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Nonreciprocity in various branches of physics has been studied for more than a century, e.g., from

classical to quantum mechanics, and from particle physics to condensed matter physics. It is

particularly interesting to consider nonreciprocal phenomenon in open (non-hermitian) systems. In

this dissertation, I use a cryogenic cavity optomechanical system to demonstrate robust nonreciprocal

interactions between two phononic resonators. The nonreciprocity, either transient or static, is

realized via the cavity mediated optomechanical interaction.

I will start with a pedagogical introduction to nonreciprocity as well as non-hermiticity, followed

by a brief review of optomechanics and a theoretical derivation of nonreciprocity in optomechanical

systems. Then I will introduce our experimental realization of an optomechanical system, i.e.,

the membrane-in-the-middle setup. Next I will present the main result of this dissertation, which

includes the experimental demonstration of both transient and static optomechanical nonreciprocity.

I will conclude with a discussion of the first steps in our on-going study of higher-order degeneracies

in multi-level open systems (also known as exceptional points).
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h
a
p
t
e
r

Introduction to nonreciprocity and non-hermiticity

Reciprocity is a fundamental feature of a linear, time-invariant system. Etymologically, the adjective

word “reciprocal” comes from the Latin word “reciprocus”, which is possibly from a phrase such as

reque proque, based on the prefix “re-” (back) and “prō” (forward) [1]. Therefore, being reciprocal

essentially means “going the same way backward as forward”. Physically, a reciprocal system

exhibits a symmetry when its source(s) and detector(s) are interchanged. For example, if acoustic

or electromagnetic waves can make their way from a source to a detector, the propagation in the

opposite path (from the detector to the source) will have equal transmission.

Though reciprocity is important for the functionality and analysis of various physical systems,

it can be advantageous to break it in some practical situations. Electrical diodes, for example, are

nonlinear nonreciprocal devices that are of fundamental importance in electronics. The first linear

passive nonreciprocal device called gyrator was proposed in 1948 [2], primarily to remove the need

of bulky and expensive inductors in telephony systems. To date, various nonreciprocal devices

such as isolators, circulators and directional amplifiers have been widely used, for example, to

prevent destabilizing reflections entering sensitive sources, or to mitigate multi-path interference in a

communication system [3–5].

A necessary condition for nonreciprocity is time-reversal symmetry breaking. In general, time-

reversal symmetric systems1 are guaranteed to be reciprocal, while reciprocity itself does not require

1. Time-reversal is represented by the operator T such that T (t) ≡ −t, and a system described by a state vector ψ(t) is
time-reversal symmetric if T {ψ(t)} = ψ(t).
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time-reversal symmetry. Consider a system with absorption loss. The system is time-reversal

asymmetric since reversed output on its way back through the system will be absorbed a second time

and will never result in the initial input. However, this system is reciprocal since the transmission

coefficients for the forward and backward propagations are equal.

Systems with loss and/or gain have no time-reversal symmetry, which makes them good can-

didates for inducing nonreciprocity. The evolution of such a system is often described by a non-

symmetric (more generally, non-Hermitian) dynamical matrix, which will be discussed later in this

chapter.

This chapter is organized as follows. In Sec. 1.1, I will review reciprocity theorems, and present

a proof of Lorentz reciprocity. Then in Sec. 1.2, I will describe several nonreciprocal devices and

discuss ways to achieve nonreciprocity. In Sec. 1.3, I will introduce general non-hermiticity in

physics, as well as the effective Hamiltonian and dynamical matrix for specific systems, and then

focus on a particular degeneracy in open systems called the exceptional point (EP). The nonreciprocal

behavior related to EP will be covered in Ch. 2 and Ch. 3.

1.1 Reciprocity theorems

Perhaps the simplest statement of a theorem on reciprocity would be “if I can see you, then you can

see me.” Historically, the first explicit description of a reciprocity theorem traces back to Stokes [6]

and Helmholtz [7], even before the electromagnetic nature of light became known. The so-called

Helmholtz reciprocity principle states that a ray of light and its reverse ray encounter identical

optical adventures such as reflections, refractions, and absorptions in a passive medium or at an

interface. This concept was later reformulated by Kirchhoff [8], and described by Rayleigh [9] as

a consequence of the linearity in the propagation of small amplitude vibrations (e.g., of sound or

light).

A general form of reciprocity theorem in classical electromagnetism, Lorentz reciprocity, is

named after work by Hendrik Lorentz in 1896 [10]. Loosely speaking, it states that the relationship

between a time-harmonic electric current and the resulting electromagnetic field is unchanged if

one interchanges the points where the current is placed and where the field is measured. For the

specific case of an electrical network, the theorem is often postulated as a statement that the current

2



at position A due to a voltage at B is identical to the current at B due to the same voltage at A.

Later on in the 1930s, Onsager derived the reciprocal relations bearing his name [11,12] for linear

processes, based on the assumption of microscopic reversibility. These relations establish the equality

of certain ratios between flows and forces in thermodynamic systems, and can be generalized to a

variety of physical processes [13, 14] (e.g., transport of heat, electricity, and matter) and to nonlinear

systems [15]. Specifically, the application of Onsager relations in the context of electromagnetic

constitutive relations of linear, homogeneous materials yields the result of Lorentz reciprocity [16].

We now review a proof of Lorentz reciprocity theorem based on Maxwell’s equations and vector

operations [17]. Consider a volume V bounded by the surface S that contains two sets of sources

J1 and J2. For the sake of simplicity we assume that source Ji produces time-harmonic electric

(magnetic) field Ei (Hi) at frequency ωi, and that ω1 = ω2 = ω. According to Maxwell’s curl

equations, for i = 1, 2 we have:

∇ ×Ei = −iωµHi (1.1)

∇ ×Hi = iωεEi + Ji (1.2)

where ε and µ denote permittivity and permeability, respectively. Now consider the quantity ∇ ·

(E1 ×H2 −E2 ×H1), which can be expanded using a vector identity as:

(∇ ×E1) ·H2 − (∇ ×H2) ·E1 − (∇ ×E2) ·H1 + (∇ ×H1) ·E2 (1.3)

With proper substitutions we can derive

∇ · (E1 ×H2 −E2 ×H1) = iω(E2εE1 −E1εE2 −H2µH1 −H1µH2)

+J1 ·E2 − J2 ·E1

(1.4)

The first term in the right-hand side (RHS) of Eq. (1.4) adds up to zero if ε and µ are scalars or

symmetric tensors, yielding the Lorentz reciprocity relation (in differential form):

∇ · (E1 ×H2 −E2 ×H1) = J1 ·E2 − J2 ·E1 (1.5)

3



With the divergence theorem, the integral form of Eq. (1.5) can be written as:

	
(E1 ×H2 −E2 ×H1) · ndS =

$
(J1 ·E2 − J2 ·E1)dV (1.6)

where n is the outward pointing unit normal field of the boundary S.

The above reciprocity theorem can be simplified when J1,2 are localized such that the surface

integral of Eq. (1.6) cancels. In this case we obtain the so called Rayleigh-Carson reciprocity

theorem: $
J1 ·E2dV =

$
J2 ·E1dV (1.7)

Note that J1 = J2 leads to E1 = E2 as a result from the arbitrariness in the choice of V , indicating

the measurement of the field is insensitive to the interchange of source and detector locations. In

antenna theory, the Lorentz reciprocity theorem ensures a symmetric impedance matrix for electrical

networks. More generally, as pointed out in Ref. [18], if we associate the input and output of a

reciprocal system with a scattering matrix S , where the elements of S are defined as S i j = bi/a j

with ai and b j being the amplitudes of the signals at ports i and j, respectively, then S T = S . For a

nonreciprocal system, such symmetry of the scattering matrix is broken.

Our proof of Eq. (1.5) also gives hints on how to break Lorentz reciprocity, i.e., to make the first

RHS term of Eq. (1.4) nonzero. Firstly, if the permittivity (permeability) tensor is asymmetric, the

order in which E1, E2 and ε (H1, H2 and µ) are multiplied in Eq. (1.4) becomes important, and

may lead to nonzero sum. The second scenario for nonreciprocity is when ε (µ) is a function of the

electric (magnetic) field strength or direction. Finally, the system will be nonreciprocal in general if

ε and µ are time-dependent. We will see in the next section that these scenarios correspond to three

ways of breaking reciprocity, namely adding magnetic bias, introducing nonlinearity and applying

temporal modulation.

1.2 Breaking reciprocity

The study of nonreciprocity in physics probably began with the experimental discovery by Faraday

in 1845 that the light passing through glass in the direction of an applied magnetic field is subject to

rotation of the plane of polarization, which is linearly proportional to the component of the magnetic
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field in the direction of propagation2. This so called the Faraday effect breaks time-reversal symmetry

locally (that is, only the propagation of light but not the source of the magnetic field is considered)

as well as Lorentz reciprocity, and plays an important role in modern commercial nonreciprocal

devices [19–28].

Faraday effect in magneto-optical materials (i.e., a medium through which left- and right-handed

elliptically polarized lights can propagate at different speeds by the presence of a quasi-static mag-

netic field) breaks reciprocity by introducing a magnetic bias. Biasing other quantities (e.g., direct

electric current, linear or angular momentum) that break time-reversal symmetry may also induce

nonreciprocity [29,30]. Further implementations of nonreciprocal devices are based on, for example,

acoustic or optical nonlinearities [31–39], stimulated Brillouin scattering [40–43], spatial-temporal

modulation [4, 44–52], chirally coupled single atom [53, 54]. Note these implementations are not

mutually exclusive, and a cited example may belong to more than one category.

Figure 1.1: Gyrator schematic adapted from Wikipedia. The arrow indicates the direction of gyration resistence.

Yet before turning into different ways of breaking reciprocity, we will briefly discuss idealized

models of nonreciprocal devices, namely gyrators, isolators and circulators. An ideal gyrator is

a lossless linear two-port device3 that couples the current on one port to the voltage on the other

and vice versa. With unit gyration resistance, the instantaneous currents and voltages are related by

v2 = i1 and v1 = −i2, so the scattering matrix is:

2. It was unclear though, whether Faraday himself, being excited by the success in “magnetising a ray of light”, noticed
the nonreciprocity in this phenomenon.

3. Two-port means two pairs of terminals connected to the ends of the device, with a pair of input and output terminal
on each end.
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S =

 0 −1

1 0

 (1.8)

Another two port device called the isolator transmits power in only one direction, while absorbing

all the power entered from the other. The scattering matrix of an isolator is:

S =

 0 0

1 0

 (1.9)

The third nonreciprocal device we want to mention is the circulator. At microwave frequencies,

circulators are important for radars and for the design of full-duplex communication systems, which

allow transmitting and receiving through the same frequency channel at the same time, offering the

opportunity to increase channel capacity and reduce power consumption [55]. At optical frequencies,

circulators are used not only in communication systems but also in sensing and imaging fields,

because of their low insertion loss and high isolation between the input and output signals [56]. For

an ideal three-port circulator, signals applied to port 1 only come out of port 2, signals applied to port

2 only come out of port 3, and signals applied to port 3 only come out of port 1. Thus its scattering

matrix is:

S =


0 0 1

1 0 0

0 1 0

 (1.10)

We review three methods of inducing nonreciprocity in the remainder of this section.

1.2.1 Magnetic bias

Magnetic materials induce nonreciprocal responses based on the energy splitting of quantum states

with opposite angular momentum in the presence of a static magnetic field [21]. Up to now, commer-

cial nonreciprocal devices are mostly based on ferrites [57] (e.g., yttrium iron garnet and materials

composed of iron oxides and other elements such as Al, Co, Mn, Ni). In general, a ferrite’s

nonreciprocity results from electron-spin precession described by the Landau-Lifshitz-Gilbert equa-

tion [58]:

ṁ(t) = −γm ×Heff − λm × (m ×Heff) (1.11)
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wherem is the magnetic dipole moment, γ is the electron gyromagnetic ratio and λ is a phenomeno-

logical damping parameter. The effective fieldHeff is a combination of the external magnetic field

B0, the demagnetizing field (magnetic field due to the magnetization), and some other effects such

as exchange interaction, crystalline anisotropy, magnetostatic self-energy, thermal fluctuations, etc.

It is shown in Ref. [17] that the permeability µ of a ferrite is antisymmetric, so Eq. (1.5) does not

hold.

To further understand how magnetic bias induces nonreciprocity, we look at the Faraday effect.

When electromagnetic waves propagate through a magneto-optical material subject to a magnetic

field, the plane of the polarization rotates clockwise or counterclockwise from the point of view

of the observer. The medium is therefore dextrorotatory (associated with clockwise rotation) or

levorotatory (associated with counterclockwise rotation) depending on the direction of propagation

relative to the applied magnetic field. We can see from Fig. 1.2 that the rotation is antisymmetric for

opposite directions of propagation, leading to nonreciprocal transmission.

Figure 1.2: Faraday effect for waves propagating in two (left and right) directions. The transmission is nonreciprocal for
an unaltered external magnetic field.

In practice, the magnetic bias is usually provided by a permanent magnet, or a resistive/superconductive

coil. Therefore ferrite-based devices tends to be bulky, heavy and costly. Meanwhile, the bandwidth

of such devices is limited by the tuning rate of the external magnetic field. Ferrite-based devices

are also not amenable to integrated circuit technology, because the ferrite crystal lattices are incom-

patible with those of semiconductor materials. These issues have generated interest in “magnetless”

nonreciprocity.
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1.2.2 Nonlinearity

A nonlinear medium (NLM) may break the Lorentz reciprocity as its permittivity depends on the

external electric field. For such a medium, the induced polarization field can be expressed as a

function of the applied electric field:

P = ε0χ
(1)E + ε0χ

(2)
1 E2 + ε0χ

(3)E3 + ... (1.12)

where ε0 is the vacuum permittivity and χ(n) is the n-th order component of the electric susceptibility

of the medium. For simplicity, we have assumed the medium to be isotropic and treated the fields

P and E as scalars in Eq. (1.12)4. The second and third order susceptibilities χ(2) and χ(3) are

significant for nonlinear phenomena (e.g., sum-frequency generation, Kerr effect), and offer a variety

of possibilities for realizing nonreciprocal transmission.

a b

Figure 1.3: Nonreciprocity based on nonliearity. a, Schematic of an acoustic diode adapted from Ref. [32]. b, SEM picture
of the core device in Ref. [38].

To demonstrate χ(2) associated nonreciprocity, consider second-harmonic generation (SHG) in a

NLM. SHG occurs efficiently when the incident wave is of high intensity, whereas the efficiency of

the inverse process (i.e., spontaneous parametric down-conversion), approaches zero in the classical

limit [60]. Nonreciprocal transmission can be induced by combining a SHG medium with either a

frequency selective mirror or a linear attenuator5. Fig. 1.3a shows the design in Ref. [32], where a

superlattice is coupled with a NLM. When an acoustic wave with fundamental frequency is incident

4. We have also assumed that the polarization at time t depends only on the instantaneous electric field. According to
Kramers–Kronig relations, such instantaneous respondence implies that the medium is dispersionless and lossless. General
expression for the susceptibility of an anisotropic NLM can be found in Ref. [59].

5. More generally, nonreciprocal transmission could be observed in a sequence of two devices with power-dependent
input–output functions g and h, providing g(h(x)) , h(g(x)).
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from the left, it is strongly reflected by the superlattice. When the same signal comes from the right,

the NLM generates some second harmonic wave that can be transmitted through the superlattice,

thereby breaking the reciprocity. Note that while the transmission at the fundamental frequency is

small in both directions, frequency conversion is largely asymmetric so the total power is transmitted

from only one side.

