phase-locked-

loop (PLL). This PLL is set to a center frequency of about 3 MHz. The output of this PLL

is used as the error signal input to a PI control loop, on an additional Mokulabs unit, and

the output of this control loop is fed to the control laser piezo. This locks the control laser

frequency to the probe laser laser frequency, plus whatever frequency is chosen on the Rhode-

Schwartz function generator (the exact value is discussed in the Sweetspot Measurement below;

it is roughly 8.2 GHz).

5.2.3 Sweetspot Measurement

The slock that locks the control laser frequency to an offset of the probe laser frequency is not, a

priori, necessarily resonant with any cavity mode. To ensure that it is resonant with the cavity

mode, we must set the Rohde-Schwartz (RS) SMB100A RF frequency so that the control laser

frequency is indeed two cavity FSR’s away from the probe laser frequency.

After the correct RS frequency is found, the next step is to set the membrane piezo position.

This is important because the optical modes change differently as a function of the membrane

position, so the correct RS detuning changes as a function of the membrane position. Addition-

ally, if this is not accounted for, then the control laser detunings are uncalibrated and unreliable

due to their dependence on the membrane position. Thus, we need to minimize the dependence

of the correct RS detuning on the membrane position. We call this the “sweetspot search.”

First, to find the resonant RS frequency, we lock the probe laser to a cavity mode with the
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Figure 5.4: Sweetspot search after a helium transfer. The applied piezo voltage is swept, and
the resonant Rohde-Schwartz (RS) frequency is plotted on the y-axis. The red points are the
data taken after the transfer of 2021/11/07, and the blue points are the data taken from the
previous transfer. The red points are fit to a parabola (red line), and the applied voltage and
matching RS frequency are chosen.

PDH technique. We next lock the control laser to the probe laser.5 Then, we turn on a control

tone by sending an RF tone at 79.5 MHz as an input to the control AOM (the choice of 79.5 MHz

is discussed in Section 5.3.2, which details the RF frequencies that optomechanically control the

mechanical modes). We next turn on frequency modulation on the Rohde-Schwartz SMB100A.

This effectively sweeps the control laser frequency around a center frequency. A simulation of

this is depicted in Figure 5.3. If the cavity resonance is within the RS frequency sweep range,

then the reflection will have dips. If the dips occur at the center of the RS frequency sweep,

then the center frequency corresponds to the control laser frequency being on resonance with

the cavity. A proxy for this is that if these dips are equispaced in frequency (and time), then

the control laser frequency matches the cavity resonance.

We do this for a range of membrane positions, and find the position for which the difference

between the two mode frequencies is least sensitive to the fluctuations in the membrane position.

The membrane position is directly proportional to a DC voltage applied to the piezo, and the

frequency difference vs the DC voltage is a parabola.6 A sample sweetspot search is shown in

Figure 5.4. Thus, we can seek the maximum (or minimum) of the parabola, and set the position

to be at this extremal point. This minimizes the first derivative of the difference between the

two modes’ frequencies versus membrane position, and minimizes the sensitivity of the frequency

difference to fluctuations in the membrane position. We repeat this procedure after every helium

transfer.

5For this lock, we do not use the PLL-based feedback loop, but we use a “slock” integrated circuit, which
works in the same way as the “slock” circuit discussed in [70] and [33, pp.45-46], but offers better lock frequency
tunability. The tuning range of this integrated circuit is ∼ 400 MHz before it unlocks. We use this integrated
circuit for the sweetspot measurement because the PLL-based feedback loop has PID parameters that are opti-
mized for stability and not dynamic range – it unlocks when the RS center frequency is swept, which we need to
do in order to do the sweetspot measurement.

6The curve is actually sinusoidal (c.f., Figure 4.9), but we do these measurements over a region where the
curve is approximately a parabola.
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Figure 5.5: The effect of the control laser power stabilization. Left: the voltage vs time without
the VOA power stabilization, taken over 2.5 hours. The value of (max-min)/min at the final
tapoff before the cavity is 3.5%. Right: the voltage vs time with the VOA power stabilization,
taken over 8 hours. The value of (max-min)/min is 1.8%.

5.2.4 Control Laser Power Stabilization

A big challenge in this experiment was ensuring that the control tone powers were very stable

over the course of a measurement. In the experiment, we would do sets of multiple driven

response measurements that could last for a whole day, or even two days, so we needed the

control laser power itself to be held at a constant during that period.

To fix the control laser power that enters the control AOM, which is responsible for making

control tones, we indirectly fix the control laser power with a variable optical attenuator (VOA).

The VOA takes a fiber-optical input and an DC input, and has a fiber-optical output. The DC

input determines the VOA attenuation factor.

The VOA is placed after the polarizing beam splitter that leads to the slock, but before

the control AOM. After the VOA, we use a 90:10 nonpolarizing beam splitter to divert laser

power to a PDA36A photodiode.7 The output of the PDA36A photodiode is sent directly to a

proportional-integral (PI) box (New Focus LB1005). All we do is turn that PI box on and send

the output as the DC input to the VOA.

To test how well this feedback loop holds the control laser power constant, we apply an RF

tone on the control AOM, and we measure the control laser power at three tapoff photodiodes:

one that comes before the control AOM, one that comes after the control AOM, and one that

comes after the fiber coupler that combines the control and probe beams, but just before the

cavity that contains the membrane. We show this in Figure 5.5. In the left-hand side, we do not

have any control laser power stabilization circuit, and on the right-hand side, we use the VOA-

based power stabilization circuit described above. On the left side, we see that the unaddressed

7It is important that this beam splitter be nonpolarizing, because if we split the beam based on its polarization,
we would conflate polarization fluctuations as intensity fluctuations, and the feedback to the laser intensity would
be erroneous.
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control power fluctuations before the AOM dominate the control tone power fluctuations that

the cavity sees. On the right side, when these fluctuations are fed back to the control laser

intensity and used to stabilize it, any fluctuations that occur at the final tapoff no longer occur

before the AOM. Furthermore, the size of the fluctuations at the final tapoff, as quantified by

(Vmax − Vmin)/Vmin, has decreased between the two measurements.

This simple feedback loop is enough to hold the control laser power constant, to within 2%

over a period of multiple days. In tandem with the Slock that directly locks the control laser

frequency to the probe laser frequency, plus an offset, we can reliably specify control laser powers

and detunings, and have them be fixed for the duration of our day-long experiments. We later

further specify the precise control beam power that the cavity sees by calibrating the RF voltages

that are sent to the control AOM, as described in Section 5.3.3.

5.3 Electronic Setup

5.3.1 Heterodyne Measurement Electronics

In this section, we describe how we drive the membrane, and how we read out the membrane

motion.

To drive the membrane, we use an acousto-optic modulator (AOM) that has a response near

79.5 MHz. The RF signal required to actuate the AOM is produced with a Hewlett-Packard

function generator (HP8642B). We also use the amplitude modulation input on the HP, and

this amplitude modulation takes the mechanical drive at frequency ωAM that we want to send.

The frequency of this drive is hundreds of kilohertz. For this experiment, the primary drive

frequencies ωAM are 352 kHz, 557.4 kHz, and 705 kHz.

This mechanical drive signal ωAM, which is carried by the HP8642B tone at 79.5 MHz, is

sent from the HP8642B to the AOM (Figure 5.1, red path). This induces AM sidebands on the

AOM carrier, at frequencies 79.5 MHz ± ωAM. This signal then gets carried through the laser

beam path described in Section 5.1.1. When the drive reaches the cavity and is reflected back,

the membrane induces sidebands on the probe tone.

The signal from the cavity is then read from the circulator, and a photodiode reads the

optical signal and produces an electronic response. This response is split by a bias tee into low-

and high-frequency components (Figure 5.6). The low-frequency component is read directly on

an oscilloscope. This DC signal is proportional to the total reflected laser beam power, and it is

used to monitor the amplitude of the cavity reflection; when it is at a minimum, the probe laser

is locked to its cavity mode. The other path contains higher frequency components, including

the beatnote between the local oscillator beam and the probe beam at 79.5 MHz. The probe
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Figure 5.6: The measurement electronics that digitize the cavity signal. The cavity reflection is
monitored on the oscilloscope in the top path. The membrane motion is measured with a Zurich
HF2 LIA in the middle path. The probe laser is locked to a cavity mode in the bottom path
(see Figure 5.1 and Section 5.2.1). Adapted from [33, Figure 2.8] and [70, Figure 3.9].

beam contains sidebands from the membrane motion, so the beatnote between the probe and

the LO contains these sidebands as well. This signal is split into two paths: one to lock the

probe laser to its cavity mode (Section 5.2.1), and another to read out the membrane motion

with heterodyne measurement.

The heterodyne measurement path is sent through an 80 MHz bandpass filter, to isolate the

79.5 MHz beatnote between the local oscillator and the probe, then mixed with a 100 MHz source,

since our HF2 lock-in amplifier can only read signals of up to 50 MHz. The HF2 then reads the

downconverted 20.5 MHz beatnote with a lock-in amplifier. The lock-in amplifier demodulates

the beatnote by the LO, which is locked by the PLL (Figure 5.6, where Osc 1 is the PLL-locked

LO frequency). Finally, the lock-in amplifier reads this demodulated signal at a frequency ωread.

The signal V [ωread] is a complex signal, which is read in two quadratures (as described in Section

6.1.2). For the EP2 and EP3 measurements in this experiment (as described in Section 5.4 and

Chapters 2 and 6), we set ωread = ωAM.8

5.3.2 Optomechanical Control Electronics

In this section, we describe how we produce optomechanical control tones. These tones are used

to shift the frequencies and dampings of our mechanical modes. This lets us bring our system

to exceptional points, and lets us explore the full space of eigenvalues near our triply degenerate

exceptional point.

Optical tones are produced by sending the control laser of frequency ωL through an acousto-

optic modulator (AOM), then sending an RF input of frequency ωRF to the AOM. The AOM

diffracts the laser input into multiple spatially separated outputs, and each output has a Doppler-

8We are free to set ωread to any frequency at which we want to read the membrane motion. For dynamics
measurements, in which we drive one membrane mode ω1 and transfer energy to a different mode ω2, we set the
HF2 drive frequency ωAM = ω1 and read the membrane motion at ωread = ω2, as in [6] and Chapter 7.
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shifted frequency, equal to ωL + nωRF, for all n ∈ Z. For our experiment, we focus on the AOM

output of frequency ωL + ωRF. The RF input gets sent to the control laser path (Figure 5.1,

blue path). Then the control laser tone is shifted in frequency by the control RF signal, and

gets carried through the laser path, as described in Section 5.1.1.

In the experiment, AOMs from Gooch and Housego were used to produce the optical control

tones. These AOMs are designed to respond at RF center frequencies of around 79.5 MHz. We

recall from Section 5.2.2 that the control laser frequency ωL is locked to the probe laser frequency

ωP (of order 300 THz), plus a frequency offset ∆RS, given by the Rohde-Schwartz frequency

(having already PDH-locked ωP to a cavity mode). We also recall that this ∆RS is chosen during

the sweetspot search (Section 5.2.3) such that a control tone from the AOM, applied at 79.5 MHz

on the function generator, is two FSR’s above ωP, which sets ∆RS ≈ 8.2 GHz. We subsequently

decrement the Rohde-Schwartz frequency ∆RS to a frequency ∆′RS = ∆RS − 705 kHz, such that

the RF input at 79.5 MHz drives at the red cavity sideband at 705 kHz, which optimally cools

the (2, 2) mechanical mode at 705 kHz. To drive at the red sideband at a different frequency ωm,

and thus optomechanically cool the membrane motion at frequency ωm, the RF frequency is

ωRF = 79.5 MHz + (705 kHz− ωm) (5.1)

There are a number of ways we could produce these tones. The way this was done in [6] was

to use a second Hewlett-Packard that could accept both amplitude and frequency modulation

inputs. This was useful in producing control loops in both laser tone power and detuning.

Another method that was used in the early phase of this project was to use a second Zurich

HF2 to send three control tones. This had the limitation that the HF2 could only send tones

of up to 50 MHz, and the AOM needs tones near 79.5 MHz, so we used an additional 100 MHz

local oscillator and mixer, but this introduced power fluctuations from the mixer, which adds

fluctuations to our intended control tone powers.

In the experiment, a control RF tone is produced from a Rigol function generator (Rigol

DG4162) that can output sine waves of frequencies up to 100 MHz. We use two of these function

generators: two ports on one, and one port on the second. The RF powers and detunings from

the function generators themselves are very stable, up to the order of 1 mHz, and the voltages are

stable up to 100µV. Since we send frequencies of approximately 79.5 MHz and voltages of order

10 mV, this stability is very good for the experiment. We combine these into a 3-port signal

combiner, and send this output through an amplifier that goes directly to the control AOM.
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Figure 5.7: Calibration of the power of the control tone that addresses the 705 kHz mechanical
mode, as a function of the RF input voltage. The RF frequency is set to 79.5 MHz. Blue points
are data taken at each RF voltage from a Rigol function generator. The orange is a fit to a
parabola of the form aV 2 + bV + c. Units are volts on both axes.

5.3.3 Calibration of Laser Powers

This section describes how, in the experiment, we ensure that the control laser powers are close

to the desired control laser powers. This is important because, in order to realize exceptional

points in the experimental (δ, P1, P2, P3) parameter space (Figure 5.2), it is not enough to simply

dial nominal control tone powers into the experiment and hope that the actual powers match

the desired powers; we need to be able measure and control the control-tone powers in situ. To

do this, we put the three optical tones through a 90:10 non-polarizing beam splitter one at a

time, and then measure the optical powers in the 10% path as a function of the input function

generator voltage. These curves then are fit to parabolas, and are used to choose function

generator voltages that produce the desired control tone powers.

To measure the AOM output power, we send the AOM output to a 90:10 non-polarizing

beam splitter, and measure the 10% path on a free-space photodiode. The amplitude of the

AOM response is frequency-dependent, so we must take three RF inputs to address each of three

of the mechanical mode frequencies in the experiment: ω1 = 352.3 kHz, ω2 = 557.2 kHz, and

ω3 = 705 kHz. We send each of those frequencies into the AOM, and measure the three responses

there.9 To account for the possibility of different cable lengths affecting the RF output to the

AOM, we do these measurements on each of the three physical RF input lines. The photodiode

gain is set such that the saturation point is above what we expect the needed control tone powers

9The RF output frequency has a precision of 1 mHz, so the frequency stability is very good, compared to the
hundreds of kHz of the mechanical modes.
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to be. For each of these RF frequencies, the photodiode voltage is quadratic in the RF input

voltage, as shown in Figure 5.7. Then, the voltage that the photodiode reads is proportional to

the laser power. From the photodiode spec sheet [79], the power Pin incident on the photodiode

as a function of measured voltage Vin is Pin = Vin/(2.38× 103 V/A)/(0.72 A/W). These two

transformations together get a curve of the form P (Vin) = aV 2
fg + bVfg + c. A least-squares fit

determines the coefficients a, b, c, and tells what voltage must be set on the function generator

to get a desired control beam power.

5.4 Measurement of Exceptional Points

In this section, we discuss the data acquisition process that measures eigenvalue spectra in the

MIM experiment.

The measurement procedure, from start to finish, is outlined here:

1. Lock the probe laser to a cavity mode via the PDH technique (Section 5.2.1)

2. Lock the control laser at a frequency offset from the probe laser. The RF offset is set by

a function generator, and is approximately 8.2 GHz, which is approximately two FSR’s of

the cavity (Section 5.2.2).

3. Perform a sweetspot measurement to tune the frequency lock RF offset (so that the control

laser addresses a separate cavity mode), and set the membrane piezo position (so that

the optical mode addressed by the control laser moves in tandem with the optical mode

addressed by the probe laser (Section 5.2.3)).

4. Perform rudimentary estimates of the optomechanical coupling constants for each of the

membrane mechanical modes considered in this experiment. These measurements are also

used to estimate the cavity linewidth.

5. Use these estimated coupling constants and the estimated cavity linewidth to estimate the

location of exceptional points in our system.

6. Acquire datasets that contain the exceptional points in the (δ, P1, P2, P3) experimental

parameter space. These datasets can be one-, two-, or four-dimensional in the parameter

space. For each value of these parameters in these datasets, set the control lasers to these

parameters, then perform spectroscopy on the driven responses of the three mechanical

modes. Do this for every point in the dataset (Section 5.4.1).

7. Analyze these datasets (Chapter 6). This involves fitting the spectra to extract the com-

plex eigenvalues, then calculating the EP2 and EP3 metrics to determine the presence of
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exceptional points in the parameter space.

5.4.1 Dataset Acquisition

Here, we discuss step 6 in the above list. When we begin measuring the data in this dataset, the

three control tones are set to zero power. We then run a Python script, which takes the desired

(δ, P1, P2, P3) values in the dataset, to automatically execute the procedure below:

1. Perform a g0 measurement, in order to set the control laser locking point such that a

79.5 MHz control tone on the Rigol function generator is set to address the 705 kHz me-

chanical mode. This g0 measurement reveals the offset in the frequency axis. We correct

the PLL center frequency by this offset.

2. Calibrate the three RF powers, as discussed in Section 5.3.3. This converts our desired

experimental parameters from units of power to voltages on the function generators.

3. At a point in parameter space, do the following:

(a) Set the Rigol function generators to the correct frequencies, and set all three outputs

to zero power.

(b) Measure the power in the probe beam path, with the local oscillator path blocked

by a USB-controlled shutter. Then, for each control tone, set the control tone to the

voltage that gets the intended power, then measure the probe power plus the control

tone power, for each of the three control tones.

(c) Set all three control tones voltages to the voltages that were obtained in the power

calibration step, then open the local oscillator shutter.

(d) For each of the 352.3 kHz, 557.4 kHz, 705 kHz modes, perform a driven response mea-

surement. This entails sweeping the frequencies near each of these three mechanical

modes, plus or minus about 400 Hz for each of them. A sample set of spectra is shown

in Figure 5.8.

4. Do this for every point in the dataset. In the event that either the probe or the control

lasers unlock in the measurement loop, the program halts and asks the user to relock the

laser, then resume the measurement loop.

5. When the measurement finishes, set the function generator voltages to zero, turn the

outputs off, then shut the local oscillator shutter.10

10A good way to ensure that resources are closed in Python is to use a try:... finally:... block. This
way, if anything unexpected happens in the measurement loop that halts execution, the resources will be turned
off in all cases[80, Section 8.4].
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Figure 5.8: Driven response spectra for each of the three mechanical modes. The amplitudes
of the spectra are plotted in the left-hand plots, and the same three spectra are plotted in the
complex plane on the right-hand side. The red-to-blue coloring represents the drive frequency.
This coloring serves to identify frequency values between the left- and right-hand plots. The
black curves are fits to sums of nine Lorentzians (the fit is detailed in Chapter 6), and the blue,
orange, and green curves are the individual Lorentzians extracted from these fits.

5.4.2 Zurich HF2 LIA and Drive Settings

For these measurements, the settings on the Zurich HF2LI were set such that the 3 dB bandwidth

of the lock-in is set to 13.1 Hz, the filter is third order (18 dB/oct).

For spectroscopy, we scan a range of about 400 Hz around the mechanical modes. We use a

settling time of 15 time constants at each point in the spectroscopy. The time constant sets the

integration time of the demodulator inputs, which averages more measurement noise out [81,

pp.64]. The time constant corresponding to a 13.1 Hz bandwidth is 12.1 ms. In the spectroscopy,

we sample 120 frequency points in the sampling range, so the time it takes to do one spectrum

is about 12.1 ms× 15× 120 ≈ 21.8 s.

The amplitude of the signal sent from the Zurich is 400 mV. This signal goes to the AM port

on the Hewlett-Packard (HP 8642B). The modulation depth is set to 10% in most measurements,

and the carrier amplitude is 13 dBm. This RF drive goes to the probe AOM (Figure 5.1, red

path), which then optically drives the membrane.

Importantly, the amplitude response of the membrane motion is roughly linear in the drive

power, at these drive settings. This is important because when we do a driven response measure-

ment, we do not want the response of the membrane motion to saturate and artificially broaden

(thus increasing our extracted linewidths). We see that this saturation does not occur at these

settings in Figure 5.9.
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(a) ωm = 352 kHz (b) ωm = 557.4 kHz (c) ωm = 705 kHz

Figure 5.9: Driven response for several driving amplitudes, at a modulation depth of 10% and a
drive of 15.0 dBm RF power. The drive we do in most of the exceptional point measurements is
400 mV, which is well within the linear regime when three control tones are applied.

5.4.3 Dataset Shape

In this experiment, we had a four-dimensional parameter space. Because, in our current experi-

mental setup, we need 30 seconds to measure one mechanical mode in the parameter space, we

were not able to densely raster all four parameters to find the exceptional point structures we

were interested in. Indeed, even for a modest 214 data points, at 30 seconds times three modes,

would require more than 200 days! Thus, we needed to be somewhat strategic in our choice of

datasets.

The first shape was a 4-dimensional dataset, but with 7× 5× 5× 5 data points. This could

be done in about one day, but it was not dense enough to resolve exceptional points by itself,

with the problem being that either an exceptional point would slip in between the mesh, or the

mesh would not contain an exceptional point at all. However, these 4-dimensional datasets were

usable to create a Hopf invariant metric, which can determine if the EP3 point is inside the

volume that the 4-dimensional set defines.

Another approach was a 1-dimensional dataset. Then a 31-point scan could be done in about

an hour. This has enough density and range in the parameter space to resolve an EP2 or EP3

point. In particular, when each of the four parameters are scanned individually, and the other

three are held fixed at a possible EP3 point, we can do multiple such 1D measurements to

iteratively seek EP3 points. We refer to this as a whirlpool measurement.

The most effective approach was to use 2-dimensional datasets to slice through the 4-dimensional

parameter space. For a dense 31 × 31 dataset, the measurement could be performed in about

a day (or we can be more strategic, and use a smaller or higher density). We used these slices

to find EP3 by performing multiple intersecting slice measurements. Then, even if EP3 is not

exactly on one slice, the three slices together are quite effective in locating EP3. We also used

the 2D slices to find EP2, by placing the slices such that they would intersect our estimated EP2

knot. Then the EP2 points are on the 2D slices. We identify these EP2 points algorithmically,

as described in Section 6.4.2.
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Chapter 6

Data Analysis

In this chapter, we describe how we take the mechanical spectra discussed in Chapter 5 and

extract information about the eigenvalues and eigenmodes. We describe how this information

is used to identify double and triple exceptional points (EP2 and EP3, respectively). Next,

we describe two representations of these EP2 points that demonstrate that these points form a

trefoil knot. Finally, we use this data to demonstrate eigenvalue braiding around this knot.

6.1 Spectroscopy of Exceptional Points from Driven Re-

sponse Measurements

6.1.1 Mechanical Displacement in Driven Measurements

In order to demonstrate exceptional point physics, we must measure the eigenvalues of the sys-

tem at a given point in parameter space. We do this by applying a mechanical drive, whose

frequency is near one of the mode frequencies. This is repeated for many frequencies. The

response that we measure will have the form of a superposition of complex Lorentzians, with the

frequency and linewidth of each corresponding to the real and imaginary parts of the eigenval-

ues, respectively. Additionally, the complex amplitudes of these Lorentzians are related to the

eigenmode components.

First, we consider the driven equation of motion for a time-dependent harmonic oscillator,

iĊ(t) = H(t)C(t) + F (t), (6.1)

where C(t) is the complex amplitude of motion, and F (t) = F0e
−iωAMt is a sinusoidal driving

term with frequency ωAM (c.f., Equation (3.19)). F0 is proportional to the vector g = (g1, g2, g3),

where gk, k = 1, 2, 3, is the optomechanical coupling rate to mode k. F (t) has units of Hz, since
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it relates to a force Fx(t), with units of Newtons, on the displacement x(t), via Equation (3.18).

The system Hamiltonian H(t) was derived in Chapter 3, and is given by Equation (3.232) in

the lab frame. Notation: we write the bare mode frequencies as ω
(0)
k , k = 1, 2, 3, to distinguish

them from the optomechanically cooled mode frequencies ωk, k = 1, 2, 3. Because H(t) is time-

dependent, the solution C(t) may be complicated. However, since H(t) is periodic, we can apply

Floquet theory to simplify the equation of motion. We can find a change of basis which puts the

system into a Floquet frame1 in which the Floquet-frame Hamiltonian H ′ is time-independent.