Another example of χ(2)-based nonreciprocity is demonstrated in Ref. [38] and is shown in Fig.

1.3b. Three optical modes coexist in the microring resonator, and are coupled by χ(2) nonlinear

interaction. A Hamiltonian Hint = g(â†b̂ĉ† + âb̂†ĉ) captures such a three wave mixing process,

and the momentum conservation law requires counterclockwise (CCW) light in mode a can only

interact with CCW light in modes b and c. Applying a CCW drive in mode a induces nonreciprocal

transmission for modes b and c, since the CCW modes b and c interact with the drive, while the

corresponding clockwise (CW) modes remain decoupled.

Nonreciprocity has also been explored with third order (χ(3), or Kerr) nonlinearity [34, 61–66].

For instance, if a Kerr material is engineered to have different field distribution when excited from

opposite directions, the transmitted signal will be asymmetric, and very large isolation can be

achieved with appropriate design [34, 63].

There are other efforts to exploit nonlinear nonreciprocity. Static nonreciprocity is realized

in mechanical metamaterials, by combining large nonlinearities with spatial asymmetries [67].

Similarly, coupling acoustic metamaterial to a nonlinear electronic circuits yields nonreciprocal

phonon transport [36]. Bifurcation and chaos as the source of nonlinear frequency conversion also

offer an avenue for acoustic rectification [33].

Nonlinearity-based nonreciprocal devices are under intensive study, yet several undesirable

features have prevented them from practical applications so far. Firstly, the response of such devices

is inherently dependent on the input intensity, which makes the devices prone to distort the incident

signal and only perform well at specific levels of input power. Secondly, many nonlinear isolators

are subject to a fundamental trade-off between the transmission coefficient in the forward direction

and the nonreciprocal intensity range [66]. Thirdly, some nonlinear systems are shown to exhibit

“dynamic reciprocity” [64] when a small-amplitude input (e.g., noise) is superimposed on a large-

amplitude input (e.g., signal), such that the transmissions of the small-amplitude input are the same

for both forward and backward directions.

9



1.2.3 Temporal modulation

Temporal modulation may induce nonreciprocity by breaking the time invariance of a system. This

idea was recognized in microwave and optical systems nearly six decades ago [44, 45], and has got

broad attention recently, thanks to the technological advances in realizing efficient time-modulated

systems [4, 68].

We first illustrate nonreciprocity based on traveling wave modulation, proposed in Ref. [46] and

implemented in Ref. [48]. Consider a waveguide that supports two orthogonal modes at frequencies

ω1 and ω2, with a modulated electric permittivity:

ε(x, y, z, t) = εst + ∆ε(x, y) cos(ωmt − kmz) (1.13)

where εst is the static permittivity6, ∆ε(x, y) is the modulation profile across the waveguide cross-

section, ωm = ω1 − ω2 is the modulation frequency, km is the modulation wavenumber and z is

the coordinate parallel to the waveguide axis. We notice the time-reversal symmetry is broken

by the directionality of the modulation Eq. (1.13). Meanwhile, the two waveguide modes with

frequencies and wavevectors (ω1, k1ẑ), (ω2, k2ẑ) are coupled if the modulation scheme satisfies the

phase-matching condition (i.e., km = k2 − k1). Under this condition, the modulation can scatter any

of the two modes (grey lines in Fig. 1.4a) to the other one, leading to complete mode conversion

over the coherence distance (a quantity that is inversely proportional to the overlap integral between

∆ε(x, y) and the mode profiles over the waveguide’s cross-section). Such modulation-mediated mode

conversion process is only possible for one propagation direction, since in the opposite direction a

different phase-matching condition (i.e., km = −k2 + k1) is not satisfied. Therefore, the transmission

through such a traveling wave modulated waveguide is nonreciprocal.

Instead of the directional coupling between co-propagating waves as described above, modulation

can also couple modes that propagate in opposite directions. The effect analogous to the Doppler

effect observable in a mechanically moving Bragg grating [69, 70] has been used to implement

nonreciprocal transmission in materials biased by two counter-propagating optical signals with

slightly detuned frequencies [71, 72].

6. The permittivity here is written as a scalar rather than a tensor for simiplicity.
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a b

   m

km

Figure 1.4: Nonreciprocity based on temporal modulation. a, Schematic of raveling wave modulation adapted from [4].
The modulation creates an indirect transition between two waveguide modes. b, Illustration of the Aharonov-Bohm effect
and a designed optical isolator based on a pair of modulated waveguides, adapted from [46]. |1〉 and |2〉 can represent
either distinct quantum states of electrons, or two orthogonal modes in the waveguides.

The nonreciprocity realized in traveling wave-modulated materials (described in the previous

paragraph) is a result of indirect transitions, where both frequency and momentum of signals are

varied. We have seen that such transition is inherently unidirectional. Direct transitions, in contrast,

only affect the frequency of the signals and have no inherent unidirectionality. A single direct

transition cannot break reciprocity; however by combining two or more such transitions, one may

induce nonreciprocal transmission. This is because the modulation provides an effective gauge field,

and an interference phenomenon analogous to the Aharonov-Bohm effect (upper Fig. 1.4b) can be

used to realize nonreciprocal devices [73–75].

As an example, an isolator can be realized using based on two modulated waveguides and one

waveguide without modulation [73]. The waveguides support two orthogonal modes a, b and are

uniformly modulated along z axis with a frequency equal to the difference of the mode frequencies.

The modulation covers the upper half of the waveguides (black region in lower Fig. 1.4b), converts

one mode to the other and causes an accumulation in phase of the converted signal. When a signal

(say, in mode a) propagates through this structure, it can either stay unconverted (in mode a) or

be converted twice by the modulation (via a → b → a), and the transmitted signal (in mode

a) is the interfered result between these two paths. Suppose the waveguides are modulated with

different phases, the total phase accumulated in the converted signal is φL→R
a = φ(z1) + φs2 − φ(z2)

for transmission from left to right, where φ(z1) and φ(z2) are the modulation phase of the left and

right waveguide, respectively, and φs2 is the reciprocal propagation phase of mode b through the un-

modulated center waveguide. For transmission from right to left, we have φR→L
a = φ(z2) +φs2 −φ(z1).
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On the other hand, the unconverted signal accumulates the same phase φs1 in both directions. Since

the structure converts only half of the input power, if we select φ(z1) − φ(z2) = φs1 − φs2 = π/2, the

converted and non-converted parts of the incident signal interfere destructively (constructively) at

the right (left) end of the structure, leading to zero (unitary) transmission at the corresponding end,

and thus making the structure operate as an isolator.

Temporal modulation offers an interesting opportunity towards compact, integrated nonreciprocal

devices, yet it comes with some challenges. Devices based on traveling wave modulation are subject

to a trade-off between device length, modulation power and bandwidth. At optical frequencies,

(magnetless) time modulated devices are limited by the ability to induce strong, fast and robust mod-

ulation, therefore remain at a proof-of-concept level, compared with their counterpart at microwave

frequencies [4].

In the end of this section, we emphasize that the nonreciprocity induced from multi-path in-

terference in a coupled-modes system is an essential idea throughout this dissertation. As we will

see in next chapter, both optical and mechanical modes in an optomechanical system can easily be

parametrically modulated in time, which enables us to induce nonreciprocity using concepts similar

to those presented here.

1.3 Non-Hermitian physics

Hermitian operators play an important role in quantum mechanics, as they yield real eigenvalues

that usually represent the measurement of corresponding physical quantities7. In particular, the

Hamiltonian operator, which describes the energy of a quantum system, is Hermitian when the system

is closed. However, if someone merely cares about a subsystem where energy can be transferred to its

environment, hermiticity of the subsystem’s effective Hamiltonian is not guaranteed. Complex energy

eigenvalues were introduced to describe the tunneling rate of a particle in a pioneering study on alpha

decay by George Gamow [77], where the real (imaginary) parts of these eigenvalues correspond to

the energy levels (resonance widths) observed in experiments. In a subsequent work [78], complex

7. In Ref. [76], a class of non-conservative Hamiltonians that commutes with the parity-time operator was shown to yield
entirely real spectra. This discovery indicates that observables in quantum mechanics may not necessarily be described by
Hermitian operators, and has brought us upon a vast amount of study on PT symmetric systems. However such topic is
beyond the scope of the dissertation.
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potentials were used to describe the scattering interactions between neutrons and nuclei.

These early studies using on non-Hermitian quantum physics were mostly phenomenological,

while more rigorous approaches [79, 80] were developed thereafter to describe the dynamics of open

quantum systems. It turns out that when a quantum system couples to a surrounding environment,

its dynamics becomes non-Hermitian and quantum jumps will occur [81]. A microscopic view of

such an open system reveals the necessity to account for the noise induced by quantum jumps, in

order to keep the quantum mechanical commutation rules intact [80]. Macroscopically, such noise is

neglected in semiclassical approaches, and the quantum dissipation process can be encapsulated in a

non-Hermitian “effective” Hamiltonian.

Traditionally, adding non-Hermitian components to a (Hermitian) Hamiltonian has been regarded

as a perturbation, with the physics essentially same as the Hermitian case, except for an exponential

decay. However in presence of degeneracies (i.e., coalescences of eigenvalues), non-Hermitian terms

can do significantly more than broadening the resonances of the system and allowing its eigenstates

to decay [82, 83].

In this section, I first describe a mapping between an N-level quantum system and N coupled

classical oscillators, and discuss the non-Hermitian terms in both systems. Then I will examine the

degeneracies involving two states (i.e., N = 2) for Hermitian and non-Hermitian matrices.

1.3.1 Effective Hamiltonian and dynamical matrix

Let us consider a first order linear ordinary differential equation:

ȧ(t) = −iBa(t) (1.14)

where a is an N-vector andB is an N × N matrix. Suppose the coefficient matrixB is constant and

Hermitian, such that there exist N real eigenvalues λn and corresponding orthogonal eigenvectors vn

such thatBvn = λnvn. The solution to Eq. (1.14) is therefore:

a(t) =

N∑
n=1

vn 〈vn,a(0)〉 e−iλnt (1.15)

where 〈x,y〉 represents the inner product of two vectors x and y.
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In quantum mechanics (QM),B and a(t) can be interpreted as the Hamiltonian matrix and the

state vector, respectively, so Eq. (1.14) is the Schrödinger equation of a (closed) N-level system. λn

(vn) represent the energy eigenvalues (eigenstates). IfB is Hermitian and time dependent, then Eq.

(1.14) (with B → B(t)) still describes an N-level quantum system, now subject to the explicitly

time dependent HamiltonianB(t).

In classical mechanics (CM), Eq. (1.14) is the equation of motion of N coupled linear undamped

oscillators. This can be seen, for example, by rewriting Eq. (1.14) as ä(t) +B2a(t) = 0. However Eq.

(1.14) remains to be a useful form for describing classical oscillators for a number of reasons. First,

for a constantB, the eigenvalues and eigenvectors ofB correspond to the normal modes and normal

frequencies, while the complex vector a(t) encodes the displacements and momenta of individual

oscillators (in its real and imaginary parts, separately). In this CM context, the matrixB is referred to

as the dynamical matrix (although in some literature it is called the “Hamiltonian” in a mathematical

analogy with the QM case, it is important to note that theB is not the Hamiltonian function H(q, p)

of CM). Second, in a classical system with explicit time-dependence, the mathematical form of Eq.

(1.14) (withB → B(t)) allows all of the familiar results from QM to be applied to the corresponding

features of the classical system. This includes such powerful results as the adiabatic theorem [84],

Landau-Zener transitions [85, 86], and the geometric (Berry) phases [87–89].

From a mathematical point of view, we may consider Eq. (1.14) when the elements of matrixB

are arbitrary complex numbers, making B not necessarily Hermitian. We reconsider the physical

systems described by Eq. (1.14). Interpreted in the context of QM, i.e., for the N-level quantum

system, a non-Hermitian B would correspond to an effective Hamiltonian, which may be used to

describe a system that interacts with the environment and is subject to dissipation. For the N-oscillator

classical interpretation, a non-Hermitian dynamical matrix means that we have included dampers

and gyrators in the system8. More details of the isomorphism between the quantum description of

N-level systems and the classical description of coupled oscillators can be found in Ref. [90–92].

8. A damper adds a term proportional to velocity in the classical equation of motion, which can be achieved by, say,
submerging a mechanical oscillator into a fluid. A gyrator creates nonreciprocal coupling between two 1D oscillators.
One example for a mechanical gyrator is a charged ball oscillating in a 2D quadratic potential well V(x, y) = x2 + y2 with
a magnetic field in z direction, where the oscillation in x and y degrees of freedom are coupled antisymmetrically.
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1.3.2 Degeneracies of Hermitian matrices

General complex Hermitian matrices have degeneracies of codimension three, that is, degeneracies

are isolated points in a three-parameter space [83]. Such degeneracies are robust against Hermitian

perturbations, as they are simply moved but not destroyed when extra parameters are varied. A

special kind of Hermitian matrices is real symmetric ones, which describe systems that are non-

dissipative and time-reversal symmetric. The degeneracies of these matrices are of codimension two,

being isolated points in a two-parameter space. Consider a traceless 2 × 2 real symmetric matrix9:

H =

 ∆ g

g −∆

 (1.16)

where g and ∆ are two parameters to vary. The eigenvalues are λ± = ±
√
g2 + ∆2, with a degeneracy

located at the origin (g = ∆ = 0). One can prove that the two associated eigenvectors are always

orthogonal to each other for λ+ , λ−, and for λ+ = λ−, one can still construct an orthogonal

eigenvector basis. As shown in Fig. 1.5, in the three-dimensional space of (λ±,∆, g), the eigenvalues

form conical surfaces with apex at the degeneracy, and therefore such a degeneracy is referred to as

a “diabolical point” (DP) [93].
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Figure 1.5: Eigenvalues of a Hermitian matrix. a, Diabolo (double cone) shape of spectrum, with a DP at the origin. b,
Avoided crossing of eigenvalues near the DP with g = 1 as ∆ varies.

9. The matrix can be viewed as either the Hamiltonian of a coupled two-level quantum system, or the dynamical matrix
of two coupled classical oscillators in a rotating frame.
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For an arbitrary Hermitian matrix, if one starts from a point in the parameter space and tracks

the deformation/evolution of all eigenvectors along a closed loop (either surrounding the degeneracy

in the real symmetric case here, or near a point of degeneracy in the complex Hermitian case), one

will find that each eigenvector returns to its original form, apart from a phase factor determined

by the continuation rule [94, 95]. In quantum mechanics, this corresponds to the fact that for a

closed (Hermitian) system prepared in a particular eigenstate, if the parameters of its Hamiltonian

are varied sufficiently slowly, the system will remain in the corresponding (i.e., smoothly connected)

instantaneous eigenstate, which is the well-known adiabatic theorem [96].

1.3.3 Degeneracies of non-Hermitian matrices

For complex non-Hermitian matrices, degeneracies are of codimension two regardless of their

symmetry. At such degeneracies, not only the eigenvalues coalesce, but also the eigenvectors become

parallel. As an example, consider a symmetric 2 × 2 non-Hermitian matrix:

H′ =

 ∆ + i g

g −∆ − i

 (1.17)

which in classical mechanics corresponds to adding unit loss and gain to the uncoupled two-mode

closed system. The eigenvalues of H′ are given by λ′± = ±
√
g2 + (∆ + i)2, with double degeneracies

in (∆, g) space at (0,±1). We plotted the real and imaginary parts of the eigenvalues separately, in

the vicinity of one degenerate point, as shown in Fig. 1.6. One can observe that the eigenvalues have

a sharper dependence on parameters as they approach the degeneracy, compared with the Hermitian

case.
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Figure 1.6: Eigenvalues of a non-Hermitian matrix. The real part and imaginary part of the eigenvalues are plotted as
functions of parameters (∆, g).

An even more intriguing feature near degeneracies of a non-Hermitian matrix is the non-trivial

monodromy, that is, the eigenvalues and the corresponding eigenvectors interchange for a circuit

encircling the degeneracy. Such degeneracies, often referred to as “exceptional points” (EPs), are

not diabolical points but rather branch points associated with the Riemann sheets of the function

λ(∆, g). If the non-Hermitian matrix is viewed as a perturbation of a real symmetric matrix in a

planar parameter space, such perturbation splits one DP into two EPs. If the non-Hermitian matrix

is a perturbation of a complex Hermitian matrix, and the parameter space is three-dimensional, the

isolated Hermitian degeneracy point may expand into a ring of exceptional points. We show this

according to Ref. [83]. For a matrix

M =

 z0 x0 + iy0

x0 − iy0 −z0

 + i

 z x + iy

x − iy −z

 (1.18)

where r0 = (x0, y0, z0) is the three-dimensional parameter space of the Hermitian matrix and

r = (x, y, z) is the parameter space of non-Hermitian perturbations, the eigenvalues are expressed

as λM
± = ±

√
r2

0 − r2 + 2ir · r0. Thus for given vector r0, an “exceptional ring” with radius r = r0

in the plane perpendicular to r0 is formed. A recent experiment has demonstrated this feature in a

Si3N4 photonic crystal slab [97].
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1.3.4 Encircling an EP: nonreciprocal state transfer

We now consider a state vector c(t) = (c1(t), c2(t))T of a two-mode system, whose evolution is

governed by Eq. (1.14) withB replaced by either H defined in Eq. (1.16) or H′ defined in Eq. (1.17).

For a given c(0) and a time interval [0,T ], we are interested in c(T ) whereas the parameters (∆, g)

trace out a loop during this time interval. A particular interesting case is when the parameter loop

encloses the degeneracy of the system.

Suppose the system is in one eigenstate at t = 0. When the system is Hermitian (i.e., described

by H in Eq. (1.16)), and both ∆ and g vary slowly (i.e., |d∆
dt |, |

dg
dt | � |λ+ − λ−| = 2

√
g2 + ∆2),

then according to the adiabatic theorem, the system remains in the same instantaneous eigenstate

throughout [0,T ]. For a closed-loop variation of the parameters, this indicates c(T ) = c(0). When

the system is non-Hermitian (i.e., described by H′), naive application of the adiabatic theorem would

suggest that the monodromy of the eigenvalue sheet would cause the system to evolve to the other

eigenstate, such that a state transfer occurs and c(T ) , c(0)10. However, we now show that whether

such a state transfer can happen depends on the initial conditions of the system as well as on the

sense (clockwise or counterclockwise) of the parameter loop. Furthermore, the state transfer is

nonreciprocal for a certain loop sense.

10. If H′ is symmetric, a stronger orthogonality condition 〈c(T ), c(0)〉 = 0 applies.
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Figure 1.7: Evolution of the weighted eigenvalue. The (∆, g) loop is counterclockwise with (r0, φ0,T ) = (0.5,−0.5, 10). a,
b, The real part and the imaginary part of λ̄(t) (black lines), on top of the eigenvalue sheets of the system. At t = 0 the
system is initialized on the orange manifold (with a state vector λ′−(0)). At t = T the system has transferred to the blue
sheet. c, d, The trajectory of λ̄(t) with the same loop but a different initialization. A non-adiabatic jump occurs during
[0,T ] and there is no state transfer at the end of the loop.

For the sake of simplicity, I assume the parameter loop to be a circle describe by:

∆(t) = ∆0 + r0 cos(
t
T

+ φ0) (1.19)

g(t) = g0 + r0 sin (
t
T

+ φ0) (1.20)
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where (∆0, g0) = (0, 1) is the loop center at an EP, r0 is the radius and φ0 is a phase offset11. For given

c(0) and (r0, φ0,T ), the differential equation ċ(t) = −iH′(∆(t), g(t))c can be solved numerically.

At any time t ∈ [0,T ], the solution c(t) can be written as:

c(t) = c+(t)v+(t) + c−(t)v−(t) (1.21)

where v±(t) are instantaneous normalized eigenvectors of H′(t) = H′(∆(t), g(t)) that correspond to

eigenvalues λ′±(t). Note v+(t)Tv−(t) = 0 due to the symmetry of H′(t). To visualize the system’s

evolution, we introduce an instantaneous “weighted eigenvalue”:

λ̄(t) =
|c+(t)|2λ′+(t) + |c−(t)|2λ′−(t)

|c+(t)|2 + |c−(t)|2
(1.22)

which represents the extent to which the state vector is projected onto one of the two eigenvectors

(e.g., c(t) ‖ v±(t)⇔ λ̄(t) = λ′±(t)). As the state vector evolves, we can show the real and imaginary

traces of λ̄(t) in the eigenvalue sheet of the system.

An example is illustrated in Fig. 1.7, where a counterclockwise, “adiabatic”12 parameter loop

encircling an EP is performed. In Fig. 1.7a, b, the system is initialized with v−(0), and at time t = T

the state is transferred to v+(0)13. In contrast, the system initialized with v+(0) ends up in the same

eigenstate (i.e., c(T ) ‖ v+(0)) after the loop, as shown in Fig. 1.7c, d. This result shows that the state

transfer is nonreciprocal.

If we describe the evolution of the system via a propagator matrix U	(t) (with 	 indicating

the loop is counterclockwise) such that c(t) = U	(t)c(0), the state transfer is nonreciprocal when

U	(T ) is asymmetric. We calculate and plot the elements of U	(T ) as a function of T in Fig. 1.8.

One observation is that U	(T ) becomes more asymmetric as T increases.

Similar nonreciprocal state transfer can be observed with clockwise parameter loops. The

propagator matrix U�(T ) turns out to be the transpose of U	(T ), since the clockwise and counter-

clockwise loops are time-reversals of each other (see in App. A). In general, the state transfer in a

11. Note here the loop is counterclockwise in (∆, g) space. To describe a clockwise loop, just set t → −t.

12. Similar to the Hermitian case, we define “adiabatic” to mean | d∆
dt |, |

dg
dt | � |λ

′
+ − λ

′
−| = 2

√
g2 + (∆ + i)2.

13. The final state vector c(T ) is not necessarily equal to v+(0), as the system is physically up to gain and loss. However,
we can always normalize c(T ) to quantize the efficiency of such state transfers.
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non-Hermitian system depends on the geometry as well as the (non)adiabaticity of parameter loops

(see in Ref. [98–101] for more details).
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,12U

,21U
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Figure 1.8: Elements of the propagator matrix, for the loop shown in Fig. 1.7 with varying loop time T , calculated
numerically with Mathematica. In the diabatic time regime (T � 1/r0 ∼ 1), the propagator matrix is approximately the
identity matrix. The propagator matrix becomes asymmetric (U	,12(T ) , U	,21(T )) as the loop goes adiabatic (T � 1),
indicating the state transfer is now nonreciprocal.

1.3.5 Further remarks

In the past several years, there has been a growing interest in studying non-Hermitian systems,

especially in the presence of EPs [81, 102, 103]. A summary of codimensions of DP and EP in

2 × 2 matrices is shown in Table. 1.1. It is also natural to consider degeneracies involving three or

more states, where high order EPs may come into place [104, 105]. For example, the third order

degeneracies have been investigated both theoretically [106–109] and experimentally [110, 111]. I

will present more details on high order EPs in Ch. 6.

To experimentally study non-hermiticity in physics, systems involving lasers and cavities seem

to be promising candidates, since the gains are generated via external pumping, while the losses

are already in place due to the input–output coupling of the cavities and the dissipation inside. The

optomechanical platform used in this dissertation will be discussed in next two chapters, and it will

be seen that EPs (and the “adiabatic” transport around them), as well as static nonreciprocity can be

demonstrated by using optomechanical interactions to induce a non-Hermitian dynamical matrix.
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Matrix type Codimension of DP Codimension of EP

Real symmetric 2 non-existent

Real asymmetric 3 1

Hermitian 3 non-existent

Complex symmetric 4 2

Complex asymmetric 6 2

Table 1.1: Codimensions of eigenvalue degeneracies, based on results from the singularity theory [112].
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Nonreciprocity in optomechanics

With general nonreciprocity and various nonreciprocal devices being introduced in the previous

chapter, let us narrow down to the nonreciprocal behavior in optomechanical systems. In a typical

cavity optomechanical system [113], radiation pressure couples light within the optical cavity to one

or more mechanical resonators, and offers a versatile way of producing temporal modulations. The

time modulated optomechanical coupling, which induces effective interactions between different

photonic (phononic) modes, opens the possibility for nonreciprocal light (sound) transmission.

From a practical point of view, the optomechanical approach to building nonreciprocal devices may

have several advantages such as the potential for linear response, low noise level, optical real-time

reconfigurability and small system size [114].

This chapter begins with a pedagogical introduction to the field of cavity optomechanics, along

with a mathematical framework of our membrane-in-the-middle setup. Next in Sec. 2.2 I will address

the theoretical description and experimental implementations of nonreciprocal photon transmission

in optomechanical systems. In Sec. 2.3, I will describe nonreciprocal phonon transmission, with a

recapture of some previous work in our group, as well as the motivation to the main result in this

dissertation.
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2.1 Brief introduction to cavity optomechanics

The field of optomechanics explores the interaction between electromagnetic radiation and mechani-

cal motion via radiation pressure. Effects of such optomechanical interaction was first considered

in interferometric gravitational wave detectors. Over the past few decades, a broad range of op-

tomechanical systems have been implementated. These systems are completely different in size

(from nanometers to kilometers), mass (from attograms to kilograms) and frequency (from hertz to

gigahertz), yet they are almost equivalent in their theoretical description.

The rapidly growing interest in optomechanics is driven by several motivations. Fundamentally,

optomechanics allows coherent quantum control over the motion massive mechanical objects and the

generation of macroscopic superposition states. It paves a new way for testing the validity of quantum

theory, such as decoherence, which describes the process of objects transitioning from states that are

described by quantum mechanics to states that are described by Newtonian mechanics. Pragmatically,

optomechanical devices may find applications in sensing (e.g., sensitive optical detection of small

forces or displacements) and quantum information processing (e.g., interconversion between stored

solid-state qubits in the microwave domain and flying photonic qubits in the near-infrared domain).

In cavity optomechanical systems, the radiation pressure interaction is enhanced as electromag-

netic modes are confined in an optical resonator (cavity). Such a system is no more than a bunch of

damped harmonic oscillators that are parametrically coupled with each other. Therefore I will first

review the general solution to the equation of motion that describes damped harmonic oscillators,

and then derive the input-output properties of an optical cavity, before I discuss the optomechani-

cal interaction and the standard linearization procedure for it. I will then review the model of the

membrane-in-the-middle setup, which provides the optomechanical platform for the work in this

dissertation.

2.1.1 Damped harmonic oscillators

The second order ordinary differential equation (ODE) that describes the position x(t) of a driven

damped harmonic oscillator is:

ẍ(t) + γẋ(t) + ω2
0x(t) =

F(t)
m

(2.1)
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where ω0 is the oscillator’s natural frequency, γ is the damping rate or linewidth, m is the mass and

F(t) is the driving force. To solve this equation, we transform it into the Fourier domain:

χ−1
0 (ω) · x[ω] =

F[ω]
m

(2.2)

where the Fourier transform for a function f (t) is defined as f [ω] =
∫

dteiωt f (t)1, and we have

introduced a susceptibility function

χ0(ω) =
1

ω2
0 − ω

2 − iγω
→

1
2iω0

·
1

γ/2 − i(ω − ω0)
as Q ≡ ω0/γ → +∞ (2.3)

which represents the oscillator’s response to its driving force at certain frequency. It is worth pointing

out that the susceptibilities of the mechanical and optical oscillators in this dissertation are in the

high-Q limit.

This high-Q limit approximation of susceptibility actually corresponds to the rotating wave

approximation (RWA). To see this, we first introduce the momentum p(t) = mẋ(t) and rewrite

Eq. (2.1) as two coupled first order ODEs:

ẋ(t) =
p(t)
m

(2.4)

ṗ(t) = −γp(t) − mω2
mx(t) + F(t) (2.5)

Then we define a pair of conjugate complex amplitudes:

c =
1

√
2m~ω0

(mω0x + ip) (2.6)

c∗ =
1

√
2m~ω0

(mω0x − ip) (2.7)

such that they satisfy

1. We use square brackets to represent the Fourier component of a function. For an arbitrary function F, one can show
that F∗[ω] = (F[−ω])∗.
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ċ = −iω0c −
γ

2
(c − c∗) +

iF(t)
√

2m~ω0
(2.8)

ċ∗ = iω0c∗ +
γ

2
(c − c∗) −

iF(t)
√

2m~ω0
(2.9)

We emphasize that our treatment is classical although the reduced Planck constant appears in the

definition of c(∗). In fact, ~ in c(∗) is introduced merely for normalization purposes, and can be

interpreted as the area element2 in phase space. This normalization is a standard practice in the field,

as it allows one to easily move into a quantum description of the oscillator. As a result of choosing

this normalization, we have |c(∗)|2 = E/~ω0 which represents the number of phonons, and c(∗)

corresponds exactly to the annihilation (creation) operator ĉ(†)when the position x and momentum p

are replaced by quantum operators x̂ and p̂.

Let cin = iF√
2m~ω0

and transform the above equation into the Fourier domain:

[
γ

2
− i(ω − ω0)]c[ω] ≡ χ−1(ω)c[ω] =

γ

2
c∗ + cin[ω] (2.10)

where χ(ω) denotes the susceptibility3. When the quality factor Q of the oscillator is high (ω0 � γ),

the susceptibility is strongly peaked around the natural frequency ω0, and the c∗ term on the RHS of

Eq. (2.10) is akin to a far-off-resonant drive, which will be suppressed by the narrow linewidth (γ)

and therefore can be ignored under the RWA. An equivalent way to understand this approximation is

to consider Eq. (2.8) in a rotating frame where c̃(t) = e−iω0tc(t):

˙̃c(t) = −
γ

2
c̃(t) −

γ

2
e−2iω0tc̃∗(t) + e−iω0tcin(t) (2.11)

Since c̃∗ term rotates many times during the mode’s natural response time τ = 1/γ, it has an average

of zero and can be ignored. We assume the RWA holds throughout this dissertation, and that the

2. A more accurate description of the area element is h = 2π~.

3. This definition differs from the susceptibility function introduced in Eq. (2.3), but is proportional to the high-Q limit
of the previous definition. We will use this definition in the remainder of the dissertation.
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complex amplitude is governed by the linear equation:

ċ(t) = −(iω0 +
γ

2
)c(t) + cin(t)⇐⇒ c[ω] = χ(ω)cin[ω] (2.12)

The discussion of damped harmonic oscillators ends with a microscopic view of the mechanism

underlying damping. As we already know, for an undriven simple harmonic oscillator (i.e, γ = 0 and

F(t) = 0), the equation of motion is time-reversal invariant, while for damped harmonic oscillators

this symmetry is broken. To understand the origin of such irreversibility, we must realize that the

system, in this case an oscillator, is damped via interactions with its environment (alternatively

referred to as the thermal bath). The simplest thermal bath can be modeled by an infinite set4 of

simple harmonic oscillators, each coupled linearly to the system [80]. It turns out that the system’s

interaction with the environmental modes will not only lead to damping of the system, but will

also exert a stochastic driving force η(t) on it5. In general, the relationship between fluctuation and

damping is captured by the fluctuation-dissipation theorem. [119]

Some statistical properties of η(t) can be derived by considering a collection of identical harmonic

oscillators (known as a canonical ensemble). Firstly, since the ensemble average of the system’s

displacement is zero, we have 〈η(t)〉 = 0 (where 〈〉 represents the ensemble average). Secondly, if

Born-Markov approximation for the thermal bath is applicable (which means the thermal bath is

always in thermal equilibrium and the memory time of the thermal bath is much shorter than the

response time of the system), we may use Dirac delta function to describe the self-correlation of the

stochastic drive:

〈η(t)η(t′)〉 = Dδ(t − t′) (2.13)

where D is the diffusion parameter that scales with the thermal bath temperature T . Eq. (2.13)

indicates that a classical harmonic oscillator coupled to a “cold” thermal bath (T = 0) will come

4. The number of bath modes being infinity is necessary. Otherwise, according to Poincaré’s recurrence theorem (or the
quantum version proved in Ref. [115]), the system will eventually return to its initial state, meaning there is no damping
during this period. A sufficient condition to obtain proper dissipation is the bath modes being continuously distributed in
frequency. This can be appreciated by thinking of a waveguide (as the thermal bath) attached to a cavity (as the system). If
the length of the waveguide is finite, it has an infinite but discrete spectrum. A cavity photon emitted into the waveguide
will be reflected at the other end and be back into the cavity subsequently. However if the waveguide is infinitely long, its
spectrum will be continuous, and any transmitted photon can radiate away such that the cavity is now dissipative.