A change-of-basis

C ′(t) = U(t)C(t), (6.2)

for a unitary transformation U(t), which achieves a time-independent H ′ is discussed in Section

3.6. The corresponding U(t) is given by Equation (3.237). We rewrite it here with the notation

of this section for the bare mode frequencies:

U(t) =


ei(ω

(0)
1 +η)t 0 0

0 ei(ω
(0)
2 )t 0

0 0 ei(ω
(0)
3 +η)t

 (6.3)

We thus write the Floquet-frame equation of motion as

iĊ ′(t) = H ′C ′(t) + F ′(t) (6.4)

We now consider Equation (6.4) in the Fourier domain:

ωC ′[ω] = H ′C ′[ω] + F ′[ω] (6.5)

This is easily solved for C ′[ω]:

C ′[ω] = χ[ω] · F ′[ω] (6.6)

where the susceptibility χ[ω] is given by

χ[ω] = (ωI −H ′)−1 (6.7)

If H ′ is diagonalizable, then H ′ can be diagonalized via a similarity transformation T as

H ′ = TDT−1, where D is a diagonal matrix consisting of the eigenvalues ω′k − iγ′k/2, for

k = 1, 2, 3, of H ′, and the three eigenvectors of H ′ make up the columns of T . Since T is a

1The Floquet frame may also be referred to as the “rotating frame.” We use these terms interchangeably.
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similarity transformation, it satisfies the constraint I = TT−1, which yields

1 =
∑
j

Tij(T
−1)ji, i = 1, 2, 3 (6.8)

H ′ is not everywhere diagonalizable; at an exceptional point, H ′ is similar to a Jordan block.

However, the set of points in parameter space in which H ′ is not diagonalizable is a set of

measure zero, and it cannot be realized exactly in this experiment. Therefore, in the domain of

the experiment, H ′ is diagonalizable.

The susceptibility χ[ω] can be diagonalized by the same similarity transformation T that

diagonalizes H ′:

χ[ω] = T (ωI −H ′)−1T−1 (6.9)

Its eigenvalues are 1/(ω − (ω′k − iγ′k/2)), for k = 1, 2, 3.

The driven measurements we perform are a measure of the susceptibility χ[ω], but in the lab

frame, rather than the Floquet frame. The transformation of C ′[ω] = (c′1[ω], c′2[ω], c′3[ω])T into

the lab frame is found by taking the Fourier transform of the vector components of Equation

(6.2). This is written out in terms of the rotating-frame solution (Equation (6.6)):

c1[ω] = χ[ω − ω(0)
1 − η] · F ′[ω − ω(0)

1 − η]

c2[ω] = χ[ω − ω(0)
2 ] · F ′[ω − ω(0)

2 ]

c3[ω] = χ[ω − ω(0)
3 − η] · F ′[ω − ω(0)

3 − η]

(6.10)

We also tranform the force vector F ′[ω] = (f ′1[ω], f ′2[ω], f ′3[ω])T into the lab frame with the same

transformation. For the c1[ω] component,

c1[ω] =χ11[ω − ω(0)
1 − η]f1[ω] +

χ12[ω − ω(0)
1 − η]f2[ω + ω

(0)
2 − ω(0)

1 − η] +

χ13[ω − ω(0)
1 − η]f3[ω + ω

(0)
3 − ω(0)

1 ]

(6.11)

where χ[ω] has been written in tensor notation as

χ[ω] =


χ11 χ12 χ13

χ21 χ22 χ23

χ31 χ32 χ33

 (6.12)

In the three summands of Equation 6.11, at a given drive frequency ω = ωAM, the strongest

contribution comes from the f1[ω] term, since the lock-in amplifier is set to detect motion only
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near ωAM, which makes the other two terms negligible. Hence, we approximate Equation 6.11

as

c1[ω] ≈ χ11[ω − ω(0)
1 − η]f1[ω] (6.13)

Furthermore, we have already diagonalized χ[ω] using the diagonalization of H ′, in Equation

(6.9) so for a drive ωAM = ω
(0)
1 + δω + η, the response is

c1[ω
(0)
1 +δω+η] =

(
T11(T−1)11

δω − (ω′1 − iγ′1/2)
+

T12(T−1)21

δω − (ω′2 − iγ′2/2)
+

T13(T−1)31

δω − (ω′3 − iγ′3/2)

)
f1[ω

(0)
1 +δω+η]

(6.14)

Thus, this response is a sum of three Lorentzians of three complex eigenfrequencies. Similarly,

for driving and reading out at ωAM = ω
(0)
2 + δω, we get

c2[ω
(0)
2 + δω] =

(
T21(T−1)12

δω − (ω′1 − iγ′1/2)
+

T22(T−1)22

δω − (ω′2 − iγ′2/2)
+

T23(T−1)32

δω − (ω′3 − iγ′3/2)

)
f2[ω

(0)
2 + δω]

(6.15)

and for driving and reading out at ωAM = ω
(0)
3 + δω + η, we get

c3[ω
(0)
3 +δω+η] =

(
T31(T−1)13

δω − (ω′1 − iγ′1/2)
+

T32(T−1)23

δω − (ω′2 − iγ′2/2)
+

T33(T−1)33

δω − (ω′3 − iγ′3/2)

)
f3[ω

(0)
2 +δω+η]

(6.16)

In this section, we have thus far found the complex amplitude of the mechanical displacement

C(t) in terms of the susceptibility (Equation (6.7)). We can relate this to the mechanical

displacements themselves via Equation (3.14). Then, per the high-Q approximation (as shown

in Appendix A), we can write

xk[ω] = (xZPF)k ck[ω] =

√
~

2mkωk
ck[ω], k = 1, 2, 3 (6.17)

where mk is an “effective mass” for mode k. Then the displacements xk[ω], k = 1, 2, 3, in terms

of the susceptibility χ[ω], near ω = ω
(0)
k + δω + ηk, are

x1[ω
(0)
1 + η + δω] =

i

2mω1
χ11[δω]Fx,1[ω

(0)
1 + η + δω] (6.18a)

x2[ω
(0)
2 + δω] =

i

2mω2
χ22[δω]Fx,2[ω

(0)
2 + δω] (6.18b)

x3[ω
(0)
3 + η + δω] =

i

2mω3
χ33[δω]Fx,3[ω

(0)
3 + η + δω] (6.18c)
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6.1.2 Quadrature Measurements

In this section, we discuss the quadrature measurements performed when we drive the membrane

via an AOM (Section 5.3.1) with an optical tone of power Pp and at a frequency ω = ω
(0)
k + δω,

k = 1, 2, 3, and δω is in a small range. This is achieved with a laser tone that has amplitude

modulation sidebands on it (see Section 5.3.1). Thus, the laser frequency ωL is set to carrier

frequency of one of the cavity modes, with an amplitude modulation frequency ωAM = ω
(0)
k +δω.

We assume that only some fraction ξ of the nominal probe laser power Pp, for 0 < ξ < 1, gets

to the amplitude modulation sideband.

The probe laser tone acts as an input laser to the cavity, and so it induces an optomechanical

interaction (c.f., Section 3.4). We can use perturbation theory to examine the cavity field ap(t)

due to the probe laser, as in Section 3.4.4. Namely, we get (Equation (3.123))

ap(t) = (ā+ d(t))e−iωLt (6.19)

where ωL is the laser frequency. ā is given by (Equation (3.90))

ā = eiθp
√
κin

κ/2− i∆

√
Pp
~ωL

(6.20)

where θp is a phase-mismatch between the incoming and outgoing amplitude. Since the probe

tone is made up of AM sidebands on the main probe laser frequency ωL, which is set to a cavity

mode, the main cavity field amplitude is set with ∆ = 0. The factor ξ is connected to the AM

sideband, so it does not show up in the mean carrier cavity field. Thus,

ācarrier = eiθp
√
κin

κ/2

√
Pp
~ωL

(6.21)

d(t) has a Fourier-space equation of motion, in terms of the displacement x[ω] (Equation

(3.134a)).

d[ω] = ig0ā
(κ

2
− i(ω + ∆)

)−1

(c[ω] + c†[ω])

= ig0ā
(κ

2
− i(ω + ∆)

)−1

x[ω]/xZPF

(6.22)

For the kth mode, we drive near ω = ω
(0)
k + ηk + δω. This is done with the AM sideband at

∆ = −ω(0)
k − ηk − δω, and we get the corresponding component of d[ω]:

d[ω
(0)
k + ηk + δω] = gk

2iā

κ

√
2mkωk

~
xk[ω

(0)
k + ηk + δω] (6.23)

We plug in the equations of the displacements in terms of the susceptibilities (Equation
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(6.18)). For mode 1,

d[ω
(0)
1 + η1 + δω] = g1

2iā

κ

√
2m1ω1

~
i

2m1ω1
χ11[δω]Fx,1[ω

(0)
1 + η + δω]

= −g1
ā

κ

√
2

~m1ω1
χ11[δω]Fx,1[ω

(0)
1 + η + δω]

≈ −g1

κ

eiθp
√
κin

κ/2

√
ξPp
~ωL

√
2

~m1ω1
χ11[δω]Fx,1[ω

(0)
1 + η + δω]

(6.24)

We write the force Fx,1 as the radiation-pressure force from the AM sideband:

Fx,1[ω
(0)
1 + η + δω] ≈ ~

g1

xZPF
|āAM|2

≈ g1κin

√
2m1~ω1

(κ/2)2 + (ω
(0)
1 )2

ξPp
~ωL

(6.25)

Then the amplitude d[ω
(0)
1 + δω] is

d[ω
(0)
1 + η + δω] ≈ ei(θp−π)

(
2g1

κ

)2(
κinPp
~ωL

)3/2

ξ
1

(κ/2)2 + (ω
(0)
1 )2

χ11[δω]

= ei(θp−π)A0
g2

1

(κ/2)2 + (ω
(0)
1 )2

χ11[δω]

(6.26)

where we have a real amplitude

A0 =
4ξ

κ2

(
κinPp
~ωL

)3/2

(6.27)

A0 is independent of the choice of ω
(0)
k to drive. A0 has units of Hz.

Equation (6.26) gives the optical fluctuations in terms of the susceptibility (Equation (6.7)).

The measured voltage quadratures Vk[ω] are proportional to d[ω]. Since d[ω] is dimensionless,

there is a factor τ , which has units of volts. Furthermore, there is a phase factor that gets added

for each mode k, θk, which this model does not account for by itself. Let us absorb these factors

into one factor βk:

βk = eiθk
τA0

(κ/2)2 + (ω
(0)
k )2

(6.28)

The measured voltage quadratures at ω = ω
(0)
1 + η + δω, ω = ω

(0)
2 + δω, and ω = ω

(0)
3 + η + δω,
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are thus

V1[ω
(0)
1 + η + δω] = β1g

2
1

(
T11(T−1)11

δω − (ω′1 − iγ′1/2)
+

T12(T−1)21

δω − (ω′2 − iγ′2/2)
+

T13(T−1)31

δω − (ω′3 − iγ′3/2)

)
(6.29a)

V2[ω
(0)
2 + δω] = β2g

2
2

(
T21(T−1)12

δω − (ω′1 − iγ′1/2)
+

T22(T−1)22

δω − (ω′2 − iγ′2/2)
+

T23(T−1)32

δω − (ω′3 − iγ′3/2)

)
(6.29b)

V3[ω
(0)
3 + η + δω] = β3g

2
3

(
T31(T−1)13

δω − (ω′1 − iγ′1/2)
+

T32(T−1)23

δω − (ω′2 − iγ′2/2)
+

T33(T−1)33

δω − (ω′3 − iγ′3/2)

)
(6.29c)

We see that the measured voltage quadratures are each superpositions of three complex Lorentzians,

just like the mechanical displacements.

6.1.3 Extracting Eigenvalues from Spectra

In this experiment, we measure the mechanical response around three membrane modes: the

(1,1) mode (ω
(0)
1 = 352.3 kHz), the (2,1) mode (ω

(0)
2 = 557.2 kHz), and the (2,2) mode (ω

(0)
3 =

705.0 kHz). A sample measurement is shown in Figure 5.8. This section describes the fit function

used to extract the system eigenvalues, as well as a measurement of the eigenmode degeneracy.

These three spectra are taken in the lab frame. However, the fit is done in a Floquet frame.

Let the frequency coordinates of these three measurements be ω1, ω2, and ω3. We take the lab

frame measurements into a Floquet frame in post-processing, via the transformation

ω1 → ω′1 = ω1 − ω(0)
1 − η

ω2 → ω′2 = ω2 − ω(0)
2

ω3 → ω′3 = ω3 − ω(0)
3 − η

(6.30)

With this choice of transformation (described in detail in Section 3.6; c.f. Equation (6.3)), these

Floquet-frame frequency coordinates ω′1, ω
′
2, ω
′
3 are near ω = 0 (even though this is just a choice

of offset, and it does not affect the analysis).

The response is a sum of three complex Lorentzians, because the motion in one frequency

sweep range has three components: the response of the membrane at the drive frequency, and the

other two are from the other two mechanical modes. These components arise from the intensity

beatnotes between the motional sideband of the first mechanical mode and the control laser near

its resonance, and the other two control lasers.
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The spectrum for a single complex Lorentzian z(x) is given by

z(x) =
seiφ

x− (ω − iγ/2)
+ bR + ibI (6.31)

Since there are three spectra, there are three superpositions of three Lorentzians each. The

Floquet frame frequencies will be the same between the three spectra. Thus, the response zi,

i = 1, 2, 3, has the form

zi(x) =
∑

j=1,2,3

sije
iφij

x− (ωj − iγj)
+ bR,j + ibI,j (6.32)

The three spectra, measured as Equation (6.29), are simultaneously fit to 9 complex ampli-

tudes, 3 complex eigenvalues, and 3 complex backgrounds (Equation (6.32)), for a total of 30

real free parameters. At a first level of analysis, the quantities of interest are the 3 complex

eigenvalues, as we reach exceptional points when they become degenerate. Then, in principle,

we are done extracting information once we have these 3 complex numbers.

However, in addition to the 3 complex eigenfrequencies, we also have two uses for the complex

heights sije
iφij . The first is that they are not independent, but satisfy (c.f., Equation (6.8))

∑
j

sije
iφij = 1, i = 1, 2, 3

∑
i

sije
iφij = 1, j = 1, 2, 3

(6.33)

This drops the number of fit parameters from 30 to 26. The second use is that the sije
iφij are

useful in determining the degeneracy of eigenvectors: as the eigenmodes become parallel, the

sij diverge. We can quantify this by deriving an eigenvector indicator (as described in Section

6.3.1) that goes to zero as the heights diverge.

6.2 Finding an EP3 Point in a 4D Space

In this thesis, we seek to find EP2 points on a hypersurface that encloses EP3 , and demonstrate

that these EP2 points form a trefoil knot. In this section, we find EP3 . If a given hypersurface

encloses EP3 , we can be sure (per the discussion in Section 2.5) that the set of EP2 points on

this hypersurface forms a trefoil knot, as this thesis seeks to demonstrate.

In the analyses of the datasets below, we consider the metric d3:

d3(δ, P1, P2, P3) = |λ1 − λ2|+ |λ2 − λ3|+ |λ3 − λ1| (6.34)
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(a) Data (b) Theory

Figure 6.1: Three 2-parameter slices through the 4-dimensional control space. These slices sweep
two out of three of Pi, i = 1, 2, 3, with δ fixed at δ = 2π × 49.7 kHz. The 3D plot shows the
slices intersecting. The bottom row shows the individual slices. The colorbar is the d3 metric
(Equation (6.34)). Plot (a) represents raw data. Plot (b) represents theoretical estimates of d3,
based on our optomechanical model.

Clearly, d3 = 0 if and only if all three eigenvalues (λ1, λ2, λ3) are equal. Thus, d3 can be used

to quantify how close the experimental parameters are to realizing the system’s EP3.

6.2.1 Slices with 2D Sheets

The most successful measurements of the EP3 were done by fixing two of the four parameters,

and sweeping the other two parameters as “slices” through the 4D control space. If these sheets

are taken such that they intersect near an estimated EP3, then we expect to see minima in d3

near this estimated EP3.

There are six sheets that can be rastered when we choose 2 of the 4 parameters to be swept.

In Figure 6.1, we see three of these 2D sheets plotted in a 3D plot. These sheets were chosen to

intersect each other at the estimated EP3 of

(δ/2π, P1, P2, P3)Estimate = (49.7 kHz, 115 µW, 387 µW, 285 µW) (6.35)

This initial estimate is based on the measured g0, and solving for the parameters that make

x = det(H) and y = Tr(H)2 both be zero, and thus bring the system to its EP3.

In Figure 6.1, we see that there are indeed minima in d3(δ, P1, P2, P3) near the intersection

of three of the sheets. In the top row of Figure 6.2, we see all six of the 2D sheets, which were

chosen to be near the estimated EP3 values. The middle row shows these sheets after filtering

the d3 data by removing outliers and Gaussian filtering (described in more detail in Section

6.4.1). It should be noted that the filtering raises the minimum value of d3, since the Gaussian
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Figure 6.2: All

(
4
2

)
= 6 slices of the 4-dimensional space to find EP3, laid out in 6 columns.

Data are plotted as colormaps, against the two free parameters. The colorbar is the metric d3

(Equation (6.34)). The fixed parameters are captioned above each slice. The top row is raw
data. The middle row is the filtered d3 data (Section section:filtering). Note that the smoothed
data have higher minima than the raw data, because the extrema are averaged by the filtering.
The black dots are algorithmically chosen minima in the filtered d3, which represent estimates
of EP3 points. The bottom row is theoretically calculated d3 values, from our optomechanical
model.

filter smooths the minimum. However, when we look for minima in d3, the regions around the

minima are smoother in the filtered data than in the raw data, so a minimum point is clearer

in the filtered data. With this filtering, we can take the minimum values of d3 and get their

corresponding minimum points in all six of the filtered d3 sheets. Based on these six minimum

points, we place our best estimate of EP3 to be at

(δ/2π, P1, P2, P3)Measured; 2D Sheets =
(

54(7) kHz, 128(8) µW, 428(3)µW, 304(15) µW
)

(6.36)

These values are merely the sample mean and sample standard deviation of the coordinates of

the six sheet minima.

6.2.2 Slices with 1D “Whirlpool” Sweeps

Another method to raster through the 4-dimensional control space and find the system’s EP3 is

to fix three of the parameters, and sweep the fourth one. An advantage of this is that the swept

parameter can be stepped in increments much smaller than those used in the 2D sweeps.

We use these 1-dimensional sweeps iteratively, in the sense that we estimate parameters

that will bring the system to EP3, as mentioned in Subsection 6.2.1. Then we fix three of the

parameters at these estimated values, and sweep the fourth. The value of the fourth parameter
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Data Theory

Figure 6.3: A series of 1-dimensional sweeps to minimize d3 (Equation (6.34)). On the first one,
initial parameters are set in P1, P3, and δ that are estimated to reach EP3. P2 is swept. The
minimum value of P2 found in this sweep is used as the fixed value of P2 in the next measurement,
and P3 is swept for a minimum. This process is done iteratively to iteratively find a point in
parameter space that best minimizes d3.

at which d3 is minimized is now our new candidate for the location of the minimum of d3. We

then do a second sweep, where this fourth parameter is fixed at the minimizing value, and we

sweep the first parameter. We do this iteratively to find parameters that minimize d3 and bring

the system to EP3. This sort of measurement was nicknamed the “whirlpool measurement” of

EP3.

Figure 6.3 shows a sample such “whirlpool measurement.” In this measurement, EP3 was

initially estimated to be at (δ/2π, P1, P2, P3) = (49.7 kHz, 115 µW, 387 µW, 285 µW), as in Sub-

section 6.2.1. The first 1-dimensional sweep on the left fixes Pk, k = 1, 3, and δ at these values,

and sweeps P2. The minimizing value of P2 is found at P2 = 435µW. Then a second sweep is

performed, where P2 is fixed at 435µW, and P3 is swept. The minimizing value of P3 = 300µW

is found. This process is iterated. At the end of these four measurements, the estimated EP3

values are

(δ/2π, P1, P2, P3)Measured; Whirlpool ≈
(

50 kHz, 125 µW, 435 µW, 300 µW
)

(6.37)

The numbers in Equation (6.37) from the “whirlpool measurement” are in good agreement with

those in Equation (6.36) from the sheet measurement.

An advantage of this method is that it takes less time than the sheet measurement; this

method takes around 3 hours, whereas each sheet requires around 1 day. A disadvantage is that

the minimum value of d3 in each iteration does not reduce with each iteration. Indeed, typical

minimum values in both these 1D sweeps and the 2D sheets are 70 to 100 Hz. In Figure 6.3,

the minimum value is already below this range (due to luck), but due to both the fluctuations

in our laser powers, and the cube root sensitivity of d3 to these fluctuations near EP3 itself, we

find that the minimum d3 value rarely go below this range.
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6.2.3 Sparse 4D Sweeps: A Topological Quantification of Proximity to

EP3

In this section, we discuss another metric, in addition to d, to quantify the proximity to EP3 .

This metric is called a Hopf invariant, which is a property possessed by a 3-sphere (or another

suitably chosen hypersurface; in this case, a 4D hyperrectangle) that encloses the point x = y = 0

(where x, y ∈ C; recall that x = y = 0 if and only if the system is at EP3 ). The Hopf invariant

is a scalar quantity χ which satisfies χ = −1 when the hypersurface encloses (x, y) = (0, 0) and

χ = 0 when it does not enclose (x, y) = (0, 0).

The Hopf invariant on a 4D hypersurface V (n.b. V is three dimensional) is computed as

χ = − 1

4π2

∫
V

A · Fd3R (6.38)

where

u =
1√

|x|2 + |y|2

x
y

 (6.39)

and the vector quantities A and F are given by

Aj = u†i∇Rju

F = ∇R ×A

(6.40)

We can consider the integrand of (6.38), A · F, as a charge density. Here, the charge density

corresponds to a “point charge” at (x, y) = (0, 0), so we can intuit Equation 6.38 similarly to

Gauss’ Law. In analogy to Gauss’ Law, χ does not depend on the chosen surface V .

Given that the surface V is a 4D hyperrectangle, we can write (6.38) more explicitly as

χ = − 1

4π2

(
+

∫
δ=Min

A · F d3R−
∫
δ=Max

A · F d3R

−
∫
PA=Min

A · F d3R +

∫
PA=Max

A · F d3R

+

∫
PB=Min

A · F d3R−
∫
PB=Max

A · F d3R

−
∫
PC=Min

A · F d3R +

∫
PC=Max

A · F d3R
)

(6.41)

The integral (6.41) does not depend on the volume of V , but only on whether the hyperrect-

angle that V encloses contains x = y = 0. Then, when evaluating (6.41) with finite differences,

as we do in the experiment, it suffices to take data that is in a grid. For each 3D face F , suppose
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that it is in an (m,n, p) grid. Then calculate

u = {uijk; i = 0, . . . ,m− 2; j = 0, . . . , n− 2; k = 0, . . . , p− 2}

ux = {uijk; i = 1, . . . ,m− 1; j = 0, . . . , n− 2; k = 0, . . . , p− 2}

uy = {uijk; i = 0, . . . ,m− 2; j = 1, . . . , n− 1; k = 0, . . . , p− 2}

uz = {uijk; i = 0, . . . ,m− 2; j = 0, . . . , n− 2; k = 1, . . . , p− 1}

(6.42)

We then get finite differences

dudx = ux − u

dudy = uy − u

dudz = uz − u

(6.43)

Then we get finite-element terms A and F:

Ax = i ∗
∑

u∗ ∗ dudx

Ay = i ∗
∑

u∗ ∗ dudy

Az = i ∗
∑

u∗ ∗ dudz

Fx = i ∗
∑

(dudy)∗ ∗ dudz − (dudz)∗ ∗ dudy

Fy = i ∗
∑

(dudz)∗ ∗ dudx− (dudx)∗ ∗ dudz

Fz = i ∗
∑

(dudx)∗ ∗ dudy − (dudy)∗ ∗ dudx

(6.44)

These summations are taken over the complex dimension in x and y. Note that the Fx, Fy, Fz

are nonzero, since the dudx, dudy, dudz terms are complex. Then we take all of the terms from

(6.44), and calculate

χfinite =
1

(2π)2

∑
F

Ax ∗ Fx +Ay ∗ Fy +Az ∗ Fz (6.45)

Since we calculate the Hopf invariant over a finite-size mesh, we can check how well Equa-

tion 6.45 converges to Equation 6.38.2 To check this, we design, in experimental coordinates

(δ, P1, P2, P3) , a 4D hyperrectangle that encloses the simulated EP3 from Equation 6.35. The

span is chosen such that ∆P1 = 100 µW, ∆P2 = 200 µW, ∆P3 = 200 µW, and ∆δ = 100 kHz.