5. The rigorous treatment, i.e., quantum Langevin equations were first obtained in Ref. [116], and can now be found in
many textbooks such as Ref. [117, 118]
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to rest, subject to neither fluctuation nor damping (dissipation). In contrast, a quantum harmonic

oscillator is driven by vacuum fluctuations even at zero temperature, which leads to phenomena such

as spontaneous emission [120].

2.1.2 Input-output of optical cavities

Optical cavities (resonators) confine certain electromagnetic waves in space by allowing them to

circulate in a closed path. Traditionally, an optical cavity consists of two highly-reflective mirrors,

and the light in between bounces back and forth. The counter-propagating waves interfere with

each other and form a standing wave pattern. Modern development of nanofabrication has brought

different cavity geometries into place. For example, whispering-gallery-mode resonators (where

electromagnetic waves are confined in circular or spherical dielectric structures based on total internal

reflection) and photonic crystal nanocavities (where wave confinement is created by introducing

defects in periodic photonic crystal lattice structure).
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Figure 2.1: A Fabry-Pérot resonator. a, Schematic. b, Normalized amplitude (blue) and phase (red) response.

Here we focus on a traditional Fabry-Pérot resonator, consisting of two highly reflective mirrors

that are separated by a distance L. Such a resonator supports a series of resonances with angular

frequency ωcav = nπc/L, with n being a positive integer mode number. The frequency separation

between two consecutive resonances, or free spectral range (FSR), is defined as:

∆ωFSR =
πc
L

(2.14)
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We will focus on one cavity mode ωc in most of the derivations throughout this dissertation.

Due to the finite mirror transparencies and the internal absorption/scattering, light in optical

cavities will have some decay rate κ6. Defining κin as the decay rate associated with input coupling

and κ0 as the remaining (internal) losses, in general we have

κ = κin + κ0 (2.15)

For Fabry-Pérot resonators, κin is the transmission loss at the input cavity mirror, and κ0 summarizes

the transmission loss at the second cavity mirror, as well as the scattering and absorption losses in

the cavity. Another related quantity called the optical finesse is defined as F ≡ ∆ωFSR/κ, which

corresponds to the average number of roundtrips before a photon leaves the cavity.

A cavity mode coupled to its outside electromagnetic environment can be modeled by a damped

harmonic oscillator. Thus for a high-Q cavity mode, we follow the derivation in Subsec. 2.1.1 to

describe the intracavity field amplitude with an equation similar to Eq. (2.12), that is:

ȧ(t) = −(iωc +
κ

2
)a(t) +

√
κinain (2.16)

where a is the electromagnetic field amplitude inside the cavity, and
√
κinain is the amplitude of

the external drive7. Eq. (2.16) is essentially a Langevin equation in the classical regime with noise

terms ignored. In the quantum regime, a and ain are replaced by annihilation operators, and terms

representing quantum noise are added to make the equation consistent.

If the cavity is driven by a monochromatic laser field ain(t) = āine−iωLt, we can look for an

intracavity response with the form a(t) = āe−iωLt. Making substitutions Eq. (2.16) yields:

ā =

√
κināin

κ/2 − i(ωL − ωc)
=

√
κināin

κ/2 − i∆
(2.17)

where ∆ ≡ ωL − ωc is the detuning of the drive laser frequency with respect to the cavity mode

frequency. We sketched the amplitude and phase of the above response ā in Fig. 2.1(b) as a function

6. We use κ to denote the intensity decay rate, so the amplitude decay rate is κ/2.

7. Note ain corresponds to cin/
√
κin in Subsec. 2.1.1. This is because ~ωL|ain|

2 describes the input power, while ~ω0|cin|
2

scales as the input energy. In the quantum regime, ain is replaced by 〈âin〉, and |ain|
2 is replaced by 〈â†inâin〉 which represents

the rate of photons arriving at the cavity.
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of laser detuning ∆. One can verify that the intracavity power (scales with |ā|2) traces out a Lorentzian

line shape with maximum reached at ∆ = 0. The intracavity phase evolves by π as the detuning is

swept, and near ∆ = 0 the change rate is maximized8.

According to input-output theory, the field reflected from the cavity is

aout =
√
κina − ain = −

(κ0 − κin)/2 − i∆
(κ0 + κin)/2 − i∆

ain ≡ Rain (2.18)

We can see from this expression that the leakage from the cavity interferes destructively with

the prompt reflection, leading to a complex reflection coefficient R. The ratio between κin and κ

determines the extent of such interference and defines three coupling regimes. As sketched in Fig.

2.2, R traces out a (counterclockwise) circle as detuning increases from −∞ to +∞. In all three

regimes, a Lorentzian-shaped dip will be observed if one measures the power of reflected light while

sweeping over laser detuning.

Undercoupled

Overcoupled

Impedence-matched

Im(R)

Re(R)

∆=0∆=0∆=0

∆~-∞

∆~+∞

Figure 2.2: Cavity reflection in three coupling regimes.

8. This rapid change is roughly linear, therefore allows cavities to function as sensitive transducers of quantities that are
coupled with cavity modes.
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2.1.3 Linearized optomechanical interaction

We now consider a canonical optomechanical system that consists of a Fabry-Pérot cavity with one

end mirror fixed and the other attached to a spring. The length of the cavity is L if there is no light.

Once the cavity is pumped with some light source (e.g., a laser resonant with some cavity mode), the

intracavity light exerts a radiation pressure force on the end mirrors, and thus modulates the cavity

length. If the movable end mirror is displaced by x, then the cavity mode frequency is ω̃c = 1
1+x/Lωc.

This displacement is usually much smaller than the original cavity length (x/L � 1, and in this

dissertation we have x/L ∼ 10−8), so we approximately have ω̃c = ωc(1 − x/L).

Figure 2.3: Canonical optomechanical system. A generic optomechanical system consists of an optical cavity with a
movable boundary, illustrated here as a Fabry-Pérot type resonator in which one mirror is attached to a spring on the wall.

We model the movable end mirror by a damped harmonic oscillator with mass m and natural

frequency ωm. Defining the zero-point fluctuation xzpf =
√
~/2mωm, and recalling that x = xzpf(c∗ +

c), the intracavity field amplitude is described by:

ȧ = −(iωc +
κ

2
)a + ig0(c∗ + c)a +

√
κinain (2.19)

where g0 = ωc(xzpf/L) is denoted as the single photon optomechanical coupling rate.

Meanwhile, we can find via electrodynamics the radiation pressure force that drives the end

mirror is F(t) = ~ωc|a(t)|2/L. Rewrite the equation of motion for the mechanical mode:

ċ = −(iωm +
γ

2
)c +

iF(t)
√

2m~ωm

= −(iωm +
γ

2
)c + ig0|a|2

(2.20)

where we have ignored all driving forces except the optical one, to keep the equation simple. In later

chapters, we will include the thermal drives for the mechanical modes.
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One can tell from the above equations of motion that the optomechanical interaction is fundamen-

tally nonlinear. However, the size of the nonlinearity is set by g0, a quantity that is typically small

compared with other relevant rates in optomechanical systems. To date, no experiment has observed

this nonlinear effect at quantum level (referred to as the single-photon strong-coupling regime). Here

we introduce an approximate linearized description that works well as long as g0 � min(κ, ωm),

which indeed holds for the setup in this dissertation (as well as many other optomechanical systems).

We start the linearization procedure by splitting the intracavity field into an average coherent

amplitude a and a small fluctuating term d:

a(t) = α(t) + d(t) (2.21)

so that high order terms such as |d|2 in equations of motion may be ignored. Rewriting the system’s

equations of motion:

α̇ = −(iωc +
κ

2
)α +

√
κinain (2.22)

ḋ = −(iωc +
κ

2
)d + ig0α(c∗ + c) (2.23)

ċ = −(iωm +
γ

2
)c + ig0(|α|2 + αd∗ + α∗d) (2.24)

The |α|2 term is a constant force that leads to a static displacement, so we ignore it throughout the

remainder of this dissertation. The equations can be solved explicitly in the Fourier domain. In order

to build more understanding of optomechanical interactions, we (again) suppose the cavity is driven

by a monochromatic field at frequency ωL, and enter a rotating frame that oscillates along with this

drive, i.e., α→ ᾱe−iωLt and d → de−iωLt, to derive:

ᾱ =

√
κināin

κ/2 − i∆
(2.25)

ḋ = (i∆ −
κ

2
)d + ig0ᾱ(c∗ + c) (2.26)

ċ = −(iωm +
γ

2
)c + ig0(ᾱd∗ + ᾱ∗d) (2.27)

In Hamiltonian mechanics, the time evolution of the system (described by a set of canonical

coordinates {x, p}) is uniquely defined by Hamilton’s equations: ẋ = ∂H/∂q and q̇ = −∂H/∂x, where
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H = H(x, p, t) is the Hamiltonian that corresponds to the total energy of the system. These equations

can be expressed in terms of {c, c∗} as iċ = ∂H/∂c∗ and iċ∗ = −∂H/∂c. In principle, if we are able to

construct a quantity H such that Eq. (2.26) and Eq. (2.27) have forms iċ = ∂H/∂c∗ and iḋ = ∂H/∂d∗,

this quantity is effectively the Hamiltonian of our optomechanical system9. As explained in Ch. 1,

the energy is not conserved because the optomechanical system (or generally any driven system) is

coupled with its environment, resulting in a non-hermitian Hamiltonian:

H = −(∆ + i
κ

2
)d∗d + (ωm − i

γ

2
)c∗c + Hint (2.28)

Hint = −g0(ᾱd∗ + ᾱ∗d)(c∗ + c) (2.29)

Next, we qualitatively derive the classical optomechanical effect known as dynamical backac-

tion, where electromagnetic drive tones applied to the cavity can tune the mechanical oscillators’

frequencies, dampings, and couplings. Depending on the detuning, three cases (∆ < 0, ∆ > 0 and

∆ = 0) are distinguished with respect to the optomechanical interaction Hint. In the red-detuned

case (∆ < 0), Hint can be approximated (under RWA) by a beam splitter interaction Hamiltonian

Hint ≈ g0(ᾱd∗c + ᾱ∗dc∗), and the linearized equations of motion are simplified as:

ḋ = (i∆ −
κ

2
)d + ig0ᾱc (2.30)

ċ = −(iωm +
γ

2
)c + ig0ᾱ

∗d (2.31)

These equations can easily be solved if we assume the cavity field follows the mechanical motion

instantaneously, i.e., d = (κ/2 − i∆)−1ig0ᾱc10. Eliminate the cavity field d in 2.31 and we have

ċ = −i
(
ωm −

g2
0|ᾱ|

2|∆|

(κ/2)2 + ∆2

)
c −

1
2

(
γ +

g2
0|ᾱ|

2κ

(κ/2)2 + ∆2

)
c

= −i(ωm + δωr)c −
1
2

(γ + δγr)c

(2.32)

where δωr and δγr are the optical spring and damping terms, respectively. One may observe that

in the red-detuned regime, the mechanical oscillator is softened (δωr < 0) and is more dissipative

9. This is a pedagogical way to derive the effective Hamiltonian in the classical regime. Rigorous treatment that would
apply to the quantum regime can be found in Ref. [113]

10. Note that this is a heuristic derivation in the Doppler regime where the cavity decay is large.
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(δγr > 0).

In the blue-detuned case (∆ > 0), the interaction term is approximately a two-mode squeezing

Hamiltonian: Hint ≈ g0(ᾱd∗c∗ + ᾱ∗dc). We follow the same procedure as above to eliminate the

cavity field and derive:

ċ = −i
(
ωm +

g2
0|ᾱ|

2|∆|

(κ/2)2 + ∆2

)
c −

1
2

(
γ −

g2
0|ᾱ|

2κ

(κ/2)2 + ∆2

)
c

= −i(ωm + δωb)c −
1
2

(γ + δγb)c

(2.33)

We find δωb = −δωr and δγb = −δγr by comparing 2.32 and 2.33. The mechanical spring constant

is stiffened (δωb > 0) and anti-damping (δγb < 0) is induced in the blue-detuned regime. If the total

mechanical damping γ+δγb becomes negative, the oscillation amplitude c(t) increases exponentially.

The linearization will break down when c(t) is large enough, so the oscillation amplitude will be

limited by nonlinear effects, such that stable self-sustained oscillations can develop [113].

Finally, when the drive is on resonance with the cavity (∆ = 0), the mechanical position

x = xZPF(c∗ + c) causes a phase shift of the light field, which is encountered in optomechanical

displacement measurements. In quantum mechanics, the fact that x̂ (i.e., â + â†) commutes with the

interaction Hamiltonian enables the quantum non-demolition (QND) measurement on the optical

amplitude quadrature [121].

It is worth mentioning that the linearized equations of motion have an exact solution in the

frequency domain [113], which holds for both resolved-sideband regime and Doppler regime (where

we have a “bad cavity” such that κ � ωm). In this solution, the optical spring δΩm and damping δΓm

are expressed as modifications of the mechanical resonator’s linear response to an external force, and

in general being frequency dependent:

δΩm(ω) = g2
0|α|

2ωm

ω

[
∆ + ω

(∆ + ω)2 + κ2/4
+

∆ − ω

(∆ − ω)2 + κ2/4

]
(2.34)

δΓm(ω) = g2
0|α|

2ωm

ω

[
κ

(∆ + ω)2 + κ2/4
−

κ

(∆ − ω)2 + κ2/4

]
(2.35)

Note δΩm and δΓm can be evaluated at the original, unperturbed mechanical frequency ω = ωm,

as long as the laser drive is sufficiently weak (g0|α| � κ). We sketch δωm = δΩm(ωm) and

δγm = δΓm(ωm) in Fig. 2.4.
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Figure 2.4: Dynamical backaction in three regimes. (a) κ = 0.1ωm, (b) κ = ωm, (c) κ = 10ωm. We have set g0 = 1 Hz,
√
κin|ain| = 1 MHz, ωm = 1 kHz.