As n increases, we expect the Hopf invariant to tend toward -1. Indeed, in Figure 6.4, we see the

real part of the Hopf invariant be 0 for n = 1, and get to −0.9 at n = 29. The imaginary part is

expected to tend toward zero; in this graph, it asymptotes to −0.2. Since, in our experiment, it

took one day to raster a 4D mesh of size (7, 5, 5, 5), we did not attempt to experimentally check

2In this simulation, since x and y must be dimensionless, but the Hamiltonian H from which x = det(H) and
y = 0.5Tr(H2) has dimensions of 2π ×Hz, we scale H by a factor ξ0, which we chose as ξ0 = 1/(2π × 10 Hz) for
this simulation.
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Figure 6.4: Simulation: the Hopf Invariant, as a function of the finite mesh size n for a mesh of
size (n, n, n, n).

Figure 6.4.

We also investigate the dependence of the Hopf invariant on the displacement of the surface

V from EP3 . To do this, we experimentally defined a (7, 5, 5, 5) surface that enclosed EP3 , and

then added offsets to a chosen axis. For this experiment, we added offsets to the P2 axis. What

we see in Figure 6.5 is a dependence on the displacement such that the real part of the Hopf

invariant reaches a minimum of about −0.17 at 0µW, and it is nearly 0 at a displacement of

±300 µW, which is the largest displacement we measured at. The imaginary part is zero for large

displacements, but it reaches a value of +0.1 at 0µW, which is comparable to the dip in the real

part. This might be an effect of the coarse mesh that we were limited to in this experiment, as

discussed with Figure 6.4. It can also be an effect of error in estimating the location of EP3 (see

Section 6.2.4). We also plot alongside these points theoretically estimated curves for the Hopf

invariant, for the same (7, 5, 5, 5) meshes used in these measurements. Even the theory does not

estimate that χ = −1 at EP3 , because of the coarse mesh; this is consistent with Figure 6.4.

Still, the data and theory agree well that there is a dip near our posited EP3 .

One could do the same experiment as done for Figure 6.5 for the other three experimental

parameters δ, P1, P3. We did not check these dependences experimentally, because having done

the measurements of Figure 6.5, as well as the main measurements of d3 in Sections 6.2.1 and

6.2.2, we felt that we had adequately located EP3 to move onto the main work of this thesis:

finding EP2 on a hypersurface that encloses EP3 . Nonetheless, the simulated dependences of χ

on the other three parameters are plotted in Figure 6.6. Thus, this Hopf invariant provides a

useful method for determining whether EP3 lies inside a given hypersurface, which relies only on
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Figure 6.5: The Hopf Invariant swept across EP3 in PB.

Figure 6.6: Simulated dependence of χ on the other experimental parameters.
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Figure 6.7: d3 dependence on the (δ, P1, P2, P3) parameters, for simulated lines that reach the
numerically estimated EP3 .

the boundary behavior of the system eigenvalues on the hypersurface.

6.2.4 Noise Limits on d3

Ideally, d3 is precisely zero at EP3 , and has a sharp cube-root dependency on the

(δ, P1, P2, P3) parameters.3 In this section, we numerically simulate and analyze typical values

of d3, while considering Gaussian fluctuations in the (δ, P1, P2, P3) parameters.

We consider four 1D simulated datasets that sweep each of the four (δ, P1, P2, P3) parameters,

with each line centered around the numerically estimated EP3 (Equation 6.35), and the other

parameters fixed at their estimated EP3 values. These lines have 501 points, each. Figure 6.7

depicts these sweeps. As we see from these curves, the d3 minimum is very sharp as a function

of the parameters. A typical value of d3 away from EP3 is from 100 Hz to 250 Hz. This makes

sense, since at (δ, P1, P2, P3) = (0, 0, 0, 0), d3 = 200 Hz (Section 3.6). To rise from 0 Hz to 50 Hz,

the parameters need to fluctuate around EP3 by about

(
δ(δ/2π), δP1, δP2, δP3

)
50 Hz BW

≈
(
1.56 kHz, 2µW, 4 µW, 5.6 µW

)
(6.46)

3See Appendix E for a detailed analytical derivation of this.
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Figure 6.8: A Monte Carlo simulation of the minimum value of d3 of a 4D hyperrectangle
centered about EP3 . The simulation perturbs the parameters in the perfect hyperrectangle by
Gaussian fluctuations parametrized by Equation 6.47.

In the experiment, typical fluctuations were

(
δ(δ/2π), δP1, δP2, δP3

)
Expt.

≈
(
5 kHz, 5 µW, 10 µW, 10 µW

)
(6.47)

Thus, we were limited in how close we could bring the measured d3 to zero, and so limited in

how close to EP3 we could approach.

To consider a typical value of a minimum d3 in a dataset, let us perform a Monte-Carlo

simulation in which we consider a set of 4D simulated datacubes centered about the numerically

estimated EP3 (Equation 6.35). These 4D cubes are identical, save for Gaussian noise added to

each parameter value in one cube. The eigenvalues and d3 values are evaluated according to

the optomechanical model (Section 3.6). For this Monte-Carlo simulation, we take there to be

5000 of these cubes. These Gaussian noise standard deviations are set to the typical fluctuations

given in Equation 6.47.

The minimum values of d3 for each of these 5000 simulated datacubes are shown in Figure

6.8. As we see, perturbations typical in our experiment perturb the minimum value of d3 away

from d3 = 0 Hz, but still well below the value of d3 = 200 Hz found far from EP3 . In the

histogram, the mean d3 is 92 Hz, the standard deviation is 18 Hz, the maximum is 144 Hz, and

the minimum is 30 Hz. Thus, seeking points for which d3 ≈ 90 Hz is an achievable target for our

experiment. Indeed, in the result summarized in Figures 6.1 and 6.2, we see d3 minima below

90 Hz. In addition, the measured EP3 (Equation 6.36) and estimated EP3 (Equation 6.35) agree

to within a factor of several times the typical fluctuations given in Equation (6.47), thus showing
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Figure 6.9: A plot of Abs(z) and Arg(z), against the real and imaginary parts of z = x+ iy, in
the left- and right-hand plots, respectively. There is a minimum at x = 0 and y = 0 (left), as
well as a vortex at x = 0 and y = 0 (right).

that this experiment has done a good job of localizing EP3 .

6.3 Obtaining EP2 Points

One of the major goals of this thesis is to demonstrate that the EP2 subspace, when restricted

to an appropriately chosen 3D hypersurface of the 4D control space, forms a trefoil knot. In

this section, we discuss the metrics that are used in the experiment to determine the locations

of EP2. We also discuss the choice of a practical hypersurface in which to search for the trefoil

knot of EP2.

6.3.1 Quantifying Proximity to EP2

Quantifying EP2 Eigenvalue Degeneracy with the Discriminant

Given a set of eigenvalues (λ1, λ2, λ3) that are obtained at a point (δ, P1, P2, P3) in experimental

parameter space, a simple way to quantify how close the system is to EP2 is to calculate the

discriminant of the characteristic polynomial defined by (λ1, λ2, λ3):

D(λ1, λ2, λ3) =
(

(λ1 − λ2)(λ2 − λ3)(λ3 − λ1)
)2

(6.48)

Note that D (6.48) is complex, unlike the d3 metric of Equation (6.34). Thus, we seek minima

in the absolute value of D, and also seek phase winding in D.

Near an EP2 point, we expect the complex discriminant to vary linearly when the system

is brought away from EP2 . See Appendix E.1 for a derivation of this. In Figure 6.9, linear

behavior of the discriminant (which is linear near EP2 ) is depicted: there is a minimum in |D|

at the origin, as well as a 2π phase winding around the vortex at the origin. We seek these
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minima and vortices in Section 6.4.

Quantifying EP2 Eigenmode Degeneracy with Lorentzian Heights

The metric d3 is useful for indicating a triple eigenvalue degeneracy. Similarly, D indicates a

double (or higher order) eigenvalue degeneracy. To investigate exceptional points, which are

points at which both the eigenvalues and eigenvectors are degenerate, we must also indicate any

eigenvector degeneracy. D and d3 are not directly dependent on the eigenvectors, so they are

insufficient to conclude the presence of an eigenvector degeneracy by themselves.

The most direct way to infer the eigenvector degeneracy would be to measure all three

complex vector components of each of the three eigenmodes, or nine complex numbers altogether.

Our experiment is not designed to measure these components. However, we can infer degeneracies

in these eigenmodes from the nine complex amplitudes of the nine Lorentzians that we extract

from the driven response measurements.

Let sjke
iφjk , j, k = 1, 2, 3, be the complex amplitude of the kth Lorentzian from the jth

driven response measurement. Define the “height indicator” matrix elements hkj as

hkj =
sjke

i(φjk−θk)

τA0

ω2
k + (κ/2)2

g2
k

, (6.49)

where τ and A0 are constants that relate the mechanical displacements to the measured voltages,

and θk are phase mismatches between the applied drive and the measured motion. See Section

6.1.2 for a discussion of these constants. Empirically, we determine from measurements that

1/τA0 = 2.42 × 10−6 1/
√

V ×Hz and that θ1 = 0.79π, θ2 = −0.23π, and θ3 = 0.52π. The key

property of the hjk is that, if there is an eigenmode degeneracy, then at least one of the sjk

diverges, so at least one hjk will as well.

The height indicator is defined as

E =
1

det(h)2
, (6.50)

where h is the 3× 3 matrix whose elements are defined in Equation (6.49). Since we are taking

the reciprocal of the determinant of this matrix, if one of the components of h diverges, then

det(h) diverges. But then E tends toward zero. Moreover, since E is a complex number that

grows linearly near EP2 , like D, its argument winds around any zero in D by 2π (as depicted

in Figure 6.9).
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Figure 6.10: One of the eight faces of the 4D hyperrectangle over which data is taken. This
particular face is the δmax face.

6.3.2 Choosing a Hypersurface: The 3D Hyperrectangular Surface

In Chapter 2, it was predicted that the subspace of EP2 points in the 4D parameter space, when

restricted to a suitably chosen 3D hypersurface that encloses EP3, forms a trefoil knot. In this

subsection, we describe the hypersurface chosen for this experiment. This hypersurface is the

surface of a 4D hyperrectangle, in the four experimental coordinates (δ, P1, P2, P3) . Additionally,

we describe how to visualize this hypersurface.

We chose to take data by rastering the surface of a 4D hyperrectangle in the four experimental

coordinates (δ, P1, P2, P3) .4 These values of (δ, P1, P2, P3) are defined by four minimum and

maximum values: δmin and δmax; P1,min and P1,max; and so on. This hypersurface is rastered

by choosing one coordinate at a time to hold fixed at its minimum or maximum, then sweeping

the other three values. The rastering of one such 3D cube is depicted in Figure 6.10.

We obtain eight hyperfaces of this 4D hyperrectangle by sweeping in this manner: the δmin-

4Naively, the first type of surface tried in this experiment was a set of experimental coordinates that attempted
to realize a 3-sphere in the Jordan-Arnol’d space (Chapter 2). Then the EP2 points in these parameter coordinates
would immediately realize the knot, when converted to Jordan-Arnol’d space. We attempted this, but the
problem was that the g0 values fluctuated between measurements; fluctuations δg0 made the mapping between
experimental coordinates and Jordan-Arnol’d coordinates (Chapter 3) fluctuate with fluctuations of order (δg0)2

and (δg0)3.
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(a) (b) (c)

Figure 6.11: a: The surface of a 3D cube, unfolded into six 2D squares. b: Folding the six
squares back up into the surface of a 3D cube. c: The folded squares, which now make up the
surface of a 3D cube. Figures a and b are from [82].

face, the δmax-face, and so on. The values of the minima and maxima are:

δmin = −10 kHz

δmax = 105.6 kHz

P1,min = 22µW

P1,max = 240µW

P2,min = 289µW

P2,max = 675µW

P3,min = 78µW

P3,max = 702µW

(6.51)

These values were chosen such that they would satisfy three criteria: they enclose the EP3 values

(Equation 6.36); they are far enough away from EP3 that any Pk or δ fluctuations would not

affect the criterion that the hyperrectangle encloses the EP3 point; and the features of the trefoil

knot of EP2 points would be well-resolved. We should remark that the eight hyperfaces of this

4D hyperrectangle are each 3D rectangles.

Of these eight 3D rectangles, some of them share common 1D edges and 2D faces. These

edges can be identified by “gluing” the common edges together. To understand this, by analogy

with one fewer dimension, we can consider a 3D cube. One technique to depict the surface of the

3D cube on a 2D sheet of paper is to draw each of its six 2D faces on the page (Figure 6.11a).

Some of the faces are naturally joined together, if they share common 1D edges. Then, we can

traverse the entire 2D surface, as long as we agree that if we end up off the edge of the 2D map,

we “wrap around” to the other side, like many Atari video games. Furthermore, if we then fold

up the faces (Figure 6.11b), we can get the entire surface of the 3D cube (Figure 6.11c).5

5A more formal mathematical treatment of this concept can be considered by defining a “quotient map”
p : X → Y , where X is the six-square 2D space, and Y is the surface of the 3D cube. For more details, see
[43, Ch. 2, §22, p.134]. In particular, Figure 22.5 on [43, Ch. 2, §22, p.138] is a nice illustration of the quotient
mapping.
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(a) (b) (c)

Figure 6.12: a: the eight 3D cubes which are the faces of the 4D hyperrectangle joined together
by identifying the faces of the 3D cubes. b and c: folding the eight 3D cubes together to represent
the data as a tesseract.

In analogy to the treatment of the surface of the 3D cube in the preceding paragraph and

Figure 6.11, we can visualize the surface of the 4D hyperrectangle by instead visualizing the

eight 3D rectangles that make up its surface. Some of the ones that share a common 2D face are

glued together in Figure 6.12a.6 This is, in principle, enough to represent all of the data points

on the surface of this hyperrectangle, if we apply the discussion about wrapping around the 2D

faces of a 3D cube to these 3D rectangular hyperfaces. But, we can make it more compact by

“folding” the 3D faces together (Figure 6.12b), and then joining them together (Figure 6.12c).

Figure 6.12c is designed to look like the tesseract [85].

Visual information is lost when we draw the surface of the 4D hyperrectangle as a tesseract,

as we do in Figure 6.12c. The most glaring loss is that one of the eight 3D cubes was “blown

up” and sent to the exterior; the other seven cubes are drawn inside the eighth exterior cube.7

However, this disadvantage can be mitigated if we choose our hyperrectangular surface such that

no EP2 points will appear in one of the eight faces. Indeed, the boundary values we choose set

it such that no EP2 points are estimated to appear in the P1,min or the P1,max faces. Thus, only

six of the eight 3D cubes are in Figure 6.12c, since the final one is superfluous. This gives us

one way to represent a 4D hypersurface in a 3D plot!

6.3.3 Discretization and Scanning of 3D Rectangles

In order to obtain EP2 points within these eight 3D rectangle faces, we vary the free parameters

of the 3D rectangle. We perform spectroscopy to extract eigenvalues and the Lorentzian heights,

and calculate the discriminant and the eigenvector indicator (Equations 6.48, 6.49, and 6.50).

This experiment employed two approaches to search for EP2 points: we first tried rastering

6A diagram such as this is called a net. [83, 84]
7More formally, Figure 6.12c is a Schlegel diagram of the tesseract, which is a (perspective) projection of a

polytope from Rd into Rd−1. In this Schlegel diagram, the vertex from which the projection is made is chosen
such that one face encloses the other seven faces [86].
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(a) All data.
(b) Thresholded measured
data. (c) Thresholded theory data.

Figure 6.13: Plots of several 3D rasters of the δmax face, with each dataset aggregated into one
here. (a) is all data, colored by min-diff. (b) is those points with measured min diff below
a gradient threshold of 20 Hz at P3 = 78µW, and 25 Hz at P3 = 702µW. (c) is theoretical
calculations of those points, with min diff below 30 Hz.

all three free parameters in one face (namely, the δ-max face); and second, we tried fixing two

parameters in a face, and rastering the other two. As discussed in Subsection 5.4.3, we had the

most success with the latter approach.

In this section, we look at the approach where we scan all three free parameters.

Our first approach to raster a 3D face of the 4D hyperrectangle was to simply fix the one

free parameter to the face, then raster the other three. For example, to raster the δmax face, we

would raster the other three parameters. We did this several times, and then aggregated them

into one 3D plot. Figure 6.13 is one such plot. The points are colored by a minimum pairwise

difference, or min-diff defined as

min diff(λ1, λ2, λ3) = min ({|λ1 − λ2|, |λ2 − λ3|, |λ3 − λ1|}) (6.52)

As an aside, as crude as Equation 6.52 is, it still highlights one essential characteristic of a

point at EP2: that if we sit at EP2, then two eigenvalues become equal, so the min-diff becomes

zero. Another obvious but useful fact is that the min-diff (Eq. 6.52) is zero if and only if the

discriminant (Eq. 6.48) is zero.

Though the plot in Figure 6.13a shows which points are closer to EP2 than other, the plot is

quite unwieldy, since we aim to determine if the EP2 points form a knot. Thus, we decided to

threshold for those points with min-diff below some nominal values, to see if those points that

remained were obviously knot strands. A major difficulty we had with this approach was how to

pick the threshold value, since higher control laser powers introduced more eigenvalue fluctua-

tions, which lead higher min-diff values. A somewhat useful choice was to use a graded threshold,

where the threshold was lower for small laser powers and higher for high laser powers (Figure

6.13b). This can be compared with theoretically calculated data, based on the optomechanical

model (Figure 6.13c).

The utility of Figures such as Figure 6.13 was limited, because despite our best efforts to
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Figure 6.14: A slice taken to measure EP2. The left two columns are the magnitude and phase
of the discriminant D, respectively. The right two columns are the magnitude and phase of the
eigenvector indicator E, respectively. The first row is raw data. The second row is filtered data
(as described in Section 6.4.1). The black and cyan points in the magnitude and phase plots,
respectively, are algorithmically chosen minima and vortices, which represent our estimates of
EP2 points (as described in Section 6.4.2). The third row is theoretically predicted data.

threshold points based on min-diff (or on the absolute value of the discriminant), we did not

have enough density to distinguish minima in min-diff or discriminant with the 3D raster; as

discussed in Subsection 5.4.3, a 9×9×9 dataset required time on the order of one day. Thus, we

switched to 2D rasters. Figure 6.14 is one such dataset, where the raster density is high enough

that two different minima in the magnitude of the discriminant are very well-resolved.

In addition to a high resolution of the absolute value of the discriminant, the 2D rastering

technique offers other analytical advantages, which we discuss in Section 6.4.

6.4 Analysis of EP2 Slices

In this section, we discuss the techniques that we employ in order to quantitatively and algo-

rithmically identify EP2 points in a 2D dataset. Namely, having extracted the eigenvalues and

Lorentzian complex heights for each pixel in a 2D dataset, and having calculated D (Eq. 6.48)
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Figure 6.15: The sixty-one 2D slices performed over the hypersurface described in Section 6.3.2.
a: the 61 slices on each of the eight faces of the hypersurface. b: the 61 slices, assembled in
the “rectilinear stereographic” projection of the hypersurface (detailed in Section 6.5.1). c: the
61 slices, assembled in the 3D stereographic projection of the hypersurface (detailed in Section
6.5.2).

and E (Eq. 6.49-6.50) for each pixel, we smooth out the D and E values with two filters (Section

6.4.1). We then algorithmically identify minima in |D| and |E|, as well as vortices in the argu-

ments (Section 6.4.2). These algorithmically obtained values are deemed EP2-candidates. Figure

6.14 shows the results of this analysis: the filtering of the data and the algorithmic selection of

EP2 candidate points, as well as the theoretically estimated data from the optomechanical model

(this model is described in Section 3.6).

The analyses of this section are performed over sixty-one 2D slices (Figure 6.15) taken across

the hypersurface (described in Section 6.3.2).
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6.4.1 Filtering of EP2 Slices

In order to algorithmically identify EP2 points, we first smooth the raw complex D and E data

with two filters. We employ this filtering because when we perform measurements across the

EP2 for D (Eq. 6.48) and E (Eq. 6.49-6.50) , we might find multiple spurious “local minima” or

“vortices” in a cluster, even though we should only expect one minimum or vortex per cluster

to be our EP2 point.

The job of the filtering is thus to try to reduce the noise in our discriminant and eigenvector

indicator measurement data before we algorithmically identify a candidate EP2 point. We first

use an “outlier remover” filter which removes any anomalously large or small values in the real

and imaginary parts of the data. Second, we use a Gaussian filter, which convolves the data

with a Gaussian kernel.

Outlier Removal Filter

Before we do any smoothing of our data, we first reject any outlier data pixels. We do this

because the output of the Gaussian filter is essentially taking a moving average of the pixels

in a neighborhood of a given pixel; an outlier of an extremely large (or small) magnitude will

artificially make the amplitudes of the neighboring pixels disproportionately larger (or smaller)

than they would be if the outliers were removed (see Figure 6.19a for an example of this).

The outline of the outlier-filtering algorithm on a 2-dimensional dataset D is as follows:

1. Given a data point p in the data set D, define a 5×5 grid G of points, with p as the center

point (i.e. if the indices of Gij are labeled from i, j = 0 to 4, then p is the (2, 2) point).

(a) If none of the i, j indices of Gij go outside the borders of D, continue to next step

(b) If the of the i, j indices of Gij would go past the border of D, then only consider the

points which lie in the overlap of Gij and D (i.e. G may have less than 5 × 5 = 25

points).

2. For all points in G, compute Q1 and Q3, which are the first and third quartiles of the

values in G (or the 25th and 75th percentiles, respectively). This gets the interquartile

range, IQR = Q3 −Q1.

3. We define an outlier from the dataset G as any point q for which

q 6∈ (Q1 − s ∗ IQR,Q3 + s ∗ IQR) (6.53)

where s is a nonnegative constant. This is a test by Tukey [87]. s is typically set to 1.5 to

indicate an outlier, but could be set to 3 to indicate far-out data. In our data analysis, we
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set

s = 6, (6.54)

since our discriminant and eigenvector indicator data (Eqs (6.48) and (6.50)) are positive-

skewed.

(a) If p is an outlier, per Eq. (6.53), then replace p with the median of G.

(b) If p is not an outlier, per Eq. (6.53), then leave p as-is.

A NumPy implementation of this outlier-filter algorithm is in Appendix F.

We perform the outlier filter separately on the real and imaginary parts of the discriminant

(6.48) and the eigenvector indicator (6.50).

Gaussian Smoothing

The two-dimensional Gaussian filter G is a linear filter, which means it can be writen as a

convolution of the data f(x, y) with some kernel g(x, y):

G[f ](x, y) =

∫ ∞
α=−∞

∫ ∞
β=−∞

f(α, β)g(x− α, y − β) dα dβ (6.55)

In this case, the kernel g(x, y) is

g(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (6.56)

where σ is the standard deviation of the kernel. [88, pp.125-126] [89, pp.33] [90, pp.5] One can

also express this kernel in terms of its full width at half maximum (FWHM) [91]:

FWHM = 2
√

2 ln 2σ ≈ 2.3548σ (6.57)

One way to think of this filter is that each pixel is replaced by a moving weighted average of

the neighboring pixels. The Gaussian kernel (6.56) sets the weights for the average, such that

the pixels close to the center pixel are weighted more highly than those away from the center.

To make rigorous this concept of a moving average in relation to a convolution, we can

consider a boxcar function, as in Figure 6.16a. If one wants to simply do a moving average

of a pixel of data with its three nearest neighbors, one can convolve the data (Eq. (6.55))

with a two-dimensional boxcar function of width 3, which is zero outside of x ∈ (−1.5, 1.5) and

y ∈ (−1.5, 1.5).

In a digital implementation, this convolution of an image with a boxcar filter of 3 pixels is
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(a) Boxcar kernel. (b) Gaussian kernel.