By the end of this part, we emphasize that the aforementioned linearization process can be

applied to a multi-mode optomechanical system. For example, the Hamiltonian of an m-optical-n-

mechanical-mode system driven by a monochromatic laser field can be written as:

H = −

m∑
j=1

(∆ j + i
κ j

2
)d∗jd j +

n∑
k=1

(ωm,k − i
γm,k

2
)c∗kck + Hint (2.36)

Hint = −

m∑
j=1

n∑
k=1

g jk(ᾱ jd∗j + ᾱ∗jd j)(c∗k + ck) (2.37)

where g jk is the coupling rate between the jth optical mode and the kth mechanical mode.
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2.1.4 Membrane-in-the-middle system

Experimental implementations of cavity optomechanical systems vary widely in scale and geometry.

In this dissertation we focus on the membrane-in-the-middle (MIM) geometry, where a thin dielectric

membrane is dispersively coupled to a Fabry-Pérot cavity (Fig. 2.5). This geometry separates the

mechanical oscillator from the cavity mirrors, and is more favorable than the canonical optome-

chanical system (Fig. 2.3), because the cavity mirrors are no longer required to be highly reflective,

mechanically compliant, and of high mechanical quality factor as would be in the canonical system.

x

A1 A3Ain Atran

A4A2Aref

x/λ
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y 
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)

a b

Figure 2.5: Membrane-in-the-middle setup. a, Schematic of a partially reflective membrane inside a Fabry-Pérot cavity. b,
Theoretical plot of perturbed cavity resonance frequency as a function of membrane position normalized to wavelength.
Blue, orange, green, red lines correspond to membrane’s reflectivity at 0.0, 0.65, 0.8, 0.95, respectively.

The presence of the membrane perturbs the intracavity electromagnetic field. Since the thickness

of the membrane is usually much less than the intracavity electromagnetic wavelength, such pertur-

bation can be adjusted by moving the membrane within the cavity. For example, the perturbation

is minimal when the membrane is located at a node of the intracavity standing wave. On the other

hand, maximal perturbation is reached when the membrane moves to a cavity antinode, where the

refraction inside the membrane now effectively increases the cavity length, and thus resulting in a

lower-shifted cavity resonance frequency.

To quantitatively describe how the membrane affects the cavity resonances, we present a mathe-

matical solution of the perturbed fundamental Gaussian mode frequency. For simplicity, we assume

the membrane is located near the optical beam waist and is oriented perpendicularly to the optical

mode’s wave vector. The membrane is modeled as a dielectric slab with thickness Ld and refraction

index n. Its reflectivity and transmissivity for a light with wave number k at normal incidence
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are [122]:

rd =
(n2 − 1) sin knLd

2in cos knLd + (n2 + 1) sin knLd

td =
2n

2in cos knLd + (n2 + 1) sin knLd

(2.38)

Denote the reflectivity (transmissivity) of cavity end mirrors with r1,2 (t1,2), the field amplitudes

inside the cavity (Fig. 2.5a) are constrained by boundary conditions:



A1

A2

A3

A4


=



0 r1eikL1 0 0

rdeikL1 0 0 tdeikL2

tdeikL1 0 0 rdeikL2

0 0 r2eikL2 0





A1

A2

A3

A4


(2.39)

where L1 (L2) is the length of the left (right) half of the cavity, such that L1 − L2 = 2x, L1 + L2 = L.

Basic linear algebra shows that Eq. (2.39) has nontrivial solutions only when the coefficient matrix

on the RHS is similar to an identity matrix. Our primary interest is in the case of cavity mirrors

being highly reflective, i.e., r1 ≈ r2 ≈ 1. Setting all eigenvalues of the coefficient matrix equal to 1

gives the cavity resonance frequency:

ω(x) = ∆ωFSR(cos−1(|rd| cos 2kx) + φ) ·
2
π

(2.40)

where φ = arg rd is the complex phase of rd, and again x � L holds. We plot ω(x) in Fig. 2.5 with |rd|

set to several different values. Note that neither higher-order modes of the cavity nor tilted alignment

of the membrane was taken into account in our current treatment. General treatment of these effects

based on perturbation theory is given in Ref. [123].

2.2 Optomechanical nonreciprocal photon transmission

We explained in Ch. 1 that nonreciprocity can be induced from parametric modulations in time.

For a parametrically coupled multi-mode system, nonreciprocity may arise due to the dissipation

in ancillary modes along with the interference between multiple coupling pathways [124]. In this

context, dissipation allows a flow of energy leaving the system, thus breaking the time reversal

symmetry, regardless of the interchange between inputs and outputs, and can make any coherent
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interaction directional (can be viewed as reservoir engineering, see in Ref. [125]). Multi-path

interference, if dependent on the direction of signal propagation, is another key resource to break

reciprocity. For example, transmission in one direction is allowed due to constructive interference

between different paths (see in Ch. 1 for details), while destructive interference suppresses the

transmission in the opposite direction.

Following this approach, optomechanical systems are particularly promising for parametric

nonreciprocity. On the one hand, parametric modulations of mechanical and/or optical modes are

naturally realized in an optomechanical setting, thanks to the dynamical backaction. On the other

hand, the system is intrinsically dissipative, while the interference needed for nonreciprocity may

be achieved by combining independent optomechanical interactions. Indeed, theories have been

presented to describe possible optomechanical implementations of on-chip isolators [126–129],

frequency converters [130], and directional amplifiers [131]. Meanwhile, a bunch of experiments

have demonstrated electromagnetic nonreciprocity in both optical [128,129,132–134] and microwave

[52, 135–137] frequencies.

In this section, I will present the theoretical framework for general conditions to induce nonrecip-

rocal transmission, and show that these conditions can be satisfied with multi-mode optomechanical

arrangements. Then I will summarize the results from several experimental realizations.

2.2.1 Theoretical proposals

Consider a general optical two-port two-mode system (sketched in Fig. 2.6), which can be described

with coupled-mode formalism [138]:

iȧ = Da + Ksin (2.41)

sout = Psin + KTa (2.42)

where a = (a1, a2)T is the vector amplitude of the two modes, and sin (sout) represents the input

(output) signals at the two ports. The dynamical matrix D describes the linear evolution of the two-

mode subsystem in absence of excitation, while the P is the direct path scattering matrix between
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the two ports11. Matrices K and KT represent the coupling from ports to modes and from modes to

ports, separately. Note that we have implicitly used the convention that each optical mode couples to

the input/ouput port in a reciprocal fashion.

a1 a2

s1,in

s1,out

s2,out

s2,in

P12=P21

d

K11 K21 K12 K22

P11 P22

Figure 2.6: Schematic representation of a two-port two-mode system. Couplings within the system are denoted with
double-headed arrows. Dashed lines indicate the coupling may not exist. The ports located at two ends can be used for
input and/or output. Each mode (a1 or a2) couples with both ports.

In the frequency domain, Eq. (2.41) and Eq. (2.42) are rewritten as:

ωa[ω] = D(ω)a[ω] + Ksin[ω] (2.43)

sout[ω] = Psin[ω] + KTa[ω] (2.44)

We can define the scattering matrix S (ω) of the system such that sout[ω] = S (ω)sin[ω]. The off-

diagonal matrix element S 12 (S 21) represents forward (backward) transmission coefficient. The

scattering matrix solved from Eq. (2.43) and Eq. (2.44) is:

S (ω) = P + KT(ωI − D(ω))−1K (2.45)

The system is nonreciprocal if the forward and backward transmissions are different, which can be

quantified by

S 12 − S 21 =
det(K)(D12 − D21)

det(ωI − D)
(2.46)

According to 2.46, the necessary and sufficient conditions to break reciprocity are (i) det(P) , 0, (ii)

D12 , D21. Condition (i) can easily be ensured with a suitable asymmetry in the coupling between

the two modes and the two ports, namely K12K21 , K11K22. Condition (ii) is more demanding, as

the Hamiltonian of a linear, time-invariant, time-reversible system is always symmetric [5]. We now

11. Here P is a unitary matrix, so |det(P)| = 1, while the phase of det(P) is in general not measurable. P is diagonal if
there is no direct coupling between the two ports.
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show how such symmetry can be broken with optomechanical interactions.

a b

Figure 2.7: Schematic of nonreciprocal optomechanical systems. a, A system consists of two optical modes coupled to
one mechanical mode, adapted from Ref. [139]. Interactions with the common mechanical mode create a mechanically
mediated coupling between the two optical modes, which is, in general, nonreciprocal. b, A system consists of two
optical modes and two mechanical modes, adapted from Ref. [130]. Nonreciprocity in amplitude arises due to multi-path
interference.

Let us focus on photon transmissions in a cavity-optomechanical system that involves two optical

modes coupled to a common mechanical mode (Fig. 2.7(a)). The natural frequency and linewidth

of the mechanical mode are ωm and γm, respectively. A control field at frequency ωL is applied to

both optical modes. In the rotating frame at frequency ωL, the linearized evolution of this system is

described by:

α j =

√
κin, j

κ j/2 − i∆ j
ain, j (2.47)

ḋ j = (i∆ j −
κ j

2
)d j + ig jα j(c + c∗) (2.48)

ċ = −(iωm +
γm

2
)c +

2∑
j=1

ig j(α∗jd j + α jd∗j ) (2.49)

where ∆ j = ωL − ωc, j ( j = 1, 2) defines the detuning of the control field frequency with respect

to each optical mode, and κi describes the optical mode’s decay rate. Note in Eq. (2.47) we have

implicitly assumed that each optical mode is driven only by the control field in its own cavity (that no

direct coupling between the two optical modes are introduced), which corresponds to the assumption

that K is diagonal in the aforementioned general two-port systems. We also assume the system is in

the resolved-sideband regime and the control field is red-detuned, such that the counter-rotating terms
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(those contain c∗ or d∗) in Eq. 2.48 and Eq. 2.49 can be ignored. After eliminating the mechanical

motion in the frequency domain, we get:


[
κ1
2 − i(∆1 + ω)

]
d1[

κ2
2 − i(∆2 + ω)

]
d2

 = −χm(ω)

 g2
1|α1|

2 g1g2α1α
∗
2

g1g2α
∗
1α2 g2

2|α2|
2


 d1

d2

 (2.50)

where the mechanical susceptibility is defined as χm(ω) = [γm/2− i(ω−ωm)]−1. Comparing Eq. 2.50

with Eq. 2.43, it follows that

D (ω) =

 −∆1 − i κ1
2 0

0 −∆2 − i κ2
2

 − iχm (ω)

 g2
1 |α1|

2 g1g2α1α
∗
2

g1g2α
∗
1α2 g2

2 |α2|
2

 (2.51)

We observe from Eq. (2.51) that in general D12 , D21 since α1 and α2 are complex numbers.

Therefore the system can be nonreciprocal, by imprinting opposite phase for oppositely traveling

photons. However, the fact that |D12| = |D21| indicates the transmission amplitude remains the same

for both input ports/directions. To achieve nonreciprocal amplitude transmission (for application in

isolators), we may introduce the direct coupling µ between the two optical modes, such that the new

dynamical matrix is D(µ) = D + µσx (where σx is the Pauli matrix). With appropriate choice of µ,

we would have |D(µ)12| , |D(µ)21| [139].

Alternatively, we may introduce another photon transmission path by including a second me-

chanical degree of freedom (Fig. 2.7b) and a second red-detuned control field. Interference occurs

as there are two transmission paths between the cavity modes. Denote the mechanical frequencies

and dampings by ωm,k and γk for k = 1, 2. The control laser frequencies are ωL,1 and ωL,2, and the

detunings are ∆i j = ωL,i − ωc, j. Linearize the cavity fields with a j = e−iωc, jt(
∑2

i=1 αi je−i∆i jt + d j),

where αi j =
√
κin,i

κi/2−i∆i j
, and write down the equations of motion in the resolved-sideband regime:

ḋ j = −
κ j

2
d j +

2∑
k=1

ig jkα jk(ck + c∗k) (2.52)

ċk = −

(
iωm,k +

γk

2

)
ck +

2∑
j=1

ig jkα
∗
jkd j (2.53)

from which the mechanical modes can be eliminated to derive the dynamical matrix. By entering a
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proper rotating frame, we have:

D (ω) =

 δr − i κ1
2 0

0 −δr − i κ2
2

 +

2∑
k=1

χm,k (ω + (2k − 3)δr) Gk (2.54)

where δr = (ωL,1 − ωL,2)/2 describes the frequency difference between the two control fields,

χm,k(ω) = (γk/2 − i(ω − ωm,k))−1 denotes the mechanical susceptibility, and the interaction matrix

Gk has elements (Gk)i j ≡ Gki j = gikg jkαikα
∗
jk for k = 1, 2. The ratio between backward and forward

transmission can be shown to have form:

S 12(ω)
S 21(ω)

=
G112χm,1 (ω − δr) + G212χm,2 (ω + δr)
G121χm,1 (ω − δr) + G221χm,2 (ω + δr)

(2.55)

As we will see below, this ratio is demonstrated to have a magnitude that deviates from 1 in various

experimental settings.

We are left with a remark on the off-diagonal terms in Eq. (2.51) and Eq. (2.54), which represent

the effective coupling between the two optical cavity modes mediated by the mechanical mode(s).

As we know, the mechanical mode(s) can be driven by the beating between the light on resonance

with one cavity and its associated control field(s), while such mechanical motion adds a blue

sideband to any control field that is applied to the other cavity mode. As long as this sideband is

approximately on resonance with the second cavity mode (which mathematically corresponds to

|ωc,1 − ωc,2| < min(κ1, κ2)), we have a decent coupling between the two cavity modes. In practice,

however, we may have distinct cavity frequencies. Therefore additional control field(s) should be

introduced in order to effectively couple the cavity modes. Generally speaking, an optomechanical

system with m optical cavity modes and n mechanical modes requires m×n control fields to generate

nonreciprocity in amplitude transmission12.

2.2.2 Experimental implementations

We now review the main results from a few experimental work that demonstrate nonreciprocal photon

transmission based on optomechanical interactions. Both two-optical-one-mechanical-mode and

two-optical-two-mechanical-mode systems are discussed. This helps us build more understanding of

12. We assume the cavity modes do not directly interact with each other.
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the theory presented in the previous section.

hg

i

Figure 2.8: Nonreciprocity in microsphere resonators. Summary of results from Ref. [133].

As reported in Ref. [133], nonreciprocity was induced in a traveling wave optomechanical system,

which consisted of a silica microsphere resonator that was evanescently coupled with a tapered fibre.

Three modes of the resonator, namely a pair of degenerate CW and CCW optical whispering gallery

modes and the mechanical breathing vibration mode (where the equator of the sphere expands and

compresses uniformly) were dispersively coupled by optomechanical interaction. A driving field

enhanced this optomechanical interaction between the mechanical mode and the copropagating

optical mode inside the microsphere resonator. Specifically, a transparency transmission window

arose for the copropagating signal when the driving field was red-detuned from the optical mode
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frequency13, leading to optical isolation (Fig. 2.8c, d). On the other hand, a blue-detuned driving

field enhanced the copropagating signals, resulting in a directional amplifier (Fig. 2.8e, f). The

authors also studied the nonreciprocal transmission in the case of two oppositely propagating driving

fields (Fig. 2.8g, h).