Figure 6.16: Kernels that can be convolved with a data to get a “moving average” of a pixel
with its nearest neighbors, so as to reduce noise in data. Left is the boxcar kernel, with a width
of 3 units, and right is a Gaussian kernel, with a FWHM of 3 units, chosen to match the width
of the boxcar on the left (σ = 1.2740, from Eq. (6.57))

done by convolving the 2D data with a discretized version of the boxcar filter [89, pp.5]:

boxcar filter =
1

9


1 1 1

1 1 1

1 1 1

 (6.58)

The discretized convolved data is obtained by the summation

Ci =
∑
j

Ii+k−jWj (6.59)

It should be understood that i, j, k are two-dimensional indices, with range from (0, 0) to (2, 2).

Here, Wj is the weight filter kernel, Ii+k−j is the image input data, k is the coordinate of the

center of the weights kernel (in this example, k = (1, 1) is the center, where k goes from (0, 0)

to (2, 2)) [92, scipy.ndimage.convolve] [93].

Now, the boxcar filter (such as the 3-pixel one in (6.58)) does an unweighted average of the

pixels in the 3-pixel neighborhood of the center pixel. We can instead weight with a Gaussian

kernel (6.56), to give those pixels farther away from the center less weight in the filtering. A

discretized version of the Gaussian kernel, for some σ, can be obtained by plugging in integers

to (6.56). In theory, this requires (bi)infinitely many matrix coefficients. However, the filter can

be truncated beyond a certain number of standard deviations σ [90, pp.6]. In particular, we

can ignore 3 standard deviations, since 99.73% of data lies within 3 standard deviations. For

example, to approximate a Gaussian kernel of σ = 1, one can use the integer valued 5×5 matrix
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Figure 6.17: The results of Gaussian-filtering an image (showing the cryostat in which these
experiments were performed). Higher values of σ correspond to a stronger pixel blurring, i.e. a
stronger pixel smoothing.

[90, pp.7]:

Gσ=1
5×5 =

1

273



1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1


(6.60)

This works, because 1/273 ≈ 0.00366, which is below 1% on the farthest boundary of the matrix.8

With the Gaussian filter (6.56), a higher σ corresponds to more smoothing, or blurring, of

the image or data. For instance, we can apply this filtering to the image of our cryostat in Figure

4.10a. Figure 6.17 shows the result of applying a Gaussian smoothing filter, for several choices

of σ. In this case, σ = 10 provides fairly minimal blurring, and σ = 30 provides more blurring.

This Gaussian filter is used on both the real and the imaginary parts of the discriminant and

eigenvector indicator data individually. The middle and bottom two rows of Figure 6.18 show

the smoothing process. One can see by eye that the real and imaginary parts of the discriminant

data are smoother after the Gaussian filter. We also plot the magnitude and phase of these

data and filtered data, respectively. What we obtain in this image is that the minimum in the

magnitude is smoother than in the raw data, and the phase has an obvious vortex point in the

filtered data, unlike in the raw data. We also note that we did not decrease the depth of the

magnitude dip, since we did not directly use the filter on the magnitude, but on the real and

imaginary components.

We can remark here why it was important to do the outlier filter before doing the Gaussian

filter. The reason is that if the Gaussian filter encounters pixels with large outlying values from

8SciPy chooses to truncate 4 standard deviations by default; its truncate argument truncates to 4.0 standard
deviations [94]. 99.9938% of the data lies within 4 standard deviations.
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Figure 6.18: The results of filtering our discriminant data with our filtering procedure. First,
we outlier-filter the raw data (top row), by replacing outlier pixels (in circles; top) with median-
filtered pixels (middle row). Next, we Gaussian-filter the outlier-filtered data to smooth the
data (bottom row), with Gaussian standard deviation σ = 10/(2π). These filters are applied to
the real and imaginary components of the discriminant (left two columns). The corresponding
magnitude and phases are plotted alongside them (right two columns). The gaussian filter is
implemented in [94] [92].
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(a) σ = 10/2π

(b) σ = 20/2π

Figure 6.19: The results of Gaussian-filtering the real and imaginary components of the discrim-
inant data without first outlier-filtering the data. Convolving the non-outlier pixels with the
outlier salt and pepper pixels with the non-outlier pixels spreads the outlier values over the rest
of the data.
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Figure 6.20: The result of applying a median filter of size = (3, 3) to the real and imaginary
discriminant data. It replaces outlier salt and pepper noise pixels with less noisy pixels, as well
as smoothes out the data, by itself.

the rest of the data, these outliers will average with the much smaller pixels, and “smear” the

outlier value over a broader area. Figure 6.19 shows an example of this: the large salt and pepper

pixels in the raw data become large blobs in the Gaussian-filtered data. This can hamper any

image analysis algorithms (Subsection 6.4.2) that seek minima in the magnitude or vortices in

the phase. In particular, even though the blob misses the minima and vortices that we seek

in Figure 6.19a with σ = 10/2π, the blob does obstruct them in Figure 6.19b with σ = 20/2π

(which is merely double the filter width used in our experimental analysis). Thus, to avoid

defeating the Gaussian filter with salt and pepper noise, we remove the salt and pepper noise

with the outlier filter first.

Alternative Approaches: Median Filter and General Considerations

In this section, we discuss an alternative method of smoothing the data: the median filter. The

median filter operates on a pixel by taking subsections of the data around the pixel, defined

by some window, and replacing the pixel with the median of the subsection. The median is

an averaging function, like the convolution, but it handles outliers by simply dropping outliers

from the median calculation, as opposed to summing the outlier term in the calculation of a

convolution. Thus, a small median filter removes our outliers and smoothes the data in one fell

swoop (Figure 6.20).

The median filter has a downside compared to the Gaussian filter, in that it is not as effi-

cient at removing Gaussian noise [88, pp.132]. This is because, instead of taking a mean, or a

convolution with a Gaussian, the median filter selects one pixel from the window to replace the
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pixel. We can see the effect of the median filter (Figure 6.20) as well as the outlier-Gaussian

filter combination (Figure 6.18): the output of the combination is smoother, since most of the

measurement noise is Gaussian, and only a small portion of the noise is salt and pepper noise.

Thus, we opted to handle the the salt and pepper noise with a customized outlier filter (see

Appendix F for an implementation), and then remove the Gaussian noise itself with a Gaussian

filter [94] [95].

Alternative approaches to handle salt and pepper noise are suggested in [88, pp.133]. One

such approach is an α-trimmed mean, which averages together all pixels except for the fraction

α that are the smallest and largest. Since our salt and pepper noise was limited, this might have

thrown out more pixels than needed for the smoothing. Another choice is a weighted median,

which computes the median in a window which duplicates pixels that are closer to the center of

the window. This could remove salt and pepper noise, while keeping more non-salt-and-pepper

noisy pixels fixed, in a way similar to our outlier filter.

Finally, as an aside, we remark that median filters, and nonlinear filters in general, are

useful in edge preservation for computer vision [88, pp.133]. One can then use a convolution

with the derivative of a Gaussian for edge detection [89]. As interesting as edge detection is

to computer vision, we were interested in EP2 points in this work, so we did not need edge

preserving properties of the median filter.

6.4.2 Algorithmically Finding EP2 Points

The final step in analyzing EP2 datasets is the selection of points in the datasets that represent

our best estimate of the location of EP2 . One could do this by eye, based on the raw discriminant

(6.48) or eigenvector indicator (6.50) data. However, we can make a much stronger, more quan-

titative statement about where EP2 lies in our data if we algorithmically choose EP2 candidate

points from our data. In particular, we can do this after we apply the filtering techniques

discussed in Section 6.4.1, so that we run these algorithms on datasets that have their noise

reduced. We then employ the algorithms discussed below to quantitatively determine the lo-

cation of EP2 points. These two algorithms operate individually on the magnitude and phase,

respectively, of the discriminant and eigenvector indicator. Thus, we end up with four methods

to identify EP2 points in the control space.

Minima Finder

This algorithm operates on |D| (6.48) and |E| (6.50), and seeks all local minima over a window

W of some specified size. It then rejects spurious minima by checking the second derivatives of

|D| and |E|, and only accepting those points with a large enough second derivative. We operate
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with the second derivative because if |D| or |E| show a true minimum, as opposed to a minimum

due to a random fluctuation, we would expect the 2nd derivative to consistently have a positive

curvature that reflects the presence of this minimum.

Step by step, the algorithm is as follows:

1. Let the |D| or |E| dataset points Xij be indexed by (i, j), for 0 ≤ i ≤ Ni − 1 and

0 ≤ j ≤ Nj − 1. Let Pij and Qij denote the values of the first and second experimental

parameter which raster Xij . For each point in the dataset strictly within the dataset, i.e.

for which 1 ≤ i ≤ Ni − 2 and 1 ≤ j ≤ Nj − 2, take a window Wij of 3 pixels by 3 pixels,

i.e. with points (k, l), where i − 1 ≤ k ≤ i + 1 and j − 1 ≤ l ≤ j + 1. Check if Abs(Xij)

is less than all points within the window Wij . If no, then Xij is not a local minimum. If

yes, proceed to the next step.

2. Compute the 2nd partial derivative matrix of Xij with a finite difference calculation. This

can be done by the formulae

(Xij)xx =
Xi+1,j − 2Xij +Xi−1,j

h2
(6.61)

(Xij)yy =
Xi,j+1 − 2Xij +Xi,j−1

k2
(6.62)

(Xij)xy =
Xi+1,j+1 −Xi−1,j+1 −Xi+1,j−1 +Xi−1,j−1

4hk
(6.63)

where h = (Pi+1,j − Pi−1,j)/2 and k = (Qi,j+1 − Qi,j−1)/2 are finite differences in the

parameter axes.

3. Compute the 2nd derivative determinant matrix:

(Xij)
′′ = (Xij)xx(Xij)yy − (Xij)

2
xy (6.64)

4. For all points in the window W from Step 1, compute µ[X ′′kl] and σ[X ′′kl], for all (k, l) that

index Wij .

5. Report Xij as a true minimum only if

(Xij)
′′ > µ[X ′′kl](k,l)∈Wij

+ 2σ[X ′′kl](k,l)∈Wij
(6.65)

If Xij is reported as a true minimum, we report the corresponding swept parameters Pij

and Qij , as well as the fixed parameters in this slice, as an EP2 point in (δ, PA, PB, PC)

parameter space.

In Figure 6.14, we can see the result of applying this algorithm to a dataset: there are
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Figure 6.21: The computation of the second derivative test determinant (b) for the function

f(x, y) =
√
x2 + y2 (a). The determinant has a singularity at (x, y) = (0, 0). This singularity

motivates our minimum finding algorithm for the discriminant (6.48) and the eigenvector indi-
cator (6.50).

two “obvious” clusters of minima in this data. This data is filtered, and then two points are

automatically chosen as minima of |D| and |E| from this algorithm (marked as black dots in the

first and third columns of Figure 6.14).

For a rationale behind these 2nd derivative tests, we recall one- and two-dimensional calculus.

For a one-dimensional curve, f(x) for which both the first and second derivatives, f ′(x) and

f ′′(x) are defined, at a point x0 for which f(x) is a maximum or minimum, then f ′(x0) = 0.

Furthermore, if f ′′(x0) > 0, then f has a local maximum at x0, and if f ′′(x0) < 0, then f has

a local minimum at x0. [96] [97] Generalizing to a function f(x, y) of two variables, for which

all of its partial derivatives up to second order are defined, suppose that (x0, y0) is a critical

point (a local minimum or a maximum). Then fx(x0, y0) = 0 and fy(x0, y0) = 0. Furthermore,

when we compute the second derivative test determinant G = fxxfyy − fxyfyx at (x0, y0), then

if G > 0 and fxx(x0, y0) > 0, the point is a local maximum. If G > 0 and fxx(x0, y0) < 0, the

point is a local minimum [96] [97] [98].

Applying the above discussion to our data, we compute partial derivatives from finite differ-

ences as above, then compute the second derivative test from the above discussion. The criterion

in Step 5 is empirically motivated; we expect |D| (6.48) and |E| (6.50) to have functional de-

pendence similar to f(x, y) =
√
x2 + y2. For this f(x, y), G asymptotically blows up as 1/ε2,

for perturbations of radius ε from a minimum (0, 0). This singularity is demonstrated in Figure

6.21. We can then check for those points Xij for which (Xij)
′′ satisfies the criterion in Equation

(6.65), i.e. we select those points which exceed the mean value of X ′′ in the window Wij by two

standard deviations. Thus, even though we do not apply the classic second derivative test from

multidimensional calculus, as discussed in [96], we can still identify local minima in our datasets.
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Vortex Finder

The previous EP2 -finding algorithm operates on the magnitude of D (6.48) and E (6.50). This

algorithm identifies EP2 points based on vortices in the phase of D and E. Vortices in the

phase are points around which the phase wraps around by 2πn, for some nonzero integer n. In

particular, for the function f(z) which admits a Taylor zeries f(z) ≈ z0 +az, for some z0, a ∈ C,

f(z) has a vortex only at z0; a counterclockwise loop that encloses z0 wraps the phase around

by 2π, but a counterclockwise loop that does not enclose z0 wraps the phase by 0 (see Figure

6.9 for an example, with z0 = 0).

The algorithm that detects vortices in the D and E data is as follows:

1. Let the D or E dataset points Xij be indexed by (i, j), for 0 ≤ i ≤ Ni − 1 and 0 ≤ j ≤

Nj − 1. Let Pij and Qij denote the values of the first and second experimental parameter

which raster Xij . For each point in the dataset strictly within the dataset, i.e. for which

1 ≤ i ≤ Ni − 2 and 1 ≤ j ≤ Nj − 2, take a window Wij of 3 pixels by 3 pixels. Wij is

spanned by the indices (k, l) where i− 1 ≤ k ≤ i+ 1 and j − 1 ≤ l ≤ j + 1.

2. Create an closed ordered list of the pixels on the perimeter ofWij , which ends at the same

index that it begins. This makes a “closed loop” in software. Without loss of generality,

we can take this list to be
[
(i−1, j−1), (i, j−1), (i+1, j−1), (i+1, j), (i+1, j+1), (i, j+

1), (i− 1, j + 1), (i− 1, j), (i− 1, j − 1)
]
.

3. Plot the arguments of D (6.48) or of E (6.50) against these indices. These phases will be

values from −π to +π.

4. Apply a standard phase unwrapping algorithm to this ordered list of phases. This will

remove the 2π discontinuity in the phase, if there is one.9

5. The final unwrapped phase data will have a starting point and an ending point that differs

by either 0 or by an integer multiple of 2π. If the start and final phases are equal, then

Xij is not a vortex point. If they differ by 2π, then Xij is a vortex point, and we then

report the corresponding swept parameters Pij and Qij , as well as the fixed parameters in

this slice, as an EP2 point in (δ, PA, PB, PC) parameter space.

6.5 Measuring the EP2 Trefoil Knot

One of the major goals of this experiment was to demonstrate that the EP2 points on a hy-

persurface of the 4-dimensional eigenvalue control space enclosing EP3 possesses a trefoil knot

9One such standard algorithm is the numpy.unwrap function in NumPy [99]. Another is the PhaseUnwrap

function in Mathematica [100].
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Figure 6.22: All of the EP2 points that were algorithmically found from all of the 61 datasets in
this experiment, via all four methods in Section 6.4.2. The columns represent each of the four
methods. The top row is the tesseract representation of the 3D hypersurface. The bottom row is
the stereographic projection of the 4D data. The circles represent the algorithmically obtained
EP2 points, and the line represents a theoretically estimated EP2 curve. The points are colored
by θ (Equation 2.115; upper right corner).

structure. In this section, we describe the visualization of these measured EP2 points, and de-

termine that they do form a trefoil knot.

We performed spectroscopy (Section 6.1) to extract eigenvalues and complex Lorentzian

amplitudes on datasets of a surface described in Section 6.3 that encloses an EP3 point (Section

6.2). From these, we calculate the discriminant D (Equation (6.48)) and eigenvector indicator

E (Equation (6.50)), and then perform post-processing analysis (Section 6.4) to algorithmically

ascertain any EP2 points in these datasets. In this section, we aggregate these EP2 points, and

assemble them in two visualizations of the 3D hypersurface.

6.5.1 Rectilinear Stereographic Projection

This representation aims to represent data which lives in the 4D control space as a 3D image. It

takes the eight faces of the 3D hyperrectangle described in Section 6.3.2, and depicted in Figure

6.10, and identifies their common edges together. This transformation leaves the the “outer”

face distended to an “infinity.” There is a map from the other seven faces to the seven regions

in the “tesseract,” such that their common faces are visually joined.

For this visualization, the “inner” face is chosen to be the P1,min face, and the “outer” face is

the P1,max face. This choice is made because the 4D hypersurface is chosen so that no EP2 points

were expected to appear on these two faces.

The linear transformation for this visualization is as follows:

159



6.5. MEASURING THE EP2 TREFOIL
KNOT

CHAPTER 6. DATA ANALYSIS

1. Find scaling terms that scale the experimental coordinates (δ, P1, P2, P3) to dimensionless

line segments that span from −0.4 to +0.4. For each experimental coordinate Z, we

can consider this a linear map of z = mZZ + bZ , where z ∈ (−0.4,+0.4). Since Z has

corresponding minimum and maximum values Zmin and Zmax, mZ and bZ can easily be

solved for with point-slope form:

mZ =
+0.4− (−0.4)

Zmax − Zmin

bZ = 0.4−mZ Zmax

(6.66)

2. For each of the six faces of the hypersurface that are shown in this representation, this

step makes the (δ, P1, P2, P3) points on this face live in a dimensionless cube of shape

0.8× 0.8× 0.8, centered about (0, 0, 0), using the values in Equation 6.66 found in Step 1.

Take the experimental coordinates (δ, P1, P2, P3) , which is a tuple of four elements, and

then apply the linear transformations of Step 1 to return a tuple X = (x1, x2, x3) of three

elements (the fourth is redundant, since these X’s lie on one of the eight faces of the 4D

hyperrectangle). For the six regions on the exterior of the “tesseract,” this transformation

is as follows:

� δ:
(
mP1P1 + b1,mP2P2 + b2,mP3P3 + b3

)
� P2:

(
mP1

P1 + b1,mP3
P3 + b3,mδδ + bδ

)
� P3:

(
mP1

P1 + b1,mP2
P2 + b2,mδδ + bδ

)
3. This step puts the six dimensionless cubes of step 2 into their respective regions on the

“tesseract” image. Rotate and reflect, as necessary, the points of a given hyperface on the

4D hyperrectangle, then shift them to the left or the right in 3D space. This maps each

point to one of the seven regions on the exterior of the “tesseract.” The P1,min face is left

fixed in the interior, so it is left unchanged; the P1,max face is distended to “infinity.” Neither

of these faces are depicted, since the 4D hypersurface is chosen so that no EP2 points lie

on these two faces. As for the other six faces, given a scaled point X from step 2, let Rq(θ)

be a rotation about the q-axis (where q ∈ {x, y, z}) by θ, and let Mx be a reflection about

the x-axis. Then the points X are transformed as:

� δmin: A =
(
Mx ◦Rz(+π/2) ◦Ry(+π/2)

)
·X + (0, 0,−0.8)

� δmax: A =
(
I ◦Rz(−π/2) ◦Ry(−π/2)

)
·X + (0, 0,+0.8)

� P2,min: A =
(
Mx ◦ I

)
·X + (−0.8, 0, 0)

� P2,max: A =
(
I ◦ I

)
·X + (+0.8, 0, 0)
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� P3,min: A =
(
I ◦Rz(−π/2)

)
·X + (0,−0.8, 0)

� P3,max: A =
(
Mx ◦Rz(+π/2)

)
·X + (0,+0.8, 0)

4. This step takes the six cubes, which have been put in their correct places, and stretches

their ends so that they form 3D trapezoidal prisms. Let A = (A1, A2, A3) be the data

points from step 3. Then, depending which face A lies on, transform A as follows:

� δmin: A 7→ {A1 × (−c(A3 + 0.4) + 1), A2 × (−c(A3 + 0.4) + 1), A3}

� δmax: A 7→ {A1 × (+c(A3 − 0.4) + 1), A2 × (+c(A3 − 0.4) + 1), A3}

� P2,min: A 7→ {A1, A2 × (−c(A1 + 0.4) + 1), A3 × (−c(A1 + 0.4) + 1)}

� P2,max: A 7→ {A1, A2 × (+c(A1 − 0.4) + 1), A3 × (+c(A1 − 0.4) + 1)}

� P3,min: A 7→ {A1 × (+c(A2 − 0.4) + 1)), A2, A3 × (+c(A2 − 0.4) + 1)}

� P3,max: A 7→ {A1 × (−c(A2 + 0.4) + 1)), A2, A3 × (−c(A2 + 0.4) + 1))}

The value c can be used to smoothly transform the cube into the final trapezoidal prism;

c = 0 corresponds to the identity, and c = 2.5 corresponds to the final trapezoidal prism.

This was useful in generating the videos of the tesseract transformation shown in [1, Sup-

plement].

We use this projection to show all of the EP2 points collected from the four algorithmic

methods described in Section 6.4.2. These results are depicted in the top row of Figure 6.22.

The circles are the algorithmically found EP2 points. The curve is a theoretically estimated

curve of the EP2 points on the 3D hypersurface (as described in Section 3.6). The coloring is

done by the quantity θ (Equation 2.115). θ is expected to wrap by 2π around the 1D curve once.

This lets us impose an ordering on the algorithmically obtained points.

From Figure 6.22 (top row), we see that the data and their supporting theoretical curves do

form a trefoil knot; the curve is not simply a circle (or a “unknot”), since it cannot be smoothly

deformed into a circle. This tesseract visualization maintains any knot topology from the full

4D space, because even though the 4D surface is being represented in three dimensions, the

edges that are adjacent in 4D remain adjacent in this 3D projection [86]. Thus, this tesseract

representation of the EP2 points demonstrates that the EP2 curve is a trefoil knot.

6.5.2 Stereographic Projection

In addition to the tesseract representation (Section 6.5.1), we can also represent the EP2 points

on the 3D hypersurface in 4 dimensions via a stereographic projection into R3. We then inspect

the curve in this 3-dimensional representation, and see that it is a knot in this projection as well

(though this is already mathematically guaranteed, since the projections are isomorphic).
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Figure 6.23: A stereographic projection of the unit circle (|x|2 + |y|2 = 1) onto the real line
(x-axis). The north pole is chosen as (0, 1) (blue). The points (x, y) and (x′, y′) on the circle
(red) are mapped onto the points x/(1− y) and x′/(1− y′) on the real line (purple).

To understand this map, we briefly review the stereographic projection of the unit circle

onto the 1D line. This map takes a point (x, y) on the circle (where (x, y) satisfy the constraint

|x|2 + |y|2 = 1) and plots it on the real line by the mapping

(x, y) 7→ X =
x

1− y
. (6.67)

The mapping is depicted in Figure 6.23. Geometrically, this mapping can be interpreted as

taking a point on the unit circle, and drawing a line segment through the point (red in Figure

6.23) and the point (x, y) = (0, 1) (blue in Figure 6.23). The point at which the line segment

intersects the real line is at x/(1− y) (purple in Figure 6.23). [101] [102]

The stereographic projection map is easily seen to be invertible, from the above discussion.

For completeness, we write the inverse here:

X 7→
(
x =

2X
X 2 + 1

, y =
X 2 − 1

X 2 + 1

)
(6.68)

Since it is invertible, we see that there is a one-to-one correspondence between the points on

the real line and the unit circle, with the “north pole” at (0, 1) removed. This projection is a

conformal map [102], so the angles (and shape) of the EP2 structure are preserved by the map

(though not necessarily its length).

The choice of pole in the stereographic projection need not be (0, 1). Indeed, we can consider

a stereographic projection with a different pole (p, q), which is also on the unit circle (|p|2+|q|2 =
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Figure 6.24: A stereographic projection of the unit circle (|x|2 + |y|2 = 1) onto the real line
(x-axis). The north pole is chosen as (p, q) (blue), so we rotate the coordinate system to one in
which (p, q) is at the origin.

1), as seen in Figure 6.24. Then we can rotate the coordinate system of the circle to one in which

the point (p, q) is at the origin. This is accomplished via the rotation matrix

Rθ =

cos θ − sin θ

sin θ cos θ

 , (6.69)

where θ is given by tan θ = p/q. After this transformation is applied, we apply the stereographic

projection (Eq. 6.67). This lets us bijectively map the unit circle, minus the pole, onto the real

line via any choice of pole.

We can generalize this stereographic map to N dimensions, by mapping the N−1-sphere onto

RN−1. Indeed, let (x1, x2, . . . , xN ) be a point on the unit sphere (so |x1|2+|x2|2+· · ·+|xN |2 = 1).

We can take the north pole to be (0, 0, . . . , 1), and project the point on the sphere to a point on

RN−1 via

(x1, x2, . . . , xN ) 7→
(
X1 =

x1

1− xN
,X2 =

x2

1− xN
, . . . ,XN−1 =

xN−1

1− xN

)
(6.70)

Define the quantity

s2 =

N−1∑
i=1

X 2
i (6.71)

The inverse of (6.70) is given by

(X1,X2, . . . ,XN−1) 7→
(
x1 =

2X1

s2 + 1
, x2 =

2X2

s2 + 1
, . . . , xN =

s2 − 1

s2 + 1

)
, (6.72)
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so this map is also invertible. Furthermore, it is also a conformal map, so it will preserve the struc-

ture of the EP2 space. Finally, if we wish to stereographically project from a pole (p1, . . . , pN ),

we can rotate the coordinates (x1, . . . , xN ) to a coordinate system in which (p1, . . . , pN ) is at

(0, . . . , 0, 1). One (nonunique) way to accomplish this is to apply rotation matrices

R1 =



cos θ1 0 0 0 . . . 0 − sin θ1

0 1 0 0 . . . 0 0

0 0 1 0 . . . 0 0

0 0 0 1 . . . 0 0

. . .

0 0 0 0 . . . 1 0

sin θ1 0 0 0 . . . 0 cos θ1


...

RN−1 =



1 0 0 0 . . . 0 0

0 1 0 0 . . . 0 0

0 0 1 0 . . . 0 0

0 0 0 1 . . . 0 0

. . .

0 0 0 0 . . . cos θN−1 − sin θN−1

0 0 0 0 . . . sin θN−1 cos θN−1.



(6.73)

where θk is given by

tan θk =
pk√

p2
N − p2

k +
∑k
j=1 p

2
j

. (6.74)

Then we first apply the rotation matrix RN−1RN−2 . . . R2R1 to the coordinates, and then apply

the stereographic projection map from Equation 6.70. This provides an invertible map from

SN−1 − {(p1, p2, . . . , pN )} to RN−1.

To employ the stereographic projection (6.70), we take the experimentally measured

EP2 points, which have dimensions of 2π × kHz and µW, and change the coordinate

system to a dimensionless one centered around (0, 0, 0, 0). We consider the experimen-

tal coordinates (δ, PA, PB, PC) as having an origin at the empirically measured EP3 point
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(δEP3
, PA,EP3

, PB,EP3
, PC,EP3

), and define the dimensionless coordinates (xr, yr, zr, wr):

xr =

δ
δEP3

− 1√(
P1

P1,EP3
− 1
)2

+
(

P2

P2,EP3
− 1
)2

+
(

P3

P3,EP3
− 1
)2

+
(

δ
δEP3

− 1
)2

yr =

P3

P3,EP3
− 1√(

P1

P1,EP3
− 1
)2

+
(

P2

P2,EP3
− 1
)2

+
(

P3

P3,EP3
− 1
)2

+
(

δ
δEP3

− 1
)2

zr =

P1

P1,EP3
− 1√(

P1

P1,EP3
− 1
)2

+
(

P2

P2,EP3
− 1
)2

+
(

P3

P3,EP3
− 1
)2

+
(

δ
δEP3

− 1
)2

wr =

P2

P2,EP3
− 1√(

P1

P1,EP3
− 1
)2

+
(

P2

P2,EP3
− 1
)2

+
(

P3

P3,EP3
− 1
)2

+
(

δ
δEP3

− 1
)2

(6.75)

With the 4D dimensionless coordinates in Equation 6.75, we can then stereographically

project them onto R3, after we choose a suitable pole. The pole chosen for this projection

is (in experimental coordinates)

(
δpole/(2π), P1,pole, P2,pole, P3,pole

)
=
(
55 kHz, P1,min, 596 µW, P3,EP3

)
(6.76)

The mapping in Equation 6.75 maps this pole to (0.1, 0,−0.83, 0.55). For comparison, a pole at

(δEP3
, P1,EP3

, P2,max, P3,EP3
) would map to (0, 0, 0, 1) in the dimensionless coordinates (6.75). We

apply the rotation matrices described in Equation 6.73 (these rotate by θ1 = 10.30°, θ2 = 0°, θ3 =

−56.04°) to put the (xr, yr, zr, wr) coordinates into a rotated coordinate system (x′r, y
′
r, z
′
r, w

′
r),

and then we apply the stereographic projection:

X =
x′r

1− w′r
, Y =

y′r
1− w′r

, Z =
z′r

1− w′r
(6.77)

The analytically obtained EP2 coordinates (Section 6.4), as given in Equation 6.77, are then

plotted in the bottom row of Figure 6.22. The circles are the algorithmically found EP2 points,

via the four methods in Section 6.4.2, with each plot corresponding to one of the four meth-

ods. The curve is a theoretically estimated curve of the EP2 points on the 3D hypersurface (as

described in Section 3.6). The coloring is again done by θ (Equation 2.115).

In the stereographically projected plots of the bottom row of Figure 6.22, we see that the

EP2 points and the theoretically predicted curve form a trefoil knot (c.f. Section 6.5.1). More-

over, the stereographic projection (Equation 6.77) is a conformal map [102], so it locally pre-

serves angles and the shape of the knot. More precisely, it generically preserves knot equivalence

classes.10 Thus, since the curve is a trefoil knot in the projected R3 space, it is a trefoil knot on

10“Generically,” because if the projection point happens to lie on the knot, then the stereographic projection

165



6.6. EIGENVALUE BRAIDING CHAPTER 6. DATA ANALYSIS

+

P
3  =

 78 �
W

, � =
 75.6 kH

z
P

2  =
 289 �

W
, � =

 75.6 kH
z

+
Figure 6.25: The datasets over which closed loops were realized in order to demonstrate eigen-
value braiding (Figure 6.26). The axes denote the swept parameters, and the legend to the right
denotes the fixed parameters. Top (bottom) sheet: P1 and P2 (P3) were the swept parameters
in these sheets, while δ and P3 (P2) were the fixed parameters. The black circular dot denotes
the common start and end point of these rectangular loops. Black crosses denote the measured
EP2 points. The cyan, light-blue and dark-blue loops correspond to the A, B, and C columns of
Figure 6.26, respectivey.

the hypersurface.

6.6 Eigenvalue Braiding

In Section 6.5, we experimentally established that the EP2 points on a 3-hypersurface that en-

closes EP3 form a trefoil knot. This experiment also aims to execute loops in the complement

of the EP2 space in the 3-hypersurface and realize eigenvalue braiding. In this section, we ex-

perimentally demonstrate that the kind of braid (more precisely, the braid’s isotopy equivalence

class) that is realized depends on how the loop encloses the EP2 curve. This shows that the com-

plement of the EP2 space on the 3-hypersurface has as its fundamental group the braid group

B3 (Section 2.5.4).

To experimentally realize eigenvalue braiding along closed loops in the parameter space, we

execute closed loops in the vicinity of the EP2 trefoil knot on our chosen experimental hyper-

surface (Equation 6.51), and plot their eigenvalues along the loop. An obvious way to do this

would be to specify the four parameters
(
δ(t), P1(t), P2(t), P3(t)

)
as a function of time t ∈ [0, T ],

where δ(0) = δ(T ), P1(0) = P1(T ), etc. However, to demonstrate eigenvalue braiding, it suffices

to use the data from the EP2 -finding spectroscopy (for example, Figure 6.14), and extract data

fails to preserve the knot. Yet the knot points lie on a set of measure zero in the 4D control space, so this poor
choice of a projection point is very rare.
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Figure 6.26: The eigenvalue trajectories of the loops in Figure 6.25. Columns A, B and C
correspond to the cyan, light-blue and dark-blue loops of Figure 6.25, respectively. The top row
is the rectangular loop (dark blue), with its start/end (black dot). The yellow points are the
EP2 points, as obtained in Section 6.4, and the yellow curve is the estimated EP2 curve. Middle
row is the extracted eigenvalue data along the loop. i traces out the loop from its beginning to
end. Bottom row is theoretically estimated eigenvalues.

from these datasets in post-processing.

Figure 6.25 shows two 2D datasets, over which three rectangular loops are realized in post-

processing. In these 2D datasets, each datapoint is addressed by a pair of indices (i, j), and the

(i, j) indices are chosen to realize various rectangular loops.11 With these points, we note the

three complex eigenvalues λi as a function of n, where n is the nth (i, j) index in the chosen

rectangular loop. Figure 6.25 shows these loops in experimental parameter space (δ, P1, P2, P3) .

Figure 6.26 shows the eigenvalue trajectories that these rectangular loops trace out, as well

as the loops’ positions in relation to the EP2 trefoil knot. The second row shows the extracted

eigenvalues along these loops, and the third row shows the theoretically estimated eigenvalues

along these loops. The eigenvalue trajectories are interpolated among the eigenvalue data points

11Of course, there is nothing special about the choice that the loops be rectangular, but they are very simple
to realize in 2D-indexed datasets.
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Figure 6.27: A collection of loops (a-c) and eigenvalue spectra trajectories (d-f). The three loops
are each from a different loop homotopy class. The three loops realize the braids σ2

1 , σ3
1 , and

σ1σ2σ1, respectively.

by a coloring algorithm (detailed in Appendix G), which orders the eigenvalues at each index i

such that the eigenvalue trajectories are continuous between index i and index i+ 1, for all i.

In Figure 6.26, we see that the three loops in Figure 6.25 realize three classes of eigenvalue

trajectories: one in which no eigenvalues are exchanged, one in which two out of three eigenvalues

are exchanged, and one in which all three eigenvalues are exchanged. The trajectory that the

loop realizes depends on the way that the loop encloses the knot. For these particular loops,

the loop that does not enclose the knot swaps zero eigenvalues (A); the loop that encloses one

strand of the knot swaps two eigenvalues (B); and the loop that encloses two strands of the knot

swaps three eigenvalues (C).12

More generally, the eigenvalue trajectories in Figure 6.26 are braids of N=3 strands, which

evolves 3 distinct points in the complex plane. These three braids do not belong to the same

isotopy class; they cannot be continuously deformed into one another while keeping their end-

points fixed and their strands from passing through one another during the deformation. As

discussed in more detail in Section 2.5.4, the braid’s isotopy class is determined by the homotopy

class of the loop. These three braids can be regarded as generators of the braid group B3 of the

three eigenvalues of our system, as depicted in Figure 2.6. This experimentally demonstrates the

discussion in Section 2.5.4, in which we say that the fundamental group of the nondegenerate

12The reader should not erroneously conclude from this statement about the specific loops in Figure 6.26 that
any control loop which encloses zero strands swaps zero eigenvalues, etc. A counterexample may be found in
Figure 6.28.
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Figure 6.28: A demonstration of the noncommutativity of the eigenvalue braid group B3 (b-c),
via noncommutation of the control loops (a). Performing the red loop, then blue loop, produces
(b); performing the blue loop, then red loop, produces (c).

parameter space is the braid group B3. Figure 6.27 shows the use of the generators in Figure

6.26 to create more complicated control loops, and thus more complicated eigenvalue braids.

This illustrates again that the loop homotopy class determines the braid isotopy class.

Figure 6.28 demonstrates the non-Abelian character of B3. In Figure 6.28, two different

loops, belonging to different homotopy classes (they encircle different parts of the EP2 knot, so

they cannot be continuously deformed into one another without intersecting through the knot),

are shown. We concatenate the two loops, then look at the braids that are produced. Performing

the red loop, then the blue loop, produces a braid in one braid isotopy class; performing the blue

loop, then the red loop, produces a braid in a different braid isotopy class, since these two braids

cannot be continuously deformed into one another without intersecting the braids or moving

the start and end points of the eigenvalue trajectories. For these particular braids, (b) swaps

two eigenvalues, and (c) swaps all three eigenvalues. Thus, the braid concatenation and loop

concatenation operations are not commutative. This is expected, since the fundamental group

of the control space, as well as B3, are noncommutative.
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Chapter 7

Future: Real-Time Control Loops

In this chapter, we describe preliminary measurements of the amplitude as well as the phase of

excitations of the membrane during real-time control loops performed near the EP2 trefoil knot.

In [6], the energy transferred by driving one mode of a 2-mode system and executing a control

loop was measured by examining only the amplitude of the modes’ motion. That work also

demonstrated nonreciprocity of the control loops: energy is either transferred or not depending

on the direction of the loop. The nonreciprocal behavior depends critically on the relative gain

and loss of the modes. The goal of this chapter is to discuss considerations in measuring the

geometric (Berry) phase over control loops in a future experiment.

7.1 Non-Hermitian Berry Phase

7.1.1 The Adiabatic Theorem

The adiabatic theorem states that, given a system specified by a time-varying dynamical matrix

H(t), if the system state begins in an eigenstate ψn(0) of H(0), then if H(t) is changed “slowly

enough,” the state remains in the eigenstate ψn(t) of H(t) [72, p.368-369, Ch.10]. By a “slow

enough variation,” we mean that the time-scale T of the change satisfies

T � 2π~/(Eb − Ea) (7.1)

where Ea(t) and Eb(t) are any relevant energy eigenvalues of H(t) [5, p.355]. The key result

is that the ψn(t) can be identified with the ψn(0) via their smooth evolution. The adiabatic

approximation can be made when the adiabatic theorem holds.

The adiabatic theorem is only guaranteed to hold for a Hermitian dynamical matrix which

varies slowly enough (Equation (7.1)), as is proven in Section 7.1.2. The theorem does not hold
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in general for non-Hermitian dynamical matrices; however, the adiabatic theorem does hold for

non-Hermitian systems in some cases, as discussed in Section 7.1.4.

Example: Simple Harmonic Oscillator

Some nice pedagogical classical examples of the adiabatic approximation are presented in [103].

For instance, if we consider a one-dimensional simple harmonic oscillator of mass m and

frequency ω, [103, Sections III-IV], its total energy is given by E = K + V , where K = mẋ2/2

is the kinetic energy, V = mω2x2/2 is the potential energy, and x is the position coordinate. If

ω is constant, the solution to the harmonic oscillator equation of motion, −ω2x = ẍ, is

x(t) = Aeiωt +Be−iωt (7.2)

Now, suppose that ω(t) is slowly varied, such that the change in ω in one cycle T , δω, satisfies

δω/ω � 1. We may try an adiabatic approximation of Equation (7.2),

x(t) = Aeiω(t)t +Be−iω(t)t (7.3)

Then we take the time derivative of Equation (7.3):

ẋ(t) = Aeiω(t)t(iω(t) + iω̇(t)t) +Be−iω(t)t(−iω(t)− iω̇(t)t)

=
(
iω(t)Aeiω(t)t − iω(t)Be−iω(t)t

)
(1 + tω̇(t)/ω(t))

(7.4)

Over one period T , T ω̇(t)/ω(t) = δω/ω � 1, so

ẋ(t) ≈ iω(t)Aeiω(t)t − iω(t)Be−iω(t)t

ẍ(t) ≈ −ω(t)2
(
Aeiω(t)t +Be−iω(t)t

) (7.5)

Thus, the adiabatic approximation of Equation (7.3) satisfies ẍ = −ω2x.

We can also seek a quantity that remains constant when the simple harmonic oscillator is

adiabatically varied [103][III-IV]. We consider a shift ω0 7→ ω0 + δω, for δω/ω � 1. Then, with

E0 = mẋ2/2 +mω2x2/2,

E0 + δE = mẋ2/2 +m (ω + δω)
2
x2/2

≈ mẋ2/2 +mω2(1 + 2δω/ω)x2/2

= E0 +mω2x2δω

(7.6)
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Thus, the variation δE is

δE = mωx2δω (7.7)

We can take the time-average fτ = 1
τ

∫ τ
0
f(t)dτ of the above, over one period τ = T . ω is

assumed to change very little over one period T , so ωT = ω. This yields

δE = mωx2
T δω (7.8)

By the relation in Equation (7.8), E also changes very little over T , so ET = E. Then the

time-averaged potential relates to the time-averaged position by

VT = mω2x2
Tω

2/2 (7.9)

By the Virial theorem for a simple harmonic oscillator [3, pp.86], VT = KT = E/2, so

E = mω2x2
T (7.10)

Plugging Equation (7.10) into (7.8), we get

δE/E = δω/ω (7.11)

Hence, E/ω is a constant when ω is adiabatically varied. Equivalently, since T = 2π/ω, the

product ET is constant over an adiabatic variation of ω(t).

The quantity ET being constant over an adiabatic variation is an example of the general

adiabatic invariance for the classical action S =
∮
pdx from classical mechanics, as proven by

Ehrenfest [103, Section II] [104]. For the oscillator, S =
∮
mvdx =

∮
mv2dt =

∮
2Kdt =

2KTT = ET [103, Sections III-IV].

7.1.2 Proof of the Adiabatic Theorem for Hermitian Systems

The adiabatic theorem always holds for a hermitian HamiltonianH(t) which varies slowly enough

(as in Equation (7.1)). H(t) governs the evolution of a state vector |Ψ(t)〉 via the Schrödinger

equation

i~
∂

∂t
|Ψ(t)〉 = H(t) |Ψ(t)〉 (7.12)

The adiabatic theorem states that, if a state |Ψ(t)〉 of H(t) starts in the eigenstate |ψn(t)〉 at

t = 0, and if H(t) is varied slowly enough, per Equation (7.1), then the state at time t is
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approximately

|Ψ(t)〉 ≈ eiθn(t)eiξn(t) |ψn(t)〉 (7.13)

where the dynamical phase is

θn(t) = −1

~

∫ t

0

E(t′) dt′ (7.14)

and the geometric phase is

ξn(t) = i

∫ t

0

〈
ψn(t′)

∣∣∣∣ ∂∂t′ψn(t′)

〉
dt′ (7.15)

For pedagogy, as well as to motivate Berry phase later [105], we show a proof here [72, p.371-373].

This proof assumes Hermiticity of H(t) and nondegeneracy of the eigenenergies En(t).

Proof. An eigenstate |ψn(t)〉 of Equation (7.12) satisfies

H(t) |ψn(t)〉 = En(t) |ψn(t)〉 , (7.16)

and the eigenstates are orthonormal:

〈ψm(t)|ψn(t)〉 = δmn (7.17)

A formal solution of Equation (7.12), in terms of the eigenstates, is

|Ψ(t)〉 =
∑
n

cn(t)eiθn(t) |ψn(t)〉 (7.18)

where the dependence of the phase factors of cn(t) on En(t) has been absorbed into θn(t), as

given in Equation (7.14). Note that cn(t), as given in Equation (7.18) would be constant if H(t)

were time-independent.

When we plug Equation (7.18) into the time-dependent Schrödinger equation (7.12), the

equation is

i~
∑
n

[
ċn(t) |ψn(t)〉+ cn(t)

∣∣∣ψ̇n(t)
〉

+ icn(t)θ̇n(t) |ψn(t)〉
]
eiθn(t) =

∑
n

cn(t)
(
H(t) |ψn(t)〉

)
eiθn(t)

(7.19)

Since

θ̇n(t) = −En(t)/~, (7.20)

we get ∑
n

[
ċn(t) |ψn(t)〉+ cn(t)

∣∣∣ψ̇n(t)
〉]
eiθn(t) = 0 (7.21)
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We use orthonormality of the ψn(t) (which is guaranteed by the Hermiticity of H(t)) to find that

ċm(t)eiθm(t) = −
∑
n

cn(t)
〈
ψm

∣∣∣ψ̇n(t)
〉
eiθn(t)

= −cm(t)
〈
ψm

∣∣∣ψ̇m(t)
〉
eiθm(t) −

∑
n 6=m

cn(t)
〈
ψm

∣∣∣ψ̇n(t)
〉
eiθn(t)

(7.22)

Shortly, we will use the adiabatic approximation to drop the second term in the above.

We take the time-derivative of the Schrödinger equation (7.12), and find

Ḣ(t) |ψn(t)〉+H(t)
∣∣∣ψ̇n(t)

〉
= Ėn(t) |ψn(t)〉+ En(t)

∣∣∣ψ̇n(t)
〉

(7.23)

Now take the inner product with 〈ψm(t)|, for m 6= n, and again use the Hermiticity of H(t):

〈ψm(t)| Ḣ(t) |ψn(t)〉 =
(
En(t)− Em(t)

) 〈
ψm(t)

∣∣∣ψ̇n(t)
〉

(7.24)

Plug Equation (7.24) into Equation (7.22) (using nondegeneracy of En(t)):

ċm(t) = −cm(t)
〈
ψm(t)

∣∣∣ψ̇m(t)
〉
−
∑
n 6=m

cn(t)
〈ψm| Ḣ |ψn〉
En − Em

ei(θn−θm) (7.25)

The adiabatic approximation is now made by dropping the second term. This is done by assuming

that, over one period T = 2π/ω1 of the Hamiltonian ground-state energy ω1, that δH(t) =

T × Ḣ(t) is much smaller than H(t).1 This is justified if we assume the “slowness condition” of

Equation (7.1). Then the solution to the above is approximately

cm(t) ≈ cm(0)eiξm(t) (7.26)

where ξm(t) is the geometric phase, given in Equation (7.15).

Finally, we have the state |Ψ(t)〉:

|Ψ(t)〉 ≈
∑
n

cn(0)eiξn(t)eiθn(t) |ψn(t)〉 (7.27)

In particular, if the state begins in an eigenstate |ψn(0)〉 of H(0), with cn(0) = 1 and ck(0) = 0,

for all k 6= n, then, via Equation (7.27), the time-evolved state is approximately given by

Equation (7.13), so the state remains in the nth eigenstate of H(t), as claimed. �
1An analysis that explicitly checks this assumption for an exactly-soluble two-mode system is given in [106].
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7.1.3 Berry Phase

The geometric phase (7.15) is physically observable in both classical and quantum systems. For

example, in a classical system, the geometric phase can be observed in parallel transport of a

Foucault pendulum [72, p.376-377]. In quantum mechanics, in which the geometric phase had

been thought to be inconsequential before Berry’s work [105], the geometric phase is physically

observable via interferometry. In particular, if the Hamiltonian H(t) depends on N parameters

R(t) =
(
R1(t), . . . , RN (t)

)
:

H(t)
.
= H

(
R1(t), . . . , RN (t)

)
, (7.28)

then the time-derivative of the eigenstates |ψn(t)〉 follows

∂t |ψn(t)〉 = ∂tR(t) · (∇R |ψn(R1(t), . . . , RN (t))〉) (7.29)

The geometric phase then becomes [107]

ξn(t) = i

∫ R(t)

R(0)

〈ψn(R)|∇Rψn(R)〉 · dR (7.30)

Berry’s phase results when R(0) = R(T ), at the end of the loop duration T (i.e., R forms a

closed control loop ∂S around a surface S):

ξn = i

∮
∂S

〈ψn(R)|∇Rψn(R)〉 · dR (7.31)

So long as the path taken by R(t) satisfies the adiabatic assumption, then Berry’s phase does not

depend on the dynamics, but only on the path taken by R(t) in the control space; the dynamic

phase (Equation (7.14)) captures the dynamical dependence. The quantity

An(R) = i 〈ψn(R)|∇Rψn(R)〉 (7.32)

is the Berry connection, or Berry potential [34] [107] [72, p.381]. By using the generalized Stokes’

theorem [105], ∮
∂S

An(R) · dR =

∫
S

[∇R ×An(R)] · da (7.33)

we find the Berry curvature ∇R ×An(R).

7.1.4 Considerations for Non-Hermiticity

For a Hermitian H(t) and a variation of H(t) which is sufficiently slow (i.e., it satisfies Equation

(7.1)), the adiabatic theorem always holds. In contrast, for a non-Hermitian H(t), the adiabatic
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theorem need not hold at all: if the system possesses a “dominant” mode, which has the highest

gain relative to the other modes, then the adiabatic theorem can only hold for this mode [108]

[33, Appendix A]. If a different mode becomes dominant (as can happen when the control loop

encloses an exceptional point; c.f., Chapter 2), then energy can transfer to that new dominant

mode [109] [110] [33, Appendix A].