Similar isolation and directional amplification of optical signals were realized with silica micro-

toroid optomechanical resonators [128]. The nonreciprocal transmission was shown to be preserved

even for non-degenerate modes. In a subsequent work by the same group [132], the authors demon-

strated a four-port circulation with almost identical setup (except including an additional tapered

optical fiber), as illustrated in Fig. 2.9. The isolator built with microsphere resonators was also

reported [134].

a

c

b

d

f g h i

e

Figure 2.9: Nonreciprocity in microtoroid resonators. Summary of results from Ref. [132].

13. This phenomena is usually referred to as the optomechanically induced transparency (OMIT). Its counterpart for the
blue-detuned control field is called the optomechanically induced amplification (OMIA).
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Nonreciprocity due to multi-path interference has mostly been reported in the microwave domain,

and demonstrated with superconducting circuits [140]. For example, in Ref. [136], two cavity

modes (produced by a vacuum-gap capacitor resonant with spiral inductors) were coupled with two

mechanical modes (generated from the vibrations of the capacitor’s top plate) via four independent

drives (Fig. 2.10(a)). With this configuration, nonreciprocal transmission can be adjusted to occur

on resonance with the cavities, by driving at appropriate amplitudes and frequencies. The relative

phases of the drives also played an important role for maximizing the nonreciprocity. It turned out

that the so called loop phase, which defined as a dynamically tunable parameter related to the sum

of the relative phases of the four drives, can be optimized to realize a reverse isolation of more than

20 dB (Fig. 2.10(b)).

a b

Figure 2.10: Nonreciprocity in superconducting circuits. Summary of results from Ref. [136].

Authors in another study [52] introduced a third cavity mode to demonstrate a mechanically

mediated circulator. To realize three-port circulation, one requires at least six distinct photon-phonon

conversion paths. This was implemented by a set of six phase-locked microwave pumps. An isolation

up to 24–38 dB was reported.

Last but not least, nonreciprocity was also highlighted in a photonic-crystal-based optomechani-

cal circuit [129]. In this experiment, two cavities were connected both optically and mechanically. As

a result, there is a direct coupling between the two cavity modes, along with the “indirect” coupling

mediated by the two mechanical modes. When the cavities were driven by the phase-correlated

control beams, a synthetic magnetic magnetic flux formed, which, in combination with the system’s
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dissipation, led to nonreciprocal transmission of photons with 35 dB of isolation.

2.3 Optomechanical nonreciprocal phonon transmission

We showed in the previous section how two otherwise non-interacting optical cavity modes can

be effectively coupled together in the presence of optomechanical interactions. The linearized

optomechanical Hamiltonian, proportional to αdc∗ + α∗d∗c (αd∗c∗ + α∗dc) when the control field

is red- (blue-) detuned, is symmetric under the exchange of the optical and mechanical degrees of

freedom. It is thus natural to think about the dual form of the proposals in Sec. 2.2. That is, instead

of using mechanical modes as the auxiliary to produce nonreciprocal photon transmission, we may

think of producing nonreciprocity in the transmission of the mechanical excitation (i.e., phonon)

with the optical mode(s) as the auxiliary.

Input

Output

Input

Output

ω1, γ1

ωc, �

ω2, γ2

Figure 2.11: Schematic of (non)reciprocal optomechanical phonon transmission. Based on the symmetry between
mechanical and optical degrees of freedom in Fig. 2.7(b), we may consider the nonreciprocity in mechanical modes. We
further save one optical mode by introducing multi-path optomechanical coupling between the mechanical modes and the
same cavity resonance.

As an analogy of the two-optical-one-mechanical-mode system discussed in Sec. 2.2, consider a

system consisting of two mechanical modes (with natural frequencies ω1,2 and linewidths γ1,2), each

coupled linearly to a common optical cavity mode (with resonance frequency ωc and decay rate κ).

Suppose the cavity is driven by a control laser beam with power P and frequency ωL, the linearized
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equations of motion are given by:

ḋ = (i∆ −
κ

2
)d + i

2∑
k=1

gkα(ck + c∗k) (2.56)

ċk = −(iωm,k +
γk

2
)ck + igk(α∗d + αd∗) (2.57)

where ∆ = ωL − ωc is the control laser detuning, and average intracavity field is:

α =

√
κin

κ
2 − i∆

ain; ain ≡

√
P
~ωL

(2.58)

The motion in the reduced system of two mechanical modes is described by a vector c = (c1, c2)T,

which in the frequency domain satisfies

− iωc[ω] = −


κ1
2 + iωm,1 0

0 κ2
2 + iωm,2

 c[ω] +

 g2
1 g1g2

g1g2 g2
2

σc[ω] (2.59)

where the optical susceptibility is defined as χc(ω) = [κ/2− i(ω+ ∆)]−1, and the complex mechanical

susceptibility induced by the intracavity field is σ = |α|2
[
χc(ω) − χ∗c(−ω)

]
.

Since the coefficient matrix on the RHS of Eq. (2.59) is symmetric, static phonon transmission

between the two mechanical modes is reciprocal. However, the phononic energy transfer may be

nonreciprocal if the parameters of the optomechanical system are varied in time. Such nonreciprocity

was first demonstrated in our MIM system with the presence of an EP in the spectrum of the

device [141].

Here we briefly summarize the idea and results of our work in Ref. [141], and leave the experi-

mental details (of this work as well as our subsequent studies in Ref. [142, 143]) for later chapters.

In this study, a pair of nearly-degenerate mechanical modes were coupled via a single optical cavity

driven by monochromatic red-detuned control laser beam. We showed that with appropriately chosen

control laser power (P) and detuning (∆), an EP appears in the mechanical-mode subsystem (Fig.

2.12a–d). In addition, we were able to execute closed loops that encircle the EP in (P,∆) parameter

space in a time not much greater than the mechanical modes’ decay times. To study the phononic

energy transfer, we excited one of the mechanical modes, then executed the loop, and recorded the

motion in both mechanical modes right after the loop was done. The efficiency of the loop’s energy
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transfer was calculated from the mechanical motion measurement.
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Figure 2.12: Summary of results in Ref. [141]. a–d, The resonance frequencies and damping rates of the two mechanical
modes of the membrane as a function of laser power P and detuning ∆, demonstrating the existence of an EP. e, Magnitudes
of propagator matrix elements. Results of clockwise (counterclockwise) control loops are shown in circles (squares). For
each control loop direction, the inequality of the red/blue markers in the long-time limit indicate the non-reciprocity of the
propagator matrix.

The energy transfer was negligible when the loop was swept out very quickly. In contrast,
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nonreciprocal energy transfer was observed in the adiabatic limit (loop time τ � 1 ms in this

experiment), for both clockwise and counter-clockwise loops. Mathematically, an adiabatic control

loop can be viewed as a propagator matrix that transforms the initial state c(0) = (c1(0), c2(0))T to

the final state c(τ) = (c1(τ), c2(τ))T, with the form:

U	,�(τ) =

 a	,�(τ) b	,�(τ)

c	,�(τ) d	,�(τ)

 (2.60)

where � (	) denotes a (counter-) clockwise loop. Nonreciprocity in the energy transfer occurs

when b	,�(τ) , c	,�(τ)14, which is shown in Fig. 2.12e.

In a subsequent study [142], we observed similar nonreciprocal energy transfer within a pair of

highly non-degenerate mechanical modes. As will be discussed in Ch. 4, effective coupling between

these highly non-degenerate mechanical modes is achieved by driving the cavity with two control

laser tones, in which case the eigenvalue spectrum has similar features to the nearly-degenerate case.

In the high-Q limit, such arrangement leads to a dynamical matrix D of the mechanical two-mode

subsystem that satisfies D12 ≈ D∗21, indicating nonreciprocity in phase. The energy transfer is

nonreciprocal for the adiabatic encircling of an EP.

It is worth mentioning that the nonreciprocity studied in Ref. [141, 142] is transient, as we

necessarily had to modulate system parameters dynamically in time. In Ch. 5, we will present

measurements of static optomechanical nonreciprocity, in which no time-dependent modulation is

required. The basic idea is to introduce another pair of cavity drives, such that the off-diagonal

elements of the dynamical matrix is highly asymmetric (|D12| , |D21|).

14. If we map this transfer process to the scattering through a two-mode waveguide, such that the sense of the loop
corresponds to the direction of wave propagation, then the 4 × 4 scattering matrix is symmetric so the system is reciprocal.
A detailed explanation is in Appendix A.
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Experimental setup

The optomechanical system for our experiments consists of a silicon nitride membrane positioned in

the middle of a Fabry-Pérot cavity. With the theoretical model already discussed in Ch. 2, in this

chapter I focus on the experimental setup. I will review the MIM device (including the membrane

and the cavity), the cryogenic environment, the optical and electronic circuits, as well as the laser

locking techniques for our experiment.

3.1 Cryogenic membrane-in-the-middle system

In this section, I describe the membrane and the cavity setup, and how the MIM device is settled

down in the cryogenic platform.

3.1.1 Membrane

In general, the vibrational modes of a 2D (or very thin and highly stressed) square membrane can be

indicated by the number of anti-nodes in its two dimensions (Fig. 3.1). For instance, a {m, n} mode

describes a standing wave at frequency

νm,n = ν1,1

√
m2 + n2

2
(3.1)
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where ν1,1 is the membrane’s fundamental mode frequency. We can see that in this case {m, n} and

{n,m} are degenerate modes. For a rectangular membrane with unequal side lengths (i.e., Lx , Ly),

the degeneracy between {m, n} and {n,m} modes is broken, and the frequency of the {m, n} mode is

now

νm,n = ν1,1

√
(m/Lx)2 + (n/Ly)2

(1/Lx)2 + (1/Ly)2 (3.2)

m=1

m=2

m=3

n=1 n=2 n=3

Figure 3.1: Vibrational patterns of a square membrane.

Commercial silicon nitride membranes are known for their high mechanical quality factors and

low optical absorption in the near-infrared regime [144], which make them attractive candidates for

the mechanical resonators of the MIM geometry. For our experiment, we use a high stress, 1 mm ×

1 mm × 50 nm stoichiometric Si3N4 membrane from Norcada (NX5100AS).

The frequency of the fundamental mode on our membrane is approximately 352 kHz. The ideal

frequencies of high order {m, n}modes can be inferred via Eq. (3.1). In practice, the membrane is not

a perfect square due to imprecision in the fabrication process. However, as separation between {m, n}

51



and {n,m} modes is typically several hundred Hertz (i.e., much smaller than the splitting between

mode pairs which are not {m, n} and {n,m}), we refer to such mode pairs as nearly-degenerate. A

sample spectrum of our membrane is shown in Fig. 3.2.

Frequency (kHz)

Figure 3.2: Membrane mode spectrum. Red markers indicate the theoretical values calculated from Eq. (3.1) given
ν1,1 = 352.4 kHz. The unmarked smaller peaks are other vibrational modes of the system (could be of the cavity mirrors
or membrane support structures).

At room temperature, the Q factors of these modes are around 106, and can be increased to 107

as the temperature goes to 4K. We measure the Qs via mechanical ringdowns (see in App. B, where

the setup is discussed and several examples of such measurement are shown).

Figure 3.3: Membrane setup. a, Schematic of the membrane support. b, Photograph of the membrane support.

To insert the membrane into the optical cavity, we mount it on a metal-based multilayer support.

As shown in Fig. 3.3, the silicon chip of the membrane is held on a circular plate of oxygen-free

high-conductivity (OFHC) copper, beneath which lies another sheet of copper that is thermally

anchored to the experimental stage1. The Si chip and copper plates are screwed onto a rectangular

titanium block, which is mounted on top of a ring piezo actuator (only wires visible in Fig. 3.3).

Finally the ring piezo sits on a titanium “bridge” that supports the whole assembly.

1. Heat sinking wires are pressed onto the copper sheet to create a good thermal link to the cryostat.
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3.1.2 Cavity

Our optical cavity consists of two high-reflectivity mirrors that are mounted on two ends of a 3.7

cm titanium spacer. These mirrors (purchased from ATFilms) are formed by a stack of alternating

dielectric coatings deposited on a glass mirror substrate, and are clamped between two plates that

are held together by screws with spring washers. (see in Fig. 3.4) The spring washers ensure an even

clamping force on the mirrors, even when the thermal contraction between the mirror substrate and

the screws is non-uniform.

Figure 3.4: Cavity setup. a, Schematic of the cavity. b, Photograph of the cavity with membrane in place.

In our current setup, the cavity output mirror (r = 0.99997) is significantly more reflective than

the input mirror (r = 0.9998), such that most of the light that leaks out of the cavity traces back to

the input path, making the cavity almost single-sided. The 3.7 cm cavity length corresponds to a

free-spectral range ∼ 4 GHz, while the measured cavity decay rate and coupling rate are κ = 180

kHz and κin = 70 kHz, separately. The decay rate can be measured via cavity ringdown (see App. B),

and the coupling rate can then be determined by the cavity reflection dip. Another important feature

we need to measure is the optomechanical coupling rate g0, which is done by fitting measurements

of the optical spring and damping effects (see App. B).
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3.1.3 Cryostat

EXPEXP

Sorb

1K Pot

He-3 Pot

Vacuum

IVC

Vent/Pump

He-3

He-4

Figure 3.5: Schematic of the major components of a He-3 cryostat.

The cryogenic environment is provided by a Janis 3He refrigerator. As illustrated in Fig. 3.5, our

cryostat consists of a 3He insert situated in the inner vacuum chamber (IVC), which is submerged

in a vacuum jacketed liquid 4He bath. The 4He bath (with constant temperature ∼ 4 K) is vented to

atmosphere (or a helium recycling system) and is replenished approximately weekly by transferring

from an external source. Inside the IVC, another chamber of liquid 4He (1 K pot) is fed by the outer

4He bath and can either be vented to atmosphere or connected to an external pump. Pumping the

1K pot reduces its temperature to ∼1.2 K via evaporative cooling, allowing the gaseous 3He in the

reservoir (sorb) to be condensed and collected in the 3He pot (when the sorb is heated to ∼40 K). A

charcoal sorption pump (SP) integrated within the 3He reservoir is turned on to further cool the 3He
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pot down to the base temperature2, forming the coldest section in the cryostat. The pumping speed

of this SP is controlled by setting its temperature between approximately 4 K and 40 K. Once the

base temperature is achieved, the SP heater is turned off, leaving the system in this temperature for

several days (via evaporation of liquid 3He). The evaporated 3He is collected by the charcoal. When

the 3He pot is empty, the cryostat returns to 4 K. At this point, one can heat the SP as well as the

external pump of 1 K pot, to recondense the 3He and go back to the base temperature. It is worth

mentioning that for the experiments in this thesis, we keep our system at 4 K. We did not go to base

temperature mainly because the effect we want to demonstrate is insensitive to the bath temperature,

not to mention that the recondensation procedure is time consuming.

Laser beams are directed into the cryostat via a single mode fiber inside the fridge (Fig. 3.6).

The fiber terminates at a collimator inside the IVC so the light goes to freespace and bounces off a

45 degree steering mirror. Another (non-adjustable) 45 degree mirror directs the light towards the

cavity input mirror. The reflected light from the cavity tracks the input path and is measured later on

the optical table.

Both the collimator and the steering mirror are mounted on a three-axis piezo-electrically-

controlled mount (manufactured by Janssen Precision Engineering), which offers the tunability to

align the laser beam with the cavity for optimal mode matching. These motorized mounts from

Janssen are vacuum- and cryogenic- compatible. A third mount is used to adjust the titanium bridge

that holds the membrane, and thus allows for rather long distance translation3 of the membrane along

the cavity axis, as well as orientation (tip/tilt) control of the membrane.