With non-Hermitian systems, one considers different limits of the loop duration. A quasia-

diabatic control loop is slow, but not asymptotically slow [34]. Theoretical [111] as well as

experimental works show that quasiadiabatic control loops that enclose an exceptional point can

place energy in a different mode than it began in. Experimental platforms that have demon-

strated this include a microwave cavity [112], a waveguide [7], and the membrane-in-the-middle

experiment [6].

Another loop-duration regime is the adiabatic limit, in which the loop duration is asymptot-

ically slow. Theory work [34] shows that, for a non-Hermitian system with an exceptional point

space, certain asymptotically slow control loops (T →∞) entirely within the EP subspace, and

a particular initial state vector, the state returns to itself, and picks up a phase factor θ, which

satisfies the Puisseux series [34]

θ =

n∑
r=1

T 1−r/n
∫ 1

0

ds fr(H(s)) (7.34)

where fr(z) are complex functions. The r = n term (i.e., the order T 0 term) is the Berry

phase. The particular initial state vector for which this result holds is the dominant mode of

H(t = 0) (or, rather, the dominant mode of H(t = 0)′ = Jn + T−1A(t = 0), where A(s) is the

Berry connection). The control loop must be chosen so that this initial state vector remains the

dominant mode across the entire loop.

If the system is initialized in the dominant mode, and a control loop is executed such that it

encloses an EP, but another mode becomes dominant, then a diabatic (or “sudden”) transition

can occur [108] [33, Appendix A]. One might ask whether it is generically possible to create a

time-dependent Hamiltonian H(t) that can take energy from one initialized state, and transfer

it to another. Counter-diabatic driving [113], which assumes that the effective Hamiltonian is

Heff = H0 − λ̇Aλ (7.35)

adds a counter-driving term

HCD = λ̇Aλ (7.36)

so that the system evolves via a desiredH0. A closely related framework is transitionless quantum
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driving [114], which suggests that, given a Hamiltonian H0, there is a nearby Hamiltonian H′ for

which the transition amplitudes are exactly zero, in the adiabatic limit. The review paper [115]

expands on counter-diabatic driving: given a Hamiltonian H0(t), with approximate eigenstates∣∣∣ψ(0)
n (t)

〉
in the adiabatic limit, a HamiltonianH(t) is found that sets the approximate eigenstates∣∣∣ψ(0)

n (t)
〉

of H0(t) to be the exact eigenstates of H(t). This is achieved with the unitary operator

U(t) =
∑
n

eiξn(t)eiθn(t) |ψn(t)〉 〈ψn(0)| (7.37)

The time-evolution Hamiltonian H(t) = i~U̇(t)U†(t), which has the exact eigenstates |ψn(t)〉 is

H(t) = H0(t) +HCD(t) (7.38)

where

H0(t) =
∑
n

En(t) |ψn(t)〉 〈ψn(t)| (7.39a)

HCD(t) = i~
∑
n

[
|∂tψn(t)〉 〈ψn(t)| − 〈ψn(t)|∂tψn(t)〉 |ψn(t)〉 〈ψn(t)|

]
(7.39b)

By using Equation (7.24), we can cast HCD(t) as the easier-to-compute

HCD(t) = i~
∑
n

∑
m6=n

|ψm(t)〉 〈ψm(t)| ∂tH0(t) |ψn(t)〉 〈ψn(t)|
En(t)− Em(t)

(7.40)

Transitionless quantum driving and counter-diabatic driving fall under the umbrella of “shortcuts

to adiabaticity,” and are further discussed in [115]. Another perturbative method based on the

Magnus expansion is used to describe the evolution of systems that enclose an exceptional point;

this method enables non-reciprocal, topological energy transfer which is faster than an adiabatic

process [116].

7.2 Ringdown Train Electronics

In this section, we explore techniques to measure the geometric phase accumulated by a state

after a given dynamical loop. We wish to perform dynamical loops with essentially the same

experimental setup which obtains exceptional points (e.g., the setup described in Chapters 4 and

5, which obtains exceptional points in Chapter 6). We describe the electronics which apply the

dynamical loops in Section 7.2.1, and we describe the waveforms which encode the dynamical

loops into the control tones in Section 7.2.2.
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Figure 7.1: A ringdown train. The clock voltage is in the top row, the response voltage is in the
middle, and the response phase is in the bottom row.

Figure 7.2: The HP8642B signal generator used to generate control tones in the 2016 experiment
(used to generate the AM modulation in the probe in this experiment). AM and FM inputs are
on the left-hand side, and the output is on the right-hand side.

7.2.1 Modifications for Dynamics

In Chapter 5, we detailed the optical table (Section 5.1.1) and the electronic setup (Section

5.3) used in the main experiment. In this section, we describe the modifications made to the

electronic setup in order to enable dynamical loops. No changes were needed in the optical table.

We apply a ringdown train (Figure 7.1; c.f., Section 4.1.3) to the experiment by triggering the

drive with a square clock voltage. The gate voltage is sent to a voltage switch, with two inputs

V1 and V2. V1 is set to the HF2 drive (as in Section 5.3.1), and V2 is 50 Ω-terminated. When

the clock is low, the drive at a frequency ωAM is applied; when the clock is high, the gate cuts

off the drive, and allows the membrane motion to relax in a ringdown. For this experiment, the

clock will trigger a dynamical pulse in the function generators which supply the control tones.

This will create a dynamical loop in parameter space. We record both amplitude and phase

information for the response.

In the 2016 MIM experiment with dynamical loops [6] [33, Section 4.3], there was one control

tone, supplied by an HP8642B function generator (shown in Figure 7.2), which has two separate

AM and FM ports. The AM port modulates the control tone power, and the FM port modulates
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(a) (b)

Figure 7.3: The result of applying two trapezoids (a) and two sines (b) for AM and FM modu-
lation, via an external modulation input port and a variable RF attenuator, respectively. The
output waveform (green), is frequency-modulated from 200 kHz to 1.2 MHz. The amplitude is a
complicated function of the attenuator transfer function. The red waveform creates FM modu-
lation, and the yellow waveform creates AM modulation.

(a) (b)

Figure 7.4: The result (green) of applying a low voltage and a high voltage to the FM port
(both red). The low voltage (a) sets the frequency to 200 kHz, and the high voltage (b) sets the
frequency to 1.2 MHz. The yellow voltage is an AM input to the RF attenuator, and is held
constant for these traces.

the control tone frequency.

In the experiment in this thesis, we use three RigolDG4162 function generators to produce

three separate control tones. To perform dynamical loops, we could replace them with three

HP8642B function generators, and then use a Rigol function generator with two outputs to send

both an AM and an FM pulse. However, the HP8642B function generator is obsolete.2 Thus,

we instead work with the function generators that we have, and use other electronics techniques

to get a similar effect.

The three function generators which supply the three control tones (Section 5.3.2) each have

one external modulation input port, which accept input voltages from −5 V to 5 V. This port

can be used for AM or FM. However, to fully emulate the experiment in [6], we would need to

simultaneously amplitude- and frequency-modulate the control tones.

An approach that we tried out in order to achieve simultaneous AM and FM modulation

2A new model from Keysight that has two modulation external ports, the Keysight E8663D function generator,
goes for 42,500 USD on eBay, refurbished.
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Figure 7.5: The output of the variable RF attenuator (green), with a 200 Hz AM input (yellow),
and a 10 kHz RF tone (blue), when no DC block is applied to the output.

was to use a variable RF attenuator and a DC block (to remove a low-frequency component

from the modulation input) to attenuate the output voltage, and the external modulation input

to frequency-modulate. The variable RF attenuator and the FM port of a function generator

each receive an input from a function generator. Figure 7.3 shows the results of applying input

waveforms to the FM port and the variable RF attenuator.

Figure 7.3 shows that the amplitude of the output wave, when AM modulated with the

variable RF attenuator plus DC block, is a complicated function of the attenuator transfer

function. Additionally, Figure 7.3a shows burrs when the trapezoid switches from a flat voltage

to a ramping/falling voltage. The burrs do not appear in Figure 7.3b, but the output amplitude

still behaves surprisingly. More work would be needed to calibrate the shape of the output using

this method. The DC block is used to counter the addition of a frequency component by the AM

input, as shown in Figure 7.5; without the DC block, the output is a wave with an attenuated

amplitude, but the frequency components of both the RF tone and the AM input are present.

The output with only FM is shown in Figure 7.4. As expected, for a linear increase in voltage,

the frequency linearly increases from the low frequency to the high frequency, via the FM port.

A similar result is obtained by using the modulation port for AM instead of FM.

The techniques of this section can be used to simultaneously modulate the powers of any two

of the three tones in this experiment, using AM modulation on the inputs of two of the function

generators. This is sufficient to vary two out of the four parameters (δ, P1, P2, P3) . An applied

pulse could be one of the built-in functions, or an AWG or a burst pulse (produced as described

in Section 7.2.2). Simultaneous FM modulation of the three tones is possible as well, but this

does not produce control loops in this experiment, since the detuning δ is the only frequency

parameter of the four experimental knobs (δ, P1, P2, P3) . Thus, with this implementation, in this

experiment, there are only 3 feasible choices of two parameters to vary in a dynamical loop. For

the potential future experiment (Section 8.2), which would use two control laser tones 1 and 2,

with parameters (δ1, P1, δ2, P2), then either both of δ1, δ2 are varied, or P1, P2 are varied; this is
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(a) (b)

Figure 7.6: Arbitrary waveforms generated on a function generator. Green is an AM modulated
waveform, and yellow is the modulation input. a: a train of arbitrary waveforms. b: a pulsed
waveform. In both of these, the rise time is 250 µs, the fall time is 500µs, the high time is 500µs,
and the low time is 250µs.

only 2 out of 6 possible choices of two parameters. To vary another combination of parameters,

further work is needed to faithfully modulate both AM and FM with Rigol function generators

alone.

7.2.2 AWG and Burst

In principle, to vary the powers and detunings of the control tones, it is enough to have AM

and FM modulation. However, limiting our modulation tones to the built-in functions poses

two limitations to the dynamical loop experiment. The first is that, in the dynamical phase

experiment, we may desire more intricate dynamical loop geometries than the built-in functions

provide. The second is that, in order to have a desired output control loop waveform, we may

need to calibrate the modulation input so that the desired output is achieved (e.g., the nonlinear

variable RF attenuator output, shown in Figure 7.3). Thus, we require arbitrary waveform

generation (AWG) for our modulation tones.

In this section, we discuss how to write an arbitrary waveform with a Rigol function generator.

This is achieved with the two programmer interface commands VOLATILE and ARB. VOLATILE

sends a float array, with values from -1.0 to +1.0, to the volatile memory of the function

generator, and ARB specifies the sampling rate, amplitude, and offset of the waveform. An

example in Python is given3:

1 inst = load_function_generator_with_pyvisa ()

2 wave_arr = make_waveform_array ()

3

4 # write the array of floats to the volatile memory

3The slicing syntax, arr[i:-j], gets the entries in arr from i inclusive to j exclusive. We use the slice

str(list(wave_arr))[1:-1] in this code because str(list(wave_arr)) returns [a_0,a_1,...,a_n], and we must

remove the brackets from the str-representation, to get a_0,a_1,...,a_n, before sending it to the function

generator programmer interface.
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5 inst.write(f’SOUR{channel }:DATA VOLATILE , ’ + str(list(wave_arr))[1: -1])

6 # write the sampling rate , amplitude , and offset of the volatile -memory

waveform

7 inst.write(f’SOUR{channel }:APPL:ARB {sampling_rate },{amplitude},{offset}’)

Listing 7.1: AWG Example

It is very important to note that the sampling rate is not the frequency of the waveform. Instead,

if the period of the waveform is T , and the length of the array is L, then the sampling time is

st = T/L, and the sampling rate is

sr = 1/st = L/T (7.41)

The amplitude and the offset have the usual units of volts. For the Rigol DG1022z function

generator used in this test, the voltages range from −5 V to 5 V.

For example, to make a trapezoidal waveform with an arbitrary rising time t_rise, falling

time t_fall, high time t_high, and low time t_low, as well as a desired time offset t_offset,

number of array points4 num_points, low voltage low, and high voltage high, one can write a

method to make a float array, trap_arr, which specifies the trapezoid as a series of float values

from -1.0 to +1.0, send trap_arr to the VOLATILE command, and then send the amplitude,

offset, and sampling rate via the ARB command:

1 import numpy as np

2 inst = load_function_generator_with_pyvisa ()

3

4 def make_trapezoid(t,low ,high ,t_rise ,t_fall ,t_low ,t_high):

5 t1 = t_rise

6 t2 = t1 + t_high

7 t3 = t2 + t_fall

8 t4 = t3 + t_low

9 t = (t-t_offset) % t4

10 if 0 <= t < t1:

11 return +2.0/ t1*t-1

12 elif t1 <= t < t2:

13 return +1.0

14 elif t2 <= t < t3:

15 return -2.0/(t3 -t2)*(t-t2)+1

16 elif t3 <= t <= t4:

17 return -1.0

18 make_trapezoid_vec = np.vectorize(make_trapezoid) # this lets make_trapezoid

iterate over the list of times ts

4The maximum number of points on the Rigol DG1022z is 4096.
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Figure 7.7: Two burst-mode ellipsoids applied via a function generator, which is calibrated to
create a sine wave in the control tone power. The clock is in purple, and the two function
generator outputs are blue and yellow.

19 ts = np.linspace(0, period , num_points)

20 trap_arr = make_trapezoid_vec(ts,low ,high ,t_rise ,t_fall ,t_low ,t_high)

21

22 amplitude = high -low

23 offset = (high+low)/2

24 period = float(t_rise+t_fall+t_low+t_high)

25 sampling_rate = num_points / period

26

27 inst.write(f’SOUR{channel }:DATA VOLATILE , ’ + str(list(trap_arr))[1: -1])

28 inst.write(f’SOUR{channel }:APPL:ARB {sampling_rate },{amplitude},{offset}’)

Listing 7.2: AWG Trapezoid Example

An example output of this code is shown in Figure 7.6a. One could use essentially the same code

as above, replacing the make_trapezoid method with a more complicated waveform function.

The code in Listing 7.2 does not take into account the calibration setting of the nominal

function generator voltage and the realized control tone power; this relationship is quadratic

(Section 5.3.3). This calibration should be taken into account if one wishes to faithfully represent

the desired waveform in the space of control tone powers. An example of an ellipsoid waveform,

which takes the calibration into account to produce a sine wave in control power, is shown in

Figure 7.7.

A useful feature for applying dynamical loops is to apply loops as pulses at preprogrammed

times. This is easily accomplished with a gate voltage signal, such as a square wave (as mentioned

in Section 7.2.1). The high voltage of the clock, which shuts off the mechanical drive, can also

be used as an external trigger on the function generator. The external trigger input directs the

function generator to output a single burst waveform (e.g., Figure 7.6b, Figure 7.7). Thus, we

can use the clock to trigger two burst modulation waveforms from one function generator with

two outputs (to keep the waveforms synced to one another), and realize dynamical loops with

this, and have these two modulation waveforms create AM and FM modulation on the control

tone function generators.
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7.3 Complex Ringdown Trains

7.3.1 Complex Ringdown Response

In this section, we describe the response of the membrane to a ringdown measurement. Recall

that the equation of motion for a driven harmonic oscillator of mass m, frequency ωm, and

damping γm, is (from Equation (3.3))

ẍ+ ω2
mx+ γmẋ = F (t)/m (7.42)

If the force F (t)/m is a drive at a frequency ωd, where ωd ≈ ωm, then F (t) = mf0e
iωdt, and the

response is (c.f., Section 3.2):

xdriven(t) ≈ f0√
4ω2

m(ωd − ωm)2 + γ2ω2
m

eiωdt+iθ

θ = arctan

(
γ/2

ωm − ωd

)
≈ π

2
· sgn(ωm − ωd)−

ωm − ωd
γ/2

(7.43)

Thus, the motion oscillates at ωd as well, and the amplitude peaks exactly at ωd = ωm. When the

motion xdriven(t) is read by a lock-in amplifier at frequency ωread (see Section 5.3.1), xdriven(t)

is demodulated by the sinusoid e−iωreadt, so the voltage Vdriven[ωread](t) is proportional to:

Vdriven[ωread](t) ∝ xdriven(t)e−iωreadt

=
f0√

4ω2
m(ωd − ωm)2 + γ2ω2

m

ei(ωd−ωread)t+iθ
(7.44)

When the drive is turned off at time t = 0, then the equation of motion becomes the undamped

equation

ẍ+ ω2
mx+ γmẋ = 0 (7.45)

The solutions to this equation have the form

xdecay(t) = A[ωd]e
iωmt−γt/2 +B[ωd]e

−iωmt−γt/2 (7.46)

where A[ωd] and B[ωd] are specified by the time conditions xdecay(0) = xdriven(0) and ẋdecay(0) =

ẋdriven(0). For ωd ≈ ωm, then

A[ωd] ≈
f0√

4ω2
m(ωd − ωm)2 + γ2ω2

m

eiθ

B[ωd] ≈ A[ωd](ωd − ωm)/2ωm

(7.47)
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Note that the undamped oscillator solution, Equation (7.46), with |A[ωd]| � |B[ωd]| since ωd ≈

ωm, oscillates at frequency ωm, even though ωd is not necessarily exactly equal to ωm; the

difference determines the amplitude of A and B in Equations (7.47).

We can read the motion of xdecay(t) (Equation (7.46)) at a frequency ωread by demodulating

xdecay(t) by the sinusoid e−iωreadt (as is done by the lock-in amplifier; see Section 5.3.1). This

renders the measured voltage V [ωread](t) as

V [ωread](t) ∝ xdecay(t)e−iωreadt

= A[ωd]e
i(ωm−ωread)t−γt/2

(7.48)

Thus, when the drive is turned off, the amplitude of V [ωread](t) is exponentially decaying, with

rate γ/2, and the phase is changing at the rate ωm − ωread. This rate is dependent not on the

drive frequency ωd, but on the mode frequency ωm and on the reading frequency ωread; if the

rate is zero, then ωread = ωm exactly. Thus, driving the membrane near ωm, sweeping ωread in

the vicinity of ωm, and measuring the phase response of the ringdown measurements is one way

to measure the mode frequency ωm.

Figure 7.8 shows a series of ringdowns of a mechanical mode. The norm of the signal rises

to a high value when the drive is turned on, and decays exponentially with rate γ/2 when the

drive is cut off.5 The phase changes linearly when the drive is cut off, with rate ωm −ωread. On

the other hand, when the drive is still being applied, the phase rate of change is ωd − ωread (as

in Equation (7.44)); in the measurement in Figure 7.8, ωread = ωd, so the phase is constant on

the ringups (though, as in the next paragraph, this need not be true).

In this section, we distinguish between ωd and ωread because, in dynamical loops, we wish to

initialize one mode ω1 by driving at ωd ≈ ω1, and use dynamical loops to transfer the energy to

ω2. Thus, we read at frequency ωread ≈ ω2. This is done after control tones have already been

applied to bring the system modes to the desired initial values.

7.3.2 Complex-Averaged Ringdowns

A standard method of improving the signal-to-noise ratio is to take the average over many

datasets (for these ringdowns, 100 datasets or more). For a ringdown measurement in which

we are only interested in the decay rate γ, we can take the norms of the complex signals Vk(t),

5The amplitude actually decays as
√
a2e−γt + b2 [64]. For a small background b, and at early times t, the

amplitude decays approximately as ae−γt/2 + b.
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(a)

(b) (c)

Figure 7.8: A series of ringdown measurements of the ωd/2π = 705 kHz mode. The ringdowns
are shown in (a), and they are averaged in (b) and (c). The top row of (a) shows the clock, the
middle row shows the norm, and the bottom row shows the phase. (b) shows a fit of the average
norm to an exponential decay, and (c) shows a linear fit of the average phase.
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(a) (b)

(c)

Figure 7.9: A ringdown train measurement of 100 ringdowns, in which the drive is at ωd/2π =
705 kHz, and read-out frequency is ωread/2π = 352 kHz. a: seven of the ringdowns are shown.
The ringup period is T = 1.7 s. Top row is the clock, middle row is the response amplitude, and
bottom row is the response phase. b: one individual driving interval. Note that the response
phase is shifted by the drive. c: the complex average (Equation (7.50)).

k = 1, 2, . . . , n, and then take an average

a(t) =
1

n

n∑
k=1

|Vk(t)| (7.49)

This can be done with ringdown measurements done in Section 4.1.3.

In the 2016 nearly-degenerate-mode paper [6], the averaging in Equation (7.49) was used to

determine that an eigenmode had been populated by a dynamical loop, after a different mode

had been initialized. In the future MIM dynamics experiments, we also wish to investigate

geometric phase. Thus, Equation (7.49) is insufficient. We instead use an average

c(t) =
1

n

n∑
k=1

Vk(t) (7.50)

However, if we naively apply Equation (7.50), then we can get an incorrect average. For instance,

in Figure 7.9, we take a ringdown train of 100 ringdowns (seven are shown in 7.9a), and directly

take the complex average of these ringdowns. Even when we are careful to separate the individual
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(a) (b)

Figure 7.10: Driven motion of mechanical mode 3 (ωd/2π = 705 kHz), while reading mode 1
(ωread/2π = 352 kHz), with control tones applied, so that motion at mode 3 drives mode 1 (as
in Sections 3.6 and 5.3.2). a: the clock is high in the top row, the amplitude of the response is
in the middle row, and the phase is shown in the bottom row. b: a linear fit of θ/(2π) = ∆f × t.
∆f = 19.318 Hz is extracted.

ringdown measurements such that they start at the same peak amplitude, the complex traces

destructively interfere: despite that the individual ringdowns have initial amplitudes of 1 mV,

their complex average has an initial amplitude of 0.01 mV (Figure 7.9c). This is caused by

destructive interference from the individual traces: each trace starts at a phase value, because

the ringup portion of the ringdown train adds a different phase offset θk, k = 1, . . . , n, to each

individual ringdown. This is shown in Figure 7.9b, where the red circles indicate that the ringup

has shifted the phase. When the traces are averaged in the complex plane, the different θk

phase-offset values cause destructive interference; this prevents us from smoothing out noise in

the norm and phase. Hence, we must be careful how we handle the phase introduced by the

ringup portions of the ringdown train when we take a complex average over n ringdowns.

An approach to handle the phase-offsets θk introduced by the ringup portions of the ringdown

train is to ensure that θk is the same for each ringdown k = 1, . . . , n. This can be done with a

calibration of the ringup time T , by looking at the phase roll in the driven measurement (e.g.,

Figure 7.10). For a given driving frequency ωd and lock-in readout frequency ωread, the rate of

change of the phase of the driven response is

∆f = (ωread − ωd)/2π. (7.51)

Recall that ∆f = 19.318 Hz in Figure 7.10 makes sense, despite that ωd/2π = 705 kHz and

ωread/2π = 352.3 kHz, since in the time-independent Floquet frame which the control tones

introduce, the Floquet modes are split by an order of 100 Hz (Section 3.6). We can relate ∆f to

the phase change ∆θ via

∆θ/2π = ∆f × T (7.52)
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(a) (b)

(c)

Figure 7.11: A ringdown train of 100 ringdowns, with the ringup time Tm = 1.6565 s (satisfying
Equation (7.53)), which drives at ωd/2π = 705 kHz and reads at ωread/2π = 352.3 kHz. a: four
of the 100 ringdowns. b: the complex average (Equation (7.50)). c: zoom-in of four averages
over four 100-ringdown measurements.

We desire the ringup to not add a phase offset to each ringdown measurement. This can be

ensured by setting ∆θ = 2πm, m ∈ Z+, which yields a ringup duration Tm:

Tm =
m

∆f
, m ∈ Z+ (7.53)

Hence, we can pick a Tm which satisfies this condition, and is close to the duration we want.

For instance, we can set the ringup period in the measurement of Figure 7.9 from T = 1.7 s to

Tm = 1.6565 s, for m = 32. We also set the ringdown time to equal the ringup time.

Having chosen a ringup time Tm which satisfies Equation (7.53), we can do ringdown trains

of 100 ringdowns (Figure 7.11), and then take the complex average (Equation (7.50)). The

individual ringdowns have initial amplitudes of ∼ 1.2 V. The average has an initial amplitude

of 1.25 V, and is a much smoother curve than in Figure 7.9. Similarly, the phase is smooth (at

least while the Brownian motion is still decaying). In Figure 7.11c, we do four 100-ringdown
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trains, to show reproducibility. The result is four decays which have amplitudes comparable to

the individual ringdowns in their corresponding datasets, and four smooth phase curves (with

initial phase offsets determined by the overall start time of each ringdown train). The fact that

the phase curves have been smoothed so well by this procedure provides an avenue to investigate

the Berry phase associated with a dynamical loop.

7.4 Sample Dynamical Loop

To test out the electronic configuration for dynamics, we use a loop that we estimate will take

an excitation from ω3/2π = 705 kHz to ω1/2π = 352.3 kHz. We execute a loop that sweeps a

rectangular loop in P1 and P2. P3 = 79.84 µW and δ/2π = 105.6 kHz are fixed. P1 and P2 are

swept in a rectangular loop from

P1,low = 4.94 µW

P1,high = 119.86 µW

P2,low = 317.5µW

P2,high = 674.6 µW

(7.54)

The rectangular loop runs T = 17 ms, and spends T/4 = 4.25 ms on each rectangular edge. The

loop runs counterclockwise in (P1, P2) space, i.e.,

P1(t) =



P1,low + (P1,high − P1,low)t/(T/4), 0 ≤ t < T/4

P1,high, T/4 ≤ t < T/2

P1,high + (P1,low − P1,high)(t− T/2)/(T/4), T/2 ≤ t < 3T/4

P1,low, 3T/4 ≤ t < T

(7.55)

P2(t) =



P2,low, 0 ≤ t < T/4

P2,low + (P2,high − P2,low)(t− T/4)/(T/4), T/4 ≤ t < T/2

P2,high, T/2 ≤ t < 3T/4

P2,high + (P2,low − P2,high)(t− 3T/4)/(T/4), 3T/4 ≤ t < T

(7.56)

With this loop, we drive the ω3/2π = 705 kHz, and read the membrane motion at the three

modes. Figure 7.12 shows ringdowns of these modes, in which the mode is driven, then the loop

is either executed or not executed when the drive is cut off, and the signal is allowed to ring

down. For this loop, the main feature is the peak introduced by the loop at the 352.3 kHz mode.

Figure 7.13 shows this peak, with the complex average taken over 100 ringdowns (Equation
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(a) (b)

(c)

Figure 7.12: The response of a ringdown train in which the 705 kHz mode is driven, and the
membrane amplitude of motion is read at each of the frequencies. Blue shows the ringdowns
when the control loop is not applied, and orange shows the ringdowns when the control loop is
applied.

Figure 7.13: Complex averages of 100-ringdown ringdown trains, in which either the control loop
is executed or not executed. The 705 kHz mode is driven, and the motion is read at 352.3 kHz.
The plots show amplitude and phase.
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(7.50)). The other striking feature is the phase change: the phase changes with a positive slope,

for the ringdowns without the loop, and the phase is constant after the loop is completed (at

T = 17 ms on the time-axis of Figure 7.13). The phase plot difference is consistent with placing

energy in the 352.3 kHz mode, since the ringdown phase changes as ωread − ωm; the mode with

the most energy dominates the phase, and the flat phase change indicates that energy is moved

to the 352.3 kHz mode.
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Chapter 8

Conclusion and Outlook

8.1 Summary

We designed a three-mode system of coupled damped harmonic oscillators in which we possess full

control of the eigenvalue spectrum (Section 2.5). The particular system was an optomechanical

setup which used three laser tones to address three mechanical modes of a Si3N4 membrane

(Section 3.6). With four linearly parameters – the three laser powers and one common detuning

(Chapter 5) – we reached any arbitrary point in the 3-mode eigenvalue control space. This was

quantified by fitting nine Lorentzians and extracting eigenvalues from their center frequencies

and linewidths (Section 6.1). We used an optomechanical model to predict the system’s complex

eigenvalues at any choice of three powers and one detuning (Section 3.6), and found excellent

agreement between the measured and predicted eigenvalues.

In this three-mode system, we brought the system near its EP3 point (Section 6.2). This was

quantified both by measuring pairwise eigenvalue differences, as well as by measuring a topo-

logical invariant from a surface enclosing the EP3 point. Then, in a neighborhood surrounding

this EP3 point, we measured EP2 points (Sections 6.3 and 6.4), and found that they trace out a

trefoil knot (Section 6.5), in agreement with established algebraic geometry [9].

Finally, we executed closed loops (Section 6.6) in the eigenvalue control space near, but

excluding, the EP2 degeneracies (Section 2.3), and found that this space realizes eigenvalue

braids over the system’s three eigenvalues (Section 2.5.4). We demonstrated that the isotopy

class of these braids (demarcated by whether we can continuously morph one braid into another

without moving the basepoints or shifting the strands through each other) is determined by the

control loop homotopy class (demarcated by whether a loop can be continuously morphed into

another without passing through the EP2 trefoil knot (Section 2.5.2)). We then showed that

we could form any element of the braid group B3 by concatenating any of the generator loops
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together (Section 2.5.4), and observed that the loop concatenation is noncommutative.

8.2 Outlook

Having observed striking features of n-mode non-Hermitian systems in our optomechanical sys-

tem, we hope to expand our work on non-Hermitian optomechanical platforms. Since completing

the work discussed in this dissertation and in [1], the MIM experiment has moved from Sloane

Physics Laboratory to Yale Science Building. Thus, a new MIM setup is being developed, as of

the writing of this thesis. Features of this new setup may include:

� A Faster, Room-Temperature Apparatus: The final data which was obtained for the

EP2 knot (Section 6.5) in this dissertation and in the paper [1] was obtained over several

months.1 For future experiments with a similar setup to the one described in Chapter

4 and Chapter 5, we can instead use a cavity with a shorter length, and hence a larger

linewidth, to make much faster measurements (say, to measure an entire EP2 trefoil knot in

a day or so). There is no requirement for the work in this dissertation to use a cold-cavity,

as that is a relic of the ground-state cooling experiment [76], so the new setup can instead

be at room-temperature.

� The Nearly Triply-Degenerate Modes: In the setup discussed in this dissertation,

the membrane was aligned in the cavity in such a way that it was difficult to measure the

motion of the nearly-degenerate (7,1), (5,5), and (1,7) modes, in comparison to the (1,1),

(2,1), and (2,2) modes which were used in this thesis. If the membrane (or the membrane

mirror) is aligned such that the nearly triply-degenerate modes are most strongly coupled

to the cavity (see [64] for more details on this), future experiments with a three-mode

system can use these modes instead.

� Simplified 3-Mode Coupling: Another issue with using the nearly-degenerate (7,1),

(5,5), and (1,7) modes in the previous MIM setup is that, if we attempt to separately

control the three modes with three laser tones, the three laser tones do not address the

modes in a linearly independent way, since they couple to the same cavity mode. Thus, we

were required to use the Floquet coupling (Sections 3.5.2 and 3.6) to couple three modes.

If we instead have three laser tones resonant with three separate cavity modes, then the

power and detuning of each of the three laser will provide six control knobs that span the

four-dimensional eigenvalue control space. The modes would then couple pairwise via the

interaction described in Section 3.5.1.

1This set of data was the third complete EP2 dataset.
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This simplified setup provides an avenue toward

� Control of the Entire Degenerate Subspace: In the experiment described in this

thesis, while we did possess arbitrary control of the eigenvalue control space, we did not

possess arbitrary control over the eigenmode control space. With three lasers coupled

to three separate cavity modes, we can use a number of tones to address the eigenmode

components in a linearly independent manner.

� Measurement of Berry Phase: When one eigenmode is initialized with some energy,

dynamical loops near exceptional points in the MIM experiment have been shown to trans-

fer energy from one eigenmode to another [6] [31]. The heterodyne measurement process,

which is the same one described in Section 5.3.1, measures the real and imaginary quadra-

tures with sufficient precision that the phase of the complex amplitude of the mode can

also be measured. We hope to use this to measure the Berry phase associated with control

loops in the nondegenerate control space in future experiments.

� Topological Energy Transfer in 3-Mode System: A natural question to ask is how

the eigenvalue braids in the three-mode system relate to dynamical energy transfer around

dynamic loops near the EP2 knot. The new experiment, with its improved speed at mea-

suring the EP2 knot, can then initialize one eigenmode, and then perform dynamical loops

around the knot (c.f., [34]).

� Reciprocal Energy Transfer: The adiabatic theorem does not hold for non-Hermitian

systems [108]; it is not true, in general, that if an eigenmode is initialized and a dynamical

loop is performed, energy will transfer into another eigenmode. This is because, in order

for energy to transfer, the state must start in the high-gain mode, and it cannot spend too

much of the loop in the high-loss mode before the end of the loop [33, Appendix A] [108].

By pumping the modes with an applied laser, we might bypass this restriction (which was

encountered in the previous MIM experiment on topological energy transfer [6]), by forcing

a mode of choice to be a high-gain mode for a sufficient duration of an adiabatic loop [117],

before ending the loop in a different mode [118].

As the list above exposits, experimental exploration of non-Hermitian physics continues to be

a very active field. Non-Hermitian systems may play a key role in sensing, energy transfer, and

topological quantum computation. I hope that this dissertation has provided a helpful introduc-

tion to spectral flow in non-Hermitian systems, and has further motivated optomechanics as a

productive platform to develop the theory of non-Hermitian physics into practical experiments.
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Appendix A

Derivation: Dropping the

Counter-Rotating Term in the

High-Q Limit

In Section 3.2.2, in reaching Equation (3.17), we did not make any use of the high-Q assumption.

In this appendix, we do use this assumption, in order to drop the c∗[ω] term and arrive at

Equation (3.19)

This derivation is accomplished by taking Equation (3.17) into the Fourier domain:

− iωc[ω] = −iωmc−
γm
2

(
c[ω]− c∗[ω]

)
+ cin[ω] (A.1)

We note two properties of Equation (A.1) that will be important in this argument. First, that,

per the definition of the Fourier transform in Equation (3.4), c[ω] is the component of c(t) that

rotates at frequency +ω. Second, that c∗[ω] is the Fourier transform of c∗(t). We write this

explicitly:

c∗[ω] =

∫ ∞
−∞

c∗(t)eiωt =

(∫ ∞
−∞

c(t)e−iωtdt

)∗
(A.2)

We point out from Equation (A.2) that c∗[ω] is the component of c(t) that rotates at −ω (or,

rather, it is the complex conjugate of this component of c(t)). We also point out that c∗[ω]

(Equation A.2) is not the same thing as the complex conjugate of c[ω], which is given by

(
c[ω]

)∗
=

(∫ ∞
−∞

c(t)eiωtdt

)∗
=

∫ ∞
−∞

c∗(t)e−iωtdt (A.3)
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Figure A.1: The magnitude of the mechanical transfer function of a mechanical oscillator at
various Q. The y-axis is made dimensionless by dividing by the approximate maximum values
at resonance, Q/(mω2

m). This also puts the curves on the same scale to aid in the visual
comparison across different Q values. We see that, even at modest Q, that the response peaks
very sharply at ω near ω = ±ωm.

We can recast Equation (A.1) in terms of the mechanical transfer function (Equation (3.10)):

c[ω] = −2imωmχx[ω]
(γm

2
c∗[ω] + cin[ω]

)
(A.4)

Now, we consider the modulus of Equation (3.9). This modulus is

∣∣χx[ω]
∣∣ =

1/m√
(ω2
m − ω2)2 + (γmω)2

(A.5)

The critical points of
∣∣χx[ω]

∣∣ are at ω = 0 and ω = ±
√
ω2
m − γ2

m/2 = ±ωm
√

1− 1/2Q2. The

values of
∣∣χx[ω]

∣∣ are 1/(mω2
m) and Q/(mω2

m)/
√

1− 1/(4Q2), respectively. If Q > 1, then |χx|

has a local minimum at ω = 0, and the other two critical points are maxima. If Q is very large,

then the maximum values are very large, at Q/(mω2
m), to first order in Q. Furthermore, the

maxima are located at ω ≈ ±ωm(1 − 1/(4Q2)) ≈ ±ωm. This behavior is shown in Figure A.1,

where we have plotted the exact mechanical transfer function (Equation (3.9)) at various values

of Q. As claimed, these susceptibilities peak close to ±ωm, get asymptotically closer to ±ωm

as Q asymptotes, and the peaks get narrower as Q increases, in agreement with these analytic

results.

To find the bandwidth of this high-Q resonator, we seek the full width at half maximum

(FWHM), so we need the ω at which |χx[ω]| reaches Q/(2mω2
m). Doing this algebra, one finds
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that this occurs at

ωhm = ±

√
−γ

2
m

2
+ ω2

m ±
√

3

2

√
−γ4

m + 4γ2
mω

2
m

≈ ±γm
2
± ωm

(
1− 1

8Q2

)
≈ ±γm

2
± ωm = ±ωm

(
1± Q

2

) (A.6)

Thus, the FWHM is γm = ωm/Q, for very large Q.

The takeaway from this argument is that, for very large Q, the mechanical transfer function

χx[ω] peaks in its magnitude at ω = ±ωm, and the FWHM around these maxima is γm. But

since Q = ωm/γm is very large, then these peaks are very narrow over the spectral range of

χx[ω]. Thus, for a drive cin[ω] at some frequency ω in Equation (A.4), χx[ω] is appreciable only

when ωm − γm/2 < ω < ωm + γm/2 or when −ωm − γm/2 < ω < −ωm + γm/2. Now, if the

driving ω is nearly ωm, then c[ω] will also peak sharply around ωm − γm/2 < ω < ωm + γm/2.

Then, c[ω] will not contain a component around −ωm − γm/2 < ω < −ωm + γm/2, so, per the

definition of c∗[ω] in Equation (A.2) and the discussion following it, c∗[ω] is negligible, and can

thus be dropped from Equation A.4, and then immediately in Equation (A.1). We then inverse

Fourier transform back to the time domain and end with Equation (3.19), as claimed.
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Appendix B

Rectangular Membrane

Frequency Derivation

In this appendix, we derive the expression for the (angular) mechanical mode frequencies of a

rectangular membrane of length Lx and width Ly. These frequencies ωm,n are indexed by integer

indices m,n ≥ 1:

ωm,n = ω1,1

√
(m/Lx)2 + (n/Ly)2

(1/Lx)2 + (1/Ly)2
(B.1)

where ω1,1 is the fundamental mode frequency.

To derive (B.1), we consider a boundary value problem (BVP) over the region in Figure B.1,

governed by the wave equation

∂2
t u(x, y, t) = c2

(
∂2
xu(x, y, t) + ∂2

yu(x, y, t)
)
, (B.2)

and subject to the boundary condition

u|∂D = 0, (B.3)

Figure B.1: A rectangular membrane with length Lx and width Ly.
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or, equivalently,

u(0, y, t) = u(Lx, y, t) = 0; u(x, 0, t) = u(x, Ly, t) = 0, ∀x ∈ [0, Lx],∀y ∈ [0, Ly] (B.4)

To solve this BVP, we can seek separable solutions u(x, y, t) which can be written as

u(x, y, t) = f(x, y)φ(t) (B.5)

Now, plug Equation B.5 into Equation B.2:

φ′′f = c2φ
(
∂2
xf + ∂2

yf
)

(B.6)

We can then divide both sides of (B.6) by c2u(x, y, t) = c2f(x, y)φ(t):

1

c2
φ′′(t)

φ(t)
=
∂2
xf(x, y) + ∂2

yf(x, y)

f(x, y)
(B.7)

Now, the left-hand side of (B.7) is independent of x and y, while the right-hand side of (B.7) is

independent of t. Thus, (B.7) must be a constant in all three of x, y, t, so it can be written as

1

c2
φ′′(t)

φ(t)
=
∂2
xf(x, y) + ∂2

yf(x, y)

f(x, y)
= −k2 (B.8)

for some constant k. Thus, the left-hand side of (B.8) is the temporal part of the BVP, and the

right-hand side is the spatial part. The right-hand side is also known as the Helmholtz equation

(∇2f)/f = −k2, where k is called the wavenumber. We handle the spatial part first, since the

boundary conditions are specified in Equation B.4.

To solve the spatial part of the BVP, we can further separate f(x, y) into a product:

f(x, y) = G(x)H(y) (B.9)

Then the right-hand side of (B.8) can be written as

G′′/G+H ′′/H = −k2 (B.10)

By subtracting H ′′/H from both sides of (B.10), we get

G′′(x)/G(x) = −k2 −H ′′(y)/H(y) (B.11)

Once again, the left-hand and the right-hand sides of (B.11) are independent of each other, so
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(B.11) must be equal to a constant, i.e.

G′′(x)/G(x) = −k2 −H ′′(y)/H(y) = −k2
x (B.12)

Now that we have two ordinary differential equations in (B.12), we can write a solution for

G(x):

G(x) = Aeikxx +Be−ikxx (B.13)

From the boundary conditions in Equation B.4, we have G(0) = 0 and G(Lx) = 0. From

G(0) = 0, we get

A+B = 0 (B.14)

From G(Lx) = 0, we get

A
(
eikxLx − e−ikxLx

)
= 2iA sin(kxLx) = 0 (B.15)

This holds if either A = 0, which is a trivial solution, or if

kx = mπ/Lx, m ∈ Z+ (B.16)

Thus, we have solutions

Gm(x) = 2iAm sin(mπx/Lx), m ∈ Z+ . (B.17)

Similarly to the solution for G(x), we can subtract G′′/G from (B.10):

H ′′(y)/H(y) = −k2 −G′′(x)/G(x) = −k2
y (B.18)

Applying the boundary conditions in Equation B.4, we then get

ky = nπ/Ly, n ∈ Z+ (B.19)

and solutions

Hn(y) = 2iBn sin(nπy/Ly), n ∈ Z+ . (B.20)

Then, putting these into Equation B.9, and absorbing the constants into Am,n = (2iAm)(2iBn),

we get solutions of the Helmholtz equation BVP:

fm,n(x, y) = Am,n sin(mπx/Lx) sin(nπy/Ly) (B.21)
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To get the time-dependent behavior, and the wave frequency, we plug Equation B.21 into

Equation B.8:

1

c2
φ′′(t)

φ(t)
= −π2

(
(m/Lx)2 + (n/Ly)2

)
= −k2 (B.22)

This lets us index the values of k for which separable solutions to the wave equation exist by

m,n:

km,n = π
√

(m/Lx)2 + (n/Ly)2 (B.23)

Furthermore, we can write the corresponding solutions φm,n(t):

φm,n(t) = Cm,ne
+ickm,nt +Dm,ne

−ickm,nt

= Cm,ne
+iωm,nt +Dm,ne

−iωm,nt
(B.24)

where the (m,n)-th (angular) mode frequency is given by

ωm,n = cπ
√

(m/Lx)2 + (n/Ly)2 (B.25)

In particular, the fundamental mode frequency is

ω1,1 = cπ
√

(1/Lx)2 + (1/Ly)2 (B.26)

so we can recast the (m,n)-th mode frequency in terms of the fundamendal mode frequency to

obtain Equation B.1.

We remark that a special case of Equation B.1 is the square membrane, where Lx = Ly = L.

Then Equation B.1 becomes

ωm,n = ω1,1

√
m2 + n2

2
. (B.27)

We also remark that, in order to obtain Equation B.1, no assumptions were made on the time-

dependent behavior of this problem, aside from the wave-equation (B.2). The solutions of

φm,n(t) could be found with additional assumptions on the problem (e.g. in the case of an

initial-value problem, in which u(x, y, 0) = v(x, y), for some spatial function v(x, y)). We have

merely found the frequencies of the standing wave solutions of the BVP that the rectangular

vibrating membrane determines.
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Appendix C

Optomechanical Measurements

C.1 Extracting Optomechanical Coupling Constants

A central aspect of using the optomechanical interaction throughout this work is the measure-

ment of optomechanical coupling constants (denoted in this thesis as g0, or simply g).1 In this

section, we show measurements to extract these g values.

In Figure C.1, we drive the 705 kHz mode, apply a control laser tone of ∼ 100 µW, and sweep

its detuning ∆ from the cavity mode (see Section 5.3 for details on the electronic configuration).

We then perform spectroscopy using the lock-in amplifier response (c.f., Section 6.1), and fit the

data to a single Lorentzian (Figure C.2):

f(∆) =
seiφ

∆− (ωm − 1
2 iγm)

+ bR + ibI (C.1)

where the mode frequency and damping are ωm and γm, the complex amplitude is seiφ, and the

complex background is bR + ibI.

We perform Lorentzian fits (Figure C.2) for multiple values of ∆, and plot the extracted ω(∆)

and γ(∆) to get Figure C.1. We then fit this curve to the predicted form of the optomechanical

spring and damping (Equations (3.149)) (as described in Section 3.4) to extract the values of

g, ω
(0)
m , γ

(0)
m for this mode. We also extract κ from this fit, and allow for an offset ∆0 in the

frequency axis. The value of κin is not determined from this measurement, since g shows up in

1The convention in the Aspelmeyer review [52] is to use g0 as the single-photon optomechanical coupling

strength, and g as the light-enhanced optomechanical coupling strength: g =
√
ncav g0. In this work, g0 and g

are inferred from laser powers via measurements at photodiodes which are separated from the cavity by multiple

fibers. This introduces losses which change the effective g0 values: g0 can be measured at ∼ 3 Hz before the probe

and control lasers are combined, where the value at the cavity is ∼ 0.3 Hz. This distinction is irrelevant to this

experiment, so we use the g0 values at the photodiode before the lasers are combined. Hence, it is unimportant

whether we denote the optomechanical constants as g0 or g in this work.
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Figure C.1: A fit of the mechanical frequency and damping versus the control laser detuning,
to determine the optomechanical coupling constant. The extracted g is g = 0.320(1) Hz, the

extracted ω
(0)
m /2π = 704 793.78(5) Hz, the extracted γ

(0)
m is γ

(0)
m /2π = 0.85(4) Hz, the extracted

∆0 is ∆0/2π = −1700(400) Hz, the extracted κ is κ/2π = 189 700(1400) Hz. The value of κin is
fixed at κin/2π = 48 kHz.

Figure C.2: A fit of the driven response to a single Lorentzian. The upper-left is the absolute
value of the response, the lower-left is the quadratures of the response, and the right is the
response in the complex plane. Dots are data, and lines are fits.
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Figure C.3: A three-tone g measurement, with common κ and ∆0 values, for the three modes
in this experiment.

Equation (3.149) as g2κin, so we must fix κin (or the ratio κin/κ). We fix κ/κin = 0.267. This

lets us measure g, ω
(0)
m , and κ.2

The measurement of ∆0 is important, because this offset should be minimized before per-

forming the main measurements in this thesis (described in Section 5.4). This is done by adding

∆0 to the control laser frequency offset from the probe laser (Section 5.2.2).

We can measure the values of g for each of the three modes (ω
(0)
1 /2π ≈ 352.3 kHz, ω

(0)
2 /2π ≈

557.2 kHz, and ω
(0)
3 /2π ≈ 705 kHz) with three separate measurements (each similar to the ones

shown in Figures C.1 and C.2). We can also perform a three-tone fit of the three mode frequencies

and dampings (Figure C.3), with a common κ and a common frequency-axis offset ∆0. This

vector-valued fit function yields the bare λ(0) = (λ
(0)
1 , λ

(0)
2 , λ

(0)
3 ) and g = (g1, g2, g3) values used

in this experiment:

λ(0) =
(
(352 243.3− 2.2i) Hz±0.1 Hz, (557 216.8− 1.9i) Hz±0.1 Hz, (704 836.7− 1.8i) Hz±0.1 Hz

)
(C.2a)

g =
(
0.198 Hz±0.1 Hz, 0.304 Hz±0.1 Hz, 0.300 Hz±0.1 Hz

)
(C.2b)

∆0/2π is . 5 kHz, since it is calibrated out with the 1-tone g measurement (κ is also extracted,

but it is measured with a “global” fit over the measured EP2 points instead, as described in the

next paragraph).