It is important to maintain a strong thermal link between the experimental apparatus (especially

the copper plate supporting the membrane) and the cold plate of the cryostat, while keeping the

membrane vibrationally isolated from the cryostat. For this we use a large number of thin, loosely

grouped, gold plated OFHC wires to provide the thermal connection, as illustrated in Fig. 3.6b.

2. The designed base temperature of our system is ∼300 mK, while in practice we found it to be ∼450 mK without laser
beams in the cavity.

3. A distance of ∼2 mm, which is much larger than the ∼200 nm translation allowed by the ring piezo.
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Figure 3.6: Cryogenic platform inside IVC. a, Schematic. The collimator, angled mirrors, cavity, and membrane are all
mounted on the suspended Titanium platform. Thin thermal wires link the cold plate of the cryostat to the membrane
support, as well as other parts of the platform. Suspension springs are critically damped with copper fins nesting between
NdFeB magnets. b. Photograph of the cryogenic stage.

Several vibration isolation techniques are incorporated to reduce the seismic and acoustic noise

from the environment. First of all, the entire cryostat is suspended on a pneumatically-floated

frame (Newport S-2000A-128), and is surrounded by removable walls made of plexiglass covered in

soundproofing foam. Secondly, the cavity and the supporting hardware are built on a ∼1 kg titanium

platform4 inside the IVC, which is suspended on critically damped springs. Critical damping of the

springs is realized via magnetic damping, where eddy currents are induced with copper fins on the

platform and NdFeB magnets mounted to a fixed plate underneath.

4. Titanium is selected for its low thermal contraction at cryogenic temperatures.
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3.2 Measurement setup

I now review the optical setup and the electronic circuits for detection. Additional details regarding

specific experimental protocols will be presented in the relevant chapters.

3.2.1 Optics

We use two physically distinct lasers to generate the control beam and the measurement beam (Fig.

3.7a,b), and work with two cavity modes that are separated by 2×FSR (∼ 8 GHz). This avoids the

undesirable beat notes the control and measurement beams. Meanwhile, the membrane is located

such that frequency shifts of the two cavity modes with respect to the change in the membrane

position are roughly equal (Fig. 3.7c), which enables the locking between two laser beams (explained

further in the next section).
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Figure 3.7: Optical circuits. a, Schematic. ISO stands for isolator, and IM represents intensity modulator. b, Control and
Measurement beams in frequency space. c, Position-dependence of different cavity modes, for a membrane located near
the beam waist within the cavity.

The lasers used in our experiment are Prometheus Nd:YAG lasers manufactured by Innolight

(now Coherent). These laser sources generate ∼1 W beams with λ ' 1064 nm, and the frequencies

can be adjusted either via tuning the laser temperature or using a piezo attached to the YAG crystal.
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The former way provides a slow, coarse control over a range of ∼60 GHz, and the latter gives a fast

(kHz scale bandwidth control) with a range of a few hundred MHz. The lasers are low noise with 1

kHz bandwidth, and include a built-in active intensity stabilizer (“noise eater”). To further suppress

the phase noise, each laser can pass through a narrow linewidth (∼20 kHz) Fabry-Pérot cavity that

acts as a filter. The design of such filter cavities is shown in Fig. 3.8a. For most of the measurements

carried out in this dissertation, both filter cavities are bypassed (via the alternative optical path shown

in Fig. 3.8b).

Bypass

Camera

Trans. Diode

Refl. Diode

EOM
input

output

OscilloscopeRF
DC

DG1022

BLP-1.9+

PI Controller
LB1005

R~.99999

R~.99999

PZT

a b

Figure 3.8: Schematic of the filter cavity. a, Design. The piezo actuator (PZT) is used to adjust the cavity length at a kHz
rate. b, Optical and electrical circuits. BLP1.9+: Mini-Circuits low pass filter (DC–1.9 MHz). PI Controller LB1005:
proportional-integral controller for cavity frequency locking.

A small fraction of each beam is sampled using a beamsplitter immediately after the laser output.

The beat note of these two samples is measured with a high-speed photodiode, and is used to stabilize

the relative frequency between the two lasers (frequency lock in Fig. 3.7a, explained in next section).

After passing through (or bypassing) the filter cavity, the measurement laser is split into two

beams: a weak probe and a much stronger local oscillator (LO). The probe beam then passes

through an electro-optic modulator (EOM), which applies ∼15 MHz phase modulation to allow for

Pound-Drever-Hall (PDH) locking to the cryogenic cavity (explained in App. A). An acousto-optic

modulator (AOM) shifts the probe (and its sidebands added by the EOM) by ∼80 MHz, bringing

them away from the LO frequency and close to the resonance of a cavity mode.

The control laser also passes through an 80 MHz AOM (AOM2 in Fig. 3.7a), after which the

laser frequency is close to the resonance of another cavity mode that is 2×FSR higher than the

measurement cavity mode. By modulating the radio frequency (RF) input that drives this AOM, we

are able to tune the detuning and power of the control laser beam dynamically, which, as we will see
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in Ch. 4, is important for our experiment. In fact, if we drive the AOM with multiple RF tones near

80 MHz, the modulated laser beam will include multiple tones correspondingly.

Later on, a fiber-based polarizing beamsplitter combines the measurement and control laser

beams. The combined beam then passes through a fiber-coupled AOM, which shifts all the tones in

the beam by 200 MHz. The PDH feedback signal goes into the voltage-controlled oscillator (VCO)

that controls this AOM, therefore every tone in the combined beam tracks the fluctuations of the

cryogenic cavity.

After the 200 MHz AOM, 1% of the beam power is directed to a photodiode via a beamsplitter for

total laser power monitoring, while the rest of the beam is directed to the cryostat via a fiber-coupled

circulator. The reflected light from the cryogenic cavity is redirected to another photodiode by this

circulator, for the heterodyne measurement (explained in App. B).

3.2.2 Electronics
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ZI HF2
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Figure 3.9: Schematic of electric circuits. DG1022: signal generator manufactured by Rigol. LSG-121: signal generator
manufactured by Vaunix. ZI HF2: lock-in amplifier manufactured by Zurich Instrument, with six demodulation channels,
two input channels and two output channels (only one channel shown here).

The reflected light from the cavity lands on an InGaAs photodiode (PDA10CF) with 150 MHz

bandwidth. As illustrated in Fig. 3.9, the generated photocurrent goes to a bias tee and is separated

into DC and RF components. The DC component, being proportional to the total beam power, is

connected with an oscilloscope to monitor the reflection dip. The RF component, which includes beat

notes between various pairs of laser tones, is split for both laser frequency locking and heterodyne

signal processing. Therefore, the most relevant beatnotes are (i) the ∼15 MHz beating between

the probe and its (EOM controlled) sideband, and (ii) the ∼80 MHz beating between the LO and

the membrane added side bands on the probe. Note the RF component frequency is cut off at the
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bandwidth of the photodiode, and is referred to below as the RF signal.

Along the feedback path, the RF signal is filtered by a low-pass filter at 21 MHz, and then mixes

with a ∼15 MHz reference signal (which also drives the measurement beam EOM). The down-mixed

signal is filtered and amplified to form the PDH error signal.

Along the heterodyne measurement path, the RF signal is filtered by a band-pass filter centered at

80 MHz, and then mixes with a reference signal at 100 MHz. The down-mixed signal near 20 MHz

is filtered and measured by a lock-in amplifier (Zurich Instrument HF2)5. Finally the demodulated

signal is recorded for data processing.

3.3 Laser frequency locking

As we have seen in Ch. 1, detuning between the control laser frequency and its addressed cavity

mode frequency is one of the important parameters that determine the behavior of an optomechanical

system. Meanwhile, the probe beam (generated by the measurement laser) frequency should also

track some cavity mode for the heterodyne measurement. However in practice, all frequencies

may wander due to temperature fluctuations of the environment6. Therefore we employ locking

techniques to stabilize the relative frequencies between the control/measurement lasers and the

corresponding cavity modes.

Conceptually, the idea is to generate some error signal that varies linearly with frequency offset,

and then apply an appropriate feedback to either the laser or the cavity. Here we implement a nested

locking system that involves up to 5 interdependent feedback circuits, using proportional-integral

(PI) controllers (New Focus LB1005) to create feedback signals. Specifically, we lock the probe

beam on resonance with some cavity mode, and lock the control beam to the probe beam7. We can

also lock the filter cavities if they are being used.

The probe beam frequency is locked to the cryogenic cavity via PDH technique (see App. A for

how the error signal is generated). We implement the feedback in two ways. Firstly, the output of

5. The reference signal is necessary since our HF2 can measure signal only up to 50 MHz.

6. In addition, laser frequencies can drift due to mechanical imperfections and laser gain dynamics, while cavity mode
frequencies can vary due to changes in membrane position.

7. In principle, the two lasers can be locked separately to their corresponding cavity modes. The reason we choose to
lock one beam to the other is to simplify the feedback circuits.
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Figure 3.10: Schematic of laser frequency lockings. a, Measurement laser locking. b, Control laser locking. RS:
Rohde&Schwarz SMB100A RF generator.

PI controller No. 1 is filtered and applied to the voltage-controlled oscillator (VCO) that drives the

200 MHz AOM (AOM3 in Fig. 3.7a), forming a fast feedback with bandwidth up to 5 kHz. The

frequency of this AOM can only be varied between ∼ 190 and 210 MHz, so in order to keep the

driving frequency centered within this range, we use a second feedback channel. As shown in Fig.

3.10a, PI controller No. 2 takes the output of the PI controller No. 1 as its error signal and sends

its feedback to the measurement laser piezo. This feedback is low-passed at 2 Hz, and is intended

to handle any long-term drift in laser or cavity frequency, such that the driving tone of AOM3 is

maintained ∼200 MHz.

The control beam frequency is stabilized to the probe beam frequency via a slightly different

circuit (Fig. 3.10b), similar to the scheme described in Ref. [145]. As mentioned in the previous

section, the ∼8 GHz beatnote between these two beams is captured by a high-speed photodiode.

To stabilize the frequencies between the two lasers, we first bring this beatnote down to near DC

by mixing the photocurrent with a reference tone (generated by Rohde&Schwarz SMB100A) at

ωref ' 2×FSR.8 Then we split the output of the mixer, send one arm through a 1.9 MHz low-pass

filter, and recombine the two arms with a second mixer. The signal in the filtered arm experiences a

steep, linear frequency-dependent phase shift whenever the frequency difference between two laser

beams is near ωref ± 1.9 MHz. The resulting output of the second mixer is a voltage proportional to

the original laser frequency difference, thus is used as the error signal. We send this error signal to

PI controller No. 3 and apply the feedback to control laser piezo.

When filter cavities are in use, we need to keep their frequencies on resonance with the corre-

8. Note that the ∼16 GHz component is well suppressed due to the small bandwidth of the mixer.
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sponding lasers. As shown in Fig. 3.8b, PDH technique is employed with the feedback applied to the

piezo inside the filter cavity. Meanwhile, a feedforward signal split from the driving tone of AOM3

is applied to the measurement laser’s filter cavity piezo, to further stabilize the locking.

In the end, we want to point out that in order to make our locking scheme actually work, the

membrane should be located at a spot in the cryogenic cavity where the (absolute) slope of the cavity

resonance frequency as a function of the membrane position is maximized and is approximately

the same for both cavity modes (shown in Fig. 3.7c). Such locating yields a large optomechanical

interaction, and makes the detuning of the control laser easily inferred. This condition is satisfied by

initializing the membrane position (see in App. B for details).
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Transient optomechanical nonreciprocity

We have seen in Ch. 1 that an EP in a non-Hermitian system reflects a non-trivial topology in the

eigenvalues’ dependence upon the system’s parameters. In the simplest case (e.g., the 2×2 matrix H′

in Sec. 1.3), the eigenvalue surfaces of the system’s Hamiltonian (or dynamical matrix) possess the

same topology as the Riemann sheets of the complex square root function. If the system is initialized

with one normal mode, and its parameters then vary slowly in a closed loop that encircles an EP, the

remaining excitation may transfer to the other normal mode that is involved in the EP [83, 146, 147].

Moreover, as we have shown in Ch. 1 and Ch. 2, the non-Hermitian dynamics during such operation

ensures that the state (energy) transfer is nonreciprocal, with respect to the choice of the initial

excitation as well as the sense of the control loop [98–100].

The nonreciprocity associated with this energy transfer arises from the interplay between the

modes’ coupling to each other and to their dissipative environment [124]. For a cavity optome-

chanical system, the couplings and dampings of mechanical modes can be controlled via the laser

excitation in the cavity. As discussed in Ch. 2, we have demonstrated the nonreciprocal energy

transfer between a pair of nearly-degenerate mechanical modes, within our MIM setup where a

control laser tone can couple both mechanical modes and has in situ tunability [141].

In this chapter, we remove the constraint in the mechanical modes’ near degeneracy, and extend

such nonreciprcoal energy transfer to between any pair of mechanical modes. This is achieved by

introducing an additional laser tone, which bridges the frequency gap between two well-separated
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mechanical modes and produces an EP in an appropriately defined rotating frame. This EP, referred

to as a virtual exceptional point (VEP), offers the same nonreciprocity in energy transfer as the

conventional one [142].

The chapter is organized as follows. I will start with a theoretical derivation of our two-tone

scheme in Sec. 4.1, and then discuss the experimental details in Sec. 4.2 and the results in Sec. 4.3.

4.1 Theoretical derivation

We first build some intuitive understanding of the two-tone scheme. As illustrated in Fig. 4.1a, the

cavity is driven by two laser tones at detunings ∆1 ≈ −ω1 and ∆2 ≈ −ω2, where ωi is the natural

frequency of mechanical mode i (i = 1, 2). Qualitatively, such arrangement ensures the motion of

mechanical mode 1 (2) produces a sideband from tone 1 (2) that is approximately on resonance with

the cavity, and the beating between this sideband and tone 2 (1) causes the intracavity light intensity

to oscillate at a frequency close to ω1 (ω2). Therefore, any near-resonant motion in one mechanical

mode will exert a near-resonant driving force on the other, regardless of the difference in their natural

frequencies (Fig4.1b).
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Figure 4.1: Bichromatic control beam induced coupling. a, Spectrum of the bichromatic control beam. Two laser tones
(light green and dark green) drive a single cavity mode to generate the coupling between two mechanical modes. ∆1,2

are the laser detunings and ω1,2 are natural frequencies of the mechanical modes. δ measures the overlap between the
anti-Stokes sidebands. b, A microscopic picture of the coupling induced by the two control laser tones. The solid horizontal
lines are states labelled by the number of phonons in each mechanical mode (n1, n2) and the number of cavity photons (nc).
The hollow lines represent the process where tone 1(2) absorbs a phonon from mechanical mode 1(2) and creates a cavity
photon, and then generates a phonon in mechanical mode 2(1) via tone 2(1). The dashed horizontal line is a virtual state
through which the transfer process occurs. Ω1,2 are the absolute frequencies of the control laser tones.

4.1.1 Bichromatic light mediated mechanical coupling

We now provide a quantitative description of the effective coupling between two mechanical modes.

Consider a cavity optomechanical system, where the cavity is driven by two laser tones (red-detuned
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with respect to a cavity mode at frequency ωc), we write down the system’s equations of motion:

ȧ(t) = −(
κ

2
+ iωc)a(t) − i

2∑
k=1

gk(c∗k(t) + ck(t))a(t) +
√
κinain(t) (4.1)

ċk(t) = −(
γk

2
+ iωm,k)ck(t) − igk|a(t)|2 (4.2)

where ∆n is the detuning of tone n (n = 1, 2), and the input field of the cavity is defined as

ain(t) = e−iωct
2∑

n=1

ain,ne−i∆nt = e−iωct
2∑

n=1

√
Pn

~(ωc + ∆n)
e−i∆nt (4.3)

Similar to the monochromatic driving case, we can linearize the equations above by setting the

cavity field to fluctuate around some mean value, and neglect high-order terms of the fluctuation.

Specifically, we look for the solution with form a(t) = (ᾱ + d)e−iωct, where ᾱ =
∑2

n=1 αne−i∆nt and

αn =
√
κinain,n

κ/2−i∆n
. With proper substitutions, we have:

ḋ(t) = −
κ

2
d(t) − i

2∑
k=1

gkᾱ(c∗k(t) + ck(t)) (4.4)

ċk(t) = −(
γk

2
+ iωm,k)ck(t) − igk(ᾱ∗d(t) + ᾱd∗(t)) (4.5)

where we have ignored the constant forces as well as the drivings at frequency |∆1 − ∆2|
1.

We want to eliminate d(t) in Eq. (4.5) in order to derive the effective coupling between the two

mechanical modes. Rewriting the equations in the Fourier domain, we have:

− iωd[ω] = −
κ

2
d[ω] − i

2∑
k=1

2∑
n=1

gkαn(c∗k[ω − ∆n] + ck[ω − ∆n]) (4.6)

− iωck[ω] = −(
γk

2
+ iωm,k)ck[ω] − igk

2∑
n=1

(α∗nd[ω + ∆n] + αnd∗[ω − ∆n]) (4.7)

We point out the RHS of Eq. (4.6) and Eq. (4.7) contains Fourier component other than frequency

at ω because ᾱ is time dependent. Recall the mechanical susceptibility function χm,k(x) = (γk/2 −

i(ω − ωm,k))−1 (see in Ch. 2), and define a quantity χ(x) = ( κ2 − ix)−1 in analogous to the optical

1. We assume |∆1 − ∆2| � ωm,1, ωm,2 throughout this dissertation.
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susceptibility, we have:

d[ω + ∆n] = −iχ(ω + ∆n)
2∑

l=1

2∑
m=1

αmgl(c∗l [ω + ∆nm] + cl[ω + ∆nm]) (4.8)

d∗[ω − ∆m] = iχ(ω − ∆m)
2∑

l=1

2∑
n=1

α∗ngl(c∗l [ω + ∆nm] + cl[ω + ∆nm]) (4.9)

ck[ω] = χm,k(ω)
(
− igk

2∑
n=1

(α∗nd[ω + ∆n] + αnd∗[ω − ∆n])
)

(4.10)

where ∆nm = ∆n − ∆m denotes the relative detuning between the two tones. Eliminating d and d∗ in

Eq. (4.10), we get:

ck[ω] = −iχm,k(ω)gk

2∑
n=1

α∗nd[ω + ∆n] − iχm,k(ω)gk

2∑
n=1

αnd∗[ω − ∆n]

= −iχm,k(ω)gk

2∑
n=1

α∗nd[ω + ∆n] − iχm,k(ω)gk

2∑
m=1

αmd∗[ω − ∆m]

= −χm,k(ω)gk

2∑
n=1

α∗nχ(ω + ∆n)
2∑

l=1

2∑
m=1

αmgl(c∗l [ω + ∆nm] + cl[ω + ∆nm])

+ χm,k(ω)gk

2∑
m=1

αmχ(ω − ∆m)
2∑

l=1

2∑
n=1

α∗ngl(c∗l [ω + ∆nm] + cl[ω + ∆nm])

= χm,k(ω)gk ·

2∑
l=1

2∑
m=1

2∑
n=1

glαmα
∗
n(χ(ω − ∆m) − χ(ω + ∆n))

× (c∗l [ω + ∆nm] + cl[ω + ∆nm])

(4.11)

Note that the subscriptions m and n under summations in Eq. (4.11) are interchangeable. To

simplify Eq. (4.11), we rely on the fact that the quality factors of the mechanical modes are high2,

and the detunings of the two laser tones are chosen such that ∆12 ≈ ωm,2 −ωm,1. Looking at the RHS

of Eq. (4.11), we first ignore c∗k terms as they correspond to the contributions at ≈ −ωm,k. For the

remaining terms, when l = k, the main contributions come from terms with m = n, which correspond

to the motion in the mode itself; when l > k (l < k), we can just keep the near-resonant m > n (m < n)

2. In the high-Q limit, |ck[ω]| reaches maximum near ωm,k (specific location depends on the optical spring effect), and
becomes negligible when |ω − ωm,k | � γ

f
k (γ f

k represents the light-mediated mechanical linewidth).

66



cross terms. The approximate equations of motion in the frequency domain are then:

χ1(ω)−1c1[ω] = g2
1

2∑
n=1

|αn|
2(χ(ω − ∆n) − χ(ω + ∆n))c1[ω]

+g1g2α
∗
1α2(χ(ω − ∆2) − χ(ω + ∆1))c2[ω + ∆12]

(4.12)

χ2(ω)−1c2[ω] = g2
2

2∑
n=1

|αn|
2(χ(ω − ∆n) − χ(ω + ∆n))c2[ω]

+g1g2α
∗
2α1(χ(ω − ∆1) − χ(ω + ∆2))c2[ω + ∆21]

(4.13)

from which we can set the argument of χ in front of ck to ωm,k, and convert the equations back into

the time domain:

ċ1(t) = −(
γ1

2
+ iωm,1 + iσ11)c1(t) − iσ12ei∆12tc2(t) (4.14)

ċ2(t) = −(
γ2

2
+ iωm,2 + iσ22)c1(t) − iσ21ei∆21tc2(t) (4.15)

where

σkk = ig2
k

2∑
n=1

|αn|
2(χ(ωm,k − ∆n) − χ(ωm,k + ∆n)) (4.16)

σmn = ig1g2α
∗
mαn(χ(ωm,m − ∆n) − χ(ωm,m + ∆m)) (4.17)

If we define the mechanical amplitude vector c(t) = (c1(t), c2(t))T, and introduce a time-

dependent force vector f (t) = ( f1(t), f2(t))T that drives the mechanical modes (e.g., random thermal

fluctuations), we finally have the equations of motion in matrix form:

iċ(t) = D(t)c(t) + f (t) (4.18)

where the time-dependent dynamical matrix D(t) is expressed as:

D(t) =

ωm,1 − iγ1/2 + σ11 σ12ei∆12t

σ21ei∆21t ωm,2 − iγ2/2 + σ22

 (4.19)

We can see that the off-diagonal terms of D(t) are comparable with the dynamical backaction terms
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in the diagonal, indicating an effective coupling between the two mechanical modes.

4.1.2 Eigenvalue spectrum in a rotating frame

The light-mediated frequencies and linewidths of the two mechanical modes can be theoretically

solved by finding the real and imaginary parts in the eigenvalues of the dynamical matrix defined in

Eq. (4.19). In the lab frame, since the frequencies of the two mechanical modes are well-separated

from each other, there is no degeneracy in the eigenvalue spectrum of D(t). However, we will now

show that we can enter a rotating frame such that the “rotated” eigenvalues coalesce.

Consider a rotated amplitude vector cr(t), defined as:

cr(t) = U(t)c(t) =

e
−i ∆12

2 t 0

0 ei ∆12
2 t

 c(t) =

e
−i ∆12

2 tc1(t)

ei ∆12
2 tc2(t)

 (4.20)

We can write down the equation of motion that describes the evolution of cr(t):

iċr(t) = iU̇(t)c(t) + iU(t)ċ(t) =


∆12
2 0

0 −
∆12
2

 cr(t) + i

e
−i ∆12

2 t 0

0 ei ∆12
2 t

 ċ(t)

=
∆12

2
σzc

r(t) + UD(t)U−1cr(t) + Uf (t) = Drotcr(t) + f r(t)

(4.21)

where we have introduced the rotated force vector f r(t) = U(t)f (t) and dynamical matrix:

Drot =
∆12

2
σz + UDU−1 =

ωm,1 +
∆12
2 − iγ1

2 + σ11 σ12

σ21 ωm,2 −
∆12
2 − iγ2

2 + σ22

 (4.22)

Note that Drot is time-independent, and since ∆12 ≈ ωm,2−ωm,1, it can be considered as the dynamical

matrix of two nearly-degenerate mechanical modes at frequencies ωm,1 + ∆12/2 and ωm,2 − ∆12/2.

Therefore, with appropriate choice of laser parameters (i.e., power and detuning), one may establish

a degeneracy in eigenvalues of Drot.

This degeneracy is referred to as a VEP in our system, because at this point, the corresponding

eigenvalues of the original dynamical matrix D(t) remain distinct. To understand the behavior of the

system near such a VEP, we first look at how the eigenvalues of Drot are measured. Experimentally,

the eigenvalues of a time-independent dynamical matrix can be extracted from a driven response
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measurement. In this measurement, a driving force at a certain frequency is applied to the system,

and the system’s response at this frequency is recorded. The susceptibility function of the system

can then be measured by sweeping the drive over a frequency band.

Specifically, suppose we drive a mechanical mode k (to some amplitude ck(t)) with a force

fk(t). In the Fourier domain, there exists an effective susceptibility function χeff
m,k(ω) that satisfies

ck[ω] = χeff
m,k(ω) fk[ω].3 To derive the form of χeff

m,k(ω), we apply the Fourier transform to Eq. (4.21)4

and get:

cr[ω] = (ωI2×2 − Drot)−1f r[ω] (4.23)

Solving for motions in the lab frame yields:

c1[ω] = cr
1[ω + ∆12/2] =

(
1 0

)
·
(
(ω + ∆12/2)I2×2 − Drot)−1

·

 f1[ω]

f2[ω + ∆12]


c2[ω] = cr

2[ω − ∆12/2] =

(
0 1

)
·
(
(ω − ∆12/2)I2×2 − Drot)−1

·

 f1[ω − ∆12]

f2[ω]


(4.24)

where we have used f r
1[ω] = f1[ω − ∆12/2] and f r

2[ω] = f2[ω + ∆12/2]. More explicitly,

c1[ω] =
(ω − ωm,2 − σ22 + ∆12 + iγ2/2) f1[ω] + σ12 f2[ω + ∆12]

(ω − ωm,1 − σ11 + iγ1/2)(ω − ωm,2 − σ22 + ∆12 + iγ2/2) − σ12σ21
(4.25)

c2[ω] =
(ω − ωm,1 − σ11 − ∆12 + iγ1/2) f2[ω] + σ21 f1[ω − ∆12]

(ω − ωm,1 − σ11 − ∆12 + iγ1/2)(ω − ωm,2 − σ22 + iγ2/2) − σ12σ21
(4.26)

In practice, fk[ω] is centered at ωm,k (k = 1, 2), and the response of mode k is maximized near ωm,k,

so the “cross driving” terms ( f2 in Eq. (4.25) and f1 in Eq. (4.26)) can be ignored. We finally have:

χeff
m,1(ω) =

(ω − ωm,2 − σ22 + ∆12 + iγ2/2)
(ω − ωm,1 − σ11 + iγ1/2)(ω − ωm,2 − σ22 + ∆12 + iγ2/2) − σ12σ21

χeff
m,2(ω) =

(ω − ωm,1 − σ11 − ∆12 + iγ1/2)
(ω − ωm,1 − σ11 − ∆12 + iγ1/2)(ω − ωm,2 − σ22 + iγ2/2) − σ12σ21

(4.27)

One may notice that the denominators in Eq. (4.27) are characteristic polynomials of Drot ±

3. We have seen in Ch. 2 that χeff
m,k(ω) = χm,k(ω) for a bare damped harmonic oscillator.

4. We do not apply the Fourier transform to Eq. (4.18), because the time-dependent D(t) leads to multiple frequency
components of c, which is less convenient to be dealt with.
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∆12
2 I2×2. When the eigenvalues of Drot are non-degenerate, the effective susceptibility can be written

as a sum of two complex Lorentzians. For example,

χeff
m,1(ω) =

h1

ω − ω̃+

+
h2

ω − ω̃−
(4.28)

where ω̃± are complex roots of the denominator in χeff
m,1(ω) (i.e., eigenvalues of Drot downward

shifted5 by ∆12/2) , and the complex height h1 (h2) is defined as

h1 =
1
2

+
ωm,2 − ωm,1 − ∆12 + σ22 − σ11 − i(γ2 − γ1)/2

2
√

(ωm,2 − ωm,1 − ∆12 + σ22 − σ11 − i(γ2 − γ1)/2)2 + 4σ12σ21

h2 =
1
2
−

ωm,2 − ωm,1 − ∆12 + σ22 − σ11 − i(γ2 − γ1)/2

2
√

(ωm,2 − ωm,1 − ∆12 + σ22 − σ11 − i(γ2 − γ1)/2)2 + 4σ12σ21

(4.29)

Eq. (4.28) indicates that the mechanical driven response near ωm,1 consists of two Lorentzian

shapes centered at Re[ω̃±] with linewidths |2Im[ω̃±]|, respectively. A similar treatment of χeff
m,2(ω)

shows that a driven measurement around ωm,2 will have Lorentzians centered at Reω̃± + ∆12 with the

same corresponding linewidths (though the heights are different). As a result, if we shift the driven

response near ωm,1 (ωm,2) by ∆12/2 upwardly (downwardly), the centers of the Lorentzians in the

shifted responses will overlap with each other (as illustrated in Fig. 4.2).

Mode 2

Mode 1

Figure 4.2: Sample of shifted driven response result. Red (Blue) dots are the measured driven response near frequency
ωm,1 (ωm,2), with the plotting shifted up (down) by ∆12/2. The vertical dashed line corresponds to<ω̃+ + ∆12/2, where an
overlap is observed. All numerical values are to be specified in Sec. 4.2.

A special case occurs when ω̃+ = ω̃−, corresponding to a degeneracy in eigenvalues of Drot (or a

5. We assume ωm,1 < ωm,2 throughout the remainder of this dissertation.
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VEP of the system in the lab frame). Eq. (4.28) is now replaced with:

χeff
m,1(ω) =

he1

ω − ω̃e
+

he2

(ω − ω̃e)2 (4.30)

where ω̃e is the degenerate eigenvalue, and hei are complex heights which can be determined by

Eq. (4.27). According to Eq. (4.30), the driven response appears to be single-peaked, while the shape

is not a simple Lorentzian. Although mathematically distinguishable, fluctuations in parameters of

any experimental setup will prevent a system from settling onto this special point, so we will model

and fit our data according to Eq. (4.28).

4.2 Experimental implementation

In this experiment, we focus on the {2, 1} and {2, 2}modes of the membrane, with natural frequencies

ωm,1 = 2π × 557.473 kHz, ωm,2 = 2π × 705.164 kHz and bare linewidths γ1 = 2π × 0.39 Hz,

γ2 = 2π× 0.38 Hz. The optomechanical coupling rates are g1 = 2π× 2.11 Hz and g2 = 2π× 2.12 Hz.

As discussed in Sec. 1.3, two linearly independent parameters are sufficient to demonstrate the

existence of an EP (or a VEP). For a two-tone driven optomechanical system, four parameters (i.e.,

the power and detuning of each tone) can be varied to tune the system’s dynamical matrix. To

reduce the dimension of the control parameter space, we set the two tones to be equal in power

(P ≡ P1 = P2), and fix ∆12 = ωm,2−ωm,1 +δ to define a common detuning ∆ ≡ ∆1 +ωm,1 = ∆2 +ωm,2.

The parameter δ determines the overall detuning of the coupling shown in Fig. 4.1. For example,

if δ = 0, the resonant motion of one mode drives the other mode exactly on resonance. We set

δ = 2π × 