A “global” fit for the g and κ values can be done over the measured EP2 points (Chapter

6). Let the measured EP2 point parameters be Ψk,expt
EP2 , and indexed by k. Let the theoretically

obtained values of the parameters at a given g and κ be Ψk,theory
EP2 (g, κ), via the model given

2γ
(0)
m is also a fit parameter. However, since the optomechanically shifted damping is much larger than the

bare damping, this measurement does not resolve γ
(0)
m well. γ

(0)
m can be determined from ringdown measurements,

as in Section 4.1.3. For this experiment, γm is only ∼ 1 Hz, so it acts as a small perturbation to the values at

which the system reaches exceptional points. We thus do not bother to measure γ
(0)
m precisely.
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in Section 3.6. Let us make these Ψ dimensionless, by dividing the (δ, P1, P2, P3) of Ψ by the

measured values at EP3 (Equation (6.36)). We minimize the cost function

C =
∑
k

∣∣∣Ψk,expt
EP2 −Ψk,theory

EP2 (g, κ)
∣∣∣2

=
∑
k

(δk,expt
EP2 − δk,theory

EP2 (g, κ)

δEP3

)2

+
∑
l

(
(Pl)

k,expt
EP2 − (Pl)

k,theory
EP2 (g, κ)

(Pl)EP3

)2
 (C.3)

The theoretical values of Ψk,theory
EP2 (g, κ) at the kth slice are found within the 2D sheet defined by

the slice (e.g., if the kth slice is a P1 × P3 sheet, then the optomechanical model of Section 3.6

is applied at the fixed values of δ and P2, and then a root
(

(P1)k,theory
EP2 (g, κ), (P3)k,theory

EP2 (g, κ)
)

of the discriminant polynomial D is found in the range

(
(P1)k,theory

EP2 , (P3)k,theory
EP2

)
∈
(

0.65(P1)k,expt
EP2 , 1.35(P1)k,expt

EP2 )
)
×
(

0.65(P3)k,expt
EP2 , 1.35(P3)k,expt

EP2 )
)

(C.4)

The values which minimize the cost function (C.3) are

g/2π = (0.1979, 0.3442, 0.3092) Hz (C.5a)

κ/2π = 173.84 kHz (C.5b)

These values produce the theoretical curves, as well as the theoretical knot, in Chapter 6.

C.2 Cavity Measurements

There are two methods of ascertaining the value of κ in this experiment. One is with an

optomechanical fit, which is the primary method used in this work. The other is directly, via

fitting cavity resonances to Lorentzian signals. Since we measure the reflection, the fit function,

in principle, would be [70, p.115]

f(∆) = G

∣∣∣∣β − κin

κ/2− i(∆−∆0)

∣∣∣∣2 + b (C.6)

where b is a “dark background,” G is a gain factor, ∆0 is a frequency-axis offset, and β is an

efficiency factor of our fiber coupling, which is empirically measured to be β =
√

0.77 [64, p.127].

In practice, G can vary with ∆, so we can measure G(∆) by turning off the control laser tone,

and measuring the signal

d(∆) = |G(∆)|2 + b (C.7)
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Figure C.4: A fit of the cavity linewidth.

We then fit the resonances to

f ′(∆) =
f(∆)− b
d(∆)− b

= a

∣∣∣∣β − κin

κ/2− i(∆−∆0)

∣∣∣∣2 (C.8)

where a is a gain factor.

We performed measurements such as those in Figure C.4, and found values of κ and κin over

these measurements. On one dataset,

κ/2π = 143(38) kHz (C.9a)

κin/2π = 37(11) kHz (C.9b)

The measurement of κ via the optomechanical fit is much less noisy than this method, so we

prefer that for this experiment. Nonetheless, from these, we see the ratio

κ/κin ≈ 0.26 (C.10)

so we use this ratio to determine κin.

We remark that Equation (C.8) is symmetric around κin = κ/2, so either κin or κ− κin can

produce the same reflection curve. This confounding factor could be removed by measuring in

both reflection and transmission. A future experiment will measure both the cavity reflection

and transmission simultaneously, so κin can be determined from measurements of the cavity

reflection in the complex plane (c.f., Figure 3.1b). Nonetheless, κin only enters our calculations

in g2κin in the optomechanical shift (Equation (3.149)), so if we have made an error in measuring

κin in this experiment, the error gets absorbed into our g definitions.
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Pound-Drever-Hall (PDH)

Frequency Locking

In the following discussion, we follow a pedogical introduction on PDH locking by Eric Black of

LIGO [78].

When light is shown into a Fabry-Pérot cavity, light is not transmitted out of the cavity,

unless the length of the cavity Lcav and the wavelength of the light λL satisfy

2Lcav = nλL, n ∈ N (D.1)

If the reflection is instead measured, then light is reflected unless Equation (D.1) is satisfied.

This can also be written in terms of the cavity’s free spectral range ∆νfsr = c/2L, which implies

that the frequency fL = c/λL satisfies1

fL = n∆νfsr, n ∈ N (D.2)

With the condition in Equation (D.2), the intensity of the light reflected has resonances,

(Section 3.3) with resonance peaks at n∆νfsr, n ∈ N.

Now, suppose we have a frequency-tunable laser, and we wish to have our laser of frequency fL

be resonant with a cavity mode, which must be integer multiple of ffsr. Without loss of generality,

we consider a measurement of cavity reflection in this discussion. We could achieve this by looking

at the reflection dips, and holding the reflection at a zero using a feedback loop. However, this

does not work by itself, since the intensity is symmetric about the resonance frequency. If the

intensity fluctuates upward, one cannot tell whether the laser frequency fluctuated in the positive

1or, in terms of the angular frequency ωL = 2πfL, the condition is ωL = n2πνfsr, n ∈ N.
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or negative direction from the cavity resonance. However, the derivative with respect to laser

frequency is antisymmetric near the resonance frequency, so if we can vary the laser frequency

fL and measure the derivative, then we can use the derivative to produce an error signal which

is antisymmetric as a function of fL. Then this error signal can be held at zero, and we can lock

the laser to the cavity mode.

To produce this measurement, we can use phase interferometry, by modulating and demod-

ulating the phase of the laser light with a sine wave β sin Ωt. Then, when we shine laser light

with an oscillating electric field E0e
iωLt into the phase modulator, we get light incident on the

cavity as

Einc = E0e
i(ωLt+β sin Ωt) (D.3)

This can be written in terms of Jn(z), Bessel functions of the first kind, with the Jacobi-Anger

identity eiz sin θ =
∑∞
n=−∞ Jn(z)einθ: 2

Einc ≈ E0 (J0(β) + 2iJ1(β) sin Ωt) eiωLt (D.4)

= E0

(
J0(β)eiωLt + J1(β)ei(ωL+Ω)t − J1(β)ei(ωL−Ω)t

)
(D.5)

This form makes it clear that the phase modulation has produce three tones: the main carrier

tone in ωL, and two sidebands at ωL ± Ω. We note that if the power in the main beam is

P0 = |E0|2, then the power in the carrier is Pc = J0(β)2P0 and the power in each sideband is

Ps = J1(β)2P0 (or Pc ≈ P0 and Ps ≈ P0β
2/4, when β � 1).

Now we look at the reflected field from this phase-modulated incident field. With the reflec-

tion coefficient F (ω) calculated in Section 3.3, we see that the reflected field is

Eref ≈ E0

(
J0(β)F (ωL)eiωLt + J1(β)F (ωL + Ω)ei(ωL+Ω)t − J1(β)F (ωL − Ω)ei(ωL−Ω)t

)
(D.6)

And the power Pref = |Eref |2 is

Pref ≈P0|F (ωL)|2 + Ps|F (ωL + Ω)|2 + Ps|(ωL − Ω)|2+ (D.7)

2
√
PcPs

(
Re [G(ωL,Ω)] cos(Ωt) + Im [G(ωL,Ω)] sin(Ωt)

)
+O(Ω2) (D.8)

where we have a function G(ωL,Ω) in terms of the reflection coefficients F (ω):

G(ωL,Ω) = F (ωL)F ∗(ωL + Ω)− F ∗(ωL)F (ωL − Ω) (D.9)

2If the amplitude β is very small (β � 1), it suffices to write Einc ≈ E0eiωt(1 + iβ sin Ωt), and not use Bessel

functions in this discussion.
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The signal can be used to pick out the real or imaginary part of G(ωL,Ω), depending on whether

Ω is slow or fast. If Ω is slow compared to ωL, then it can be shown that G(ω) is purely real

[78, pp.83]. However, if Ω is fast enough that ω ± Ω is not resonant with the cavity mode, but

ω is, then F (ωL ± Ω) ≈ −1, so G(ω) ≈ −2i Im[F (ωL)], and

Pref ≈ D.C.Terms− 4
√
PsPc Im[F (ωL)] sin(Ωt) +O(Ω2) (D.10)

If we mix this signal down with sin(Ωt), then the surviving power term is −4
√
PsPc ImF (ωL).

Now, if the laser frequency is near a cavity resonance, then we can write

ωL
∆νfsr

= 2πN +
δωL
∆νfsr

(D.11)

so the reflection coefficient (Equation (3.100)), to first order in δωL, is

F (ωL) =
r(eiωL/∆νfsr − 1)

1− r2eiωL/∆νfsr

≈ riδωL/∆νfsr

1− r2 − r2iδωL/∆νfsr

≈ riδωL/∆νfsr

(1− r2)
(1 +

r2

1− r2
iδωL/∆νfsr)

≈ iδωL/∆νfsr

π/F
=

i

π

δωL
δν

where δν = ∆νfsr/F , and where we employ the approximations that F ≈ π/(1 − r2) and

r ≈ 1− π/2F , since the cavity finesse F is high.

Finally, we produce the Pound-Drever-Hall error signal by mixing the reflected power down

by sin Ωt. Near the cavity resonance, the error signal is approximately

ε ≈ − 4

π

√
PcPs

δωL
δν

(D.12)

This error signal is linear in δωL, so we can feed it back to a feedback loop, such as a PID loop,

to keep |ε| small, and thus lock the laser frequency to the cavity mode frequency.

Figure D.1 shows a simulated PDH error signal. For an Ω that is large enough that, when

ωL is resonant with a cavity mode, but ωL ± Ω, the error signal has three prominent ”wings:”

one large middle one at the cavity resonance, and two smaller ones at ωL ± Ω. Near ωL, the

error signal is linear and has a negative slope 3 Hence, if ωL drifts away from the cavity mode

3The error signal could have had a positive slope, had we mixed down with − sin(Ωt), instead of + sin(Ωt).

But the PID feedback loop must take the correctly sloped error signal to lock the laser, or the feedback loop will

push the laser frequency away from the cavity mode instead. By convention, the negative slope is the correct

one.
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Figure D.1: Pound-Drever-Hall error signal. Simulated from the reflectivity coefficient, with
r1 = .9997 and r2 = .99998, from Ω = 0.005ωc, and from the imaginary part of Equation (D.9).

in the positive direction, ε is negative and linear in the deviation δωL. Similarly, if the drift is

negative from the cavity mode, ε is positive. Either way, ε counters the drift in laser frequency

away from the cavity mode, and thus if ε is kept to zero, the laser is locked to a cavity mode.
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Metric Expansions near EP’s

E.1 Expansions near EP2

Consider the matrix

J + δJ =


0 1 0

0 0 1

x y 0

 ; x, y ∈ C (E.1)

and its characteristic polynomial

cx,y(λ) = λ3 − λy − x (E.2)

where x and y are the complex Jordan-Arnol’d control parameters (as discussed in Section 2.5).

Its discriminant polynomial is

D(x, y) = 4y3 − 27x2 (E.3)

In this section, we show that, with a small perturbation ε to x and y, that two of the solutions

λ1, λ2, λ3 of the characteristic polynomial vary as
√
ε, and the other varies as ε. We also show

that the discriminant

D(λ1, λ2, λ3) =
(
(λ1 − λ2)(λ2 − λ3)(λ3 − λ1)

)2
(E.4)

varies as ε. This is important to the data analysis, because in the data analysis (Section 6.3.1),

we use the fact that the discriminant varies linearly away from an EP2 in order to see that the

phase of the discriminant winds by 2π around an EP2 point, as opposed to 2πn for some different

integer value of n.
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First, we discuss Cardano’s formula [119] for the solution of a cubic polynomial

t3 + pt+ q = 0. (E.5)

1 We can write

C =
3

√
−q

2
+

√
q2

4
+
p3

27
(E.6)

2 Then a solution is

λ1 = C − p

3C
. (E.7)

The other two solutions are obtained by multiplying one term by one primitive cube root of

unity, −1±i
√

3
2 , and the other term by the other primitive cube root of unity, −1∓i

√
3

2 . More

explicitly, this is

λ2 =
−1± i

√
3

2
C − −1∓ i

√
3

2

p

3C

λ3 =
−1∓ i

√
3

2
C − −1± i

√
3

2

p

3C

(E.8)

Now, suppose that the parameters x and y are such that they are near an EP2 point in the

(x, y) parameter space, that is, that

27x2 − 4y3 ≈ 0 (E.9)

We can consider a complex-valued perturbation ε to the Jordan-Arnol’d parameters x and y.

First, we can apply the perturbation to x (|ε| � |x|):

x 7→ x+ ε (E.10)

Now, we identify q = −(x+ ε) and p = −y = −3(x/2)2/3 in Cardano’s formula (E.5), and get

C =
3

√
x+ ε

2
+

√
(x+ ε)2

4
− y3

27
(E.11)

1This is a depressed cubic polynomial, but any cubic polynomial az3 + bz2 + cz+ d = 0 can be brought to the

form of a depressed cubic polynomial by the substitution z = t− b/(3a).
2To avoid ambiguity in the choice of branch cut for the square and cube roots, for a complex number z = reiθ,

we define 3
√
z = 3

√
reiθ/3, and

√
z =

√
reiθ/2, where θ ∈ (−π,+π]. This is the principal value of these root

functions.
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Using Taylor expansions, we can approximate C as

C ≈ 3

√
x+ ε

2
+

√
xε

2

=
(x

2

)1/3 3

√
1 +

ε

x
+

√
2ε

x

≈
(x

2

)1/3

1 +
1

3

(
ε

x
+

√
2ε

x

)
− 1

9

(
ε

x
+

√
2ε

x

)2


≈
(x

2

)1/3
[

1 +
1

3

√
2ε

x
+

1

9

ε

x

]
(E.12)

Similarly, we can approximate 1/C as

1

C
≈
(x
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(E.13)

We put (E.12) and (E.13) into (E.7):

λ1 ≈ 2 3

√
x

2
+

2

9

ε

x
3

√
x

2
(E.14)

Thus, this root λ1 grows linearly in ε. On the other hand, we also put (E.12) and (E.13) into

(E.8) to get

λ2 ≈ −
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2
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+ i
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3x
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√

2ε

3x

(E.15)

and see that these grow as
√
ε, which is faster than O(ε) near ε = 0. Finally, we can put (E.14)

and (E.15) into (E.4):
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(E.16)

and so D grows linearly in the perturbation ε to x.
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For completeness, we can also consider a complex-valued perturbation ε to y (|ε| � |y|):

y 7→ y + ε (E.17)

Then C (E.6) becomes
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+
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Similarly, we can approximate 1/C as

1

C
≈
(x

2

)−1/3
(

1 +
i2y

3x

√
ε

)−1/3

≈
(x

2

)−1/3
[

1− i2y

9x

√
ε− 2

(
2y

9x

)2

ε

]

=
(y

3

)−1/2
[
1− i

√
ε

3y
− 2ε

3y

] (E.19)

Plugging (E.18) and (E.19) into (E.7), we get

λ1 =
(y

3

)1/2
[
2− ε

3y

]
(E.20)

so we again have a root that grows linearly in ε. Similarly, we plug (E.18) and (E.19) into (E.8):

λ2 ≈
(y
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3
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] (E.21)

We see then that, in contrast to the case with (E.10), with the case in (E.17), that these

eigenvalues have terms that grow in ε as well as in
√
ε. For small enough values of ε, the square-

root terms dominate the linear terms in λ2 and λ3. However, when we compute the discriminant

(E.4), by plugging in (E.20) and (E.21), we get

D ≈ −16

y
ε (E.22)
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which is linear in ε.

Thus, this appendix shows that, for any complex-valued perturbations ε to x or y, that the

eigenvalues grow as either ε or
√
ε, and the discriminant D grows linearly in ε. 3

E.2 Expansions near EP3

In this section, we now consider perturbations of x and y when x and y are both near zero, i.e.

the control space defined by x and y is near an EP3 . In addition to the discriminant (E.4), we

also examine the d3 metric

d3 = |λ1 − λ2|+ |λ2 − λ3|+ |λ3 − λ1| (E.23)

First, suppose that y = 0 and x = ε, for some “small” complex value of ε. Then C (E.6)

becomes

C =
3
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2
+

√
ε2

4
= 3
√
ε (E.24)

In Equation E.7, p = −y = 0, so

λ1 = 3
√
ε (E.25)

The other two roots (Equations E.8) are
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The discriminant (E.4) is then
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so the value of D grows as ε2 near EP3 . d3 becomes
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∣∣ (E.28)

so d3 grows as | 3
√
ε|.

3Of course, to show this result for D, it suffices to expand D = 4y3−27x2 when x or y near EP2 is perturbed by

ε: for x 7→ x+ε, we get D ≈ 4y3−27x2−54xε = −54xε, and for y 7→ y+ε, we get D ≈ 4y3+12y2ε−27x2 = 12y2ε.
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Now, suppose that x = 0 and y = ε is the perturbation. Then C (E.6) becomes

C =
3

√√
− ε

3

27
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√
−ε

3

= i

√
ε

3

(E.29)

Then λ1 (E.7) is

λ1 = i

√
ε

3
+

ε

3i
√
ε/3

= 0 (E.30)

and the other two roots are

λ2 = −2
√
ε

λ3 = +2
√
ε

(E.31)

The discriminant is

D = 16ε3 (E.32)

and d3 is

d3 = 8
∣∣√ε∣∣ (E.33)

so d3 grows as |
√
ε|.

Thus, near EP3 , the discriminant D has a smaller sensitivity to perturbations in x and y,

being of sensitivity ε2 and ε3. The triple difference d3 grows as |
√
ε| and | 3

√
ε|.
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Appendix F

Outlier Filter Implementation

Below is an efficient Python implentation of the outlier filter algorithm discussed in Section 6.4.1:

1 import numpy as np

2 from scipy.ndimage import median_filter

3

4 # Zm contains the experimental data

5 # load_experimental_data is some subroutine that loads the data

6 Zm = load_experimental_data ()

7

8 size=5 # specifies the number of pixels used in the filter

9 s=6 # specifies the IQR parameter

10

11 def get_outlier_mask(arr , size , s):

12 """

13 Helper routine;

14 arr -- input array of shape (I,J)

15 size -- the length of each side of the grid

16 over which a pixel is determined to be an outlier

17 s -- the interquartile range

18

19 Returns mask: a mask array which is of shape (I,J)

20 where the (i,j) entry is

21 0 if the (i,j) entry of arr is not flagged as an outlier

22 1 if the (i,j) entry of arr is flagged as an outlier

23 """

24 I = arr.shape [0]

25 J = arr.shape [1]

26 mask = np.zeros_like(arr , dtype=int)

27

28 for i in range(I):

29 for j in range(J):
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30 val = arr[i,j]

31 sub_arr = arr[max(0,i-size //2):min(I-1,i+size //2+1) ,

32 max(0,j-size //2):min(J-1,j+size //2+1)]

33 Q1 = np.percentile(sub_arr ,25)

34 Q3 = np.percentile(sub_arr ,75)

35 IQR = Q3 - Q1

36 mask[i,j] = ~((Q1-s*IQR < val) & (val < Q3+s*IQR))

37

38 return mask

39

40 Zm_mask = get_outlier_mask(np.abs(Zm), size , s)

41

42 Zm_median_filter = (

43 median_filter(np.real(Zm), size) +

44 1j*median_filter(np.imag(Zm), size)

45 )

46

47 # Zmo is a copy of the Zm data , which will have

48 # the outlier pixels replaced by the entries in Zm_median_filter

49 Zmo = np.copy(Zm)

50 Zmo[np.where(Zm_mask)] = Zm_median_filter[np.where(Zm_mask)]

This implementation of the outlier rejection filter algorithm is efficient for our experimental

data sets because we used a package-built median filter implementation, and we were careful in

constructing the outlier-detection subroutine. This implementation of the median filter is built

into SciPy [92, scipy.ndimage.median filter], so it is already well-built. As for our custom-built

get_outlier_mask subroutine, the for-loop in the get_outlier_mask subroutine is only O(n2)

in space complexity, where n is the input array size. This is because, in line 31, where sub_arr

is assigned, the routine does not create a copy of the 5 × 5 entries in the input array, but only

uses a reference to those entries. The rest of the get_outlier_mask subroutine has only O(1)

complexity. Thus, this implementatio of get_outlier_mask has O(n2) space-complexity, which

is fine for our 2D arrays. The time-complexity is O(n2size), since in lines 31-34, we iterate over

the input array entries, and further iterate over the entries of sub_arr to compute Q1 and Q3.

But since size is less than n, which has values of 15 to 35 for most of our slices (and since size

is left at 5 for all slices), we can drop the time complexity to O(n2).
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Appendix G

Braid Coloring Algorithm

In Section 6.1, we describe the process of extracting eigenvalues in the space of control parameters

(δ, P1, P2, P3) . Still, the fit routine can return the parameters for each Lorentzian in any order.

This is not an issue for calculating the discriminant (Equation (6.48)), the eigenvector indicator

(Equation (6.50)), or the triple degeneracy (Equation (6.34)), since these quantities do not

vary when the eigenvalues are permuted. However, to see eigenvalue braids, we must place the

eigenvalues in the natural order of the braid. If the step size is fine enough, we use a “coloring

algorithm” to color the eigenvalue braids such that they follow the natural braids.

For instance, suppose that the eigenvalues are given by functions

λ1(s) = e2πis + 2 (G.1a)

λ2(s) = 0.5e2πis + 4 (G.1b)

λ3(s) = 0 (G.1c)

for s ∈ [0, 1]. Then suppose that, at each value of s they are the eigenvalues of some spectra,

which were extracted by a fit function. The fit function does not take s as an input, so it does

not care about the smooth path that the braids take as a function of s. Figure G.1a shows a

sample possible output of the fit function.

To sort the output of the fit function from Figure G.1a, we can use a “coloring algorithm” to

sort the eigenvalues between each increment in s. Namely, at the ith value of s, si, the coloring

algorithm seeks to minimize the quantity

Qi =

3∑
m=1

|λm(si)− λm(si−1)|2 (G.2)

This minimization is done over all choices of permutations of (λ1(si), λ2(si), λ3(si)).
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(a) (b)

Figure G.1: The results of applying the coloring algorithm to sort the eigenvalues along their
braids.

An implementation of this algorithm in Python is given below:

1 def coloring_algorithm(y):

2 """

3 The data has shape (len , 3),

4 where the 0 axis is time , and the 1 axis is the ith eigenvalue.

5 This algorithm "colors" the three braids by

6 sorting the 1 axis such that axis 0 traces out

7 continuous paths.

8 """

9 y1, y2 , y3 = y.T

10 coloring_indices = [[0,1,2]]

11 perms = [[0,1,2],

12 [0,2,1],

13 [1,0,2],

14 [1,2,0],

15 [2,0,1],

16 [2,1,0]]

17 for i in range(len(ys) -1):

18 coloring_perm = perms[np.argmin(np.sum(

19 np.abs(ys[i+1, perms] - ys[i, coloring_indices[i]])**2, axis =1))]

20 coloring_indices.append(coloring_perm)

21

22 coloring_indices = np.array(coloring_indices , dtype=int)

23

24 y = np.take_along_axis(np.stack([y1,y2 ,y3], axis=-1), coloring_indices , axis =1)

25 return y

In Figure G.1b, we see that this algorithm colors the strands such that they clearly follow

continuous curves. This is very helpful in visually identifying braids.
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[1] Yogesh S. S. Patil, Judith Höller, Parker A. Henry, Chitres Guria, Yiming Zhang, Luyao
Jiang, Nenad Kralj, Nicholas Read, and Jack G. E. Harris. Measuring the knot of de-
generacies and the eigenvalue braids near a third-order exceptional point. 2021. arXiv:
2112.00157 [physics.optics].

[2] John R. Taylor. Classical Mechanics. University Science Books, 2005.

[3] Herbert Goldstein, Charles Poole, and John Safko. Classical Mechanics. Third Edition.
Addison-Wesley.

[4] Andrew Zangwill. Modern Electrodynamics. 1st Edition. Cambridge University Press,
2012.

[5] Jun J. Sakurai and Jim Napolitano. Modern Quantum Mechanics. Addison-Wesley, 2011.

[6] Haitan Xu, David Mason, Luyao Jiang, and Jack G. E. Harris. “Topological energy trans-
fer in an optomechanical system with exceptional points”. In: Nature 537 (July 2016),
80–83. doi: https://doi.org/10.1038/nature18604.
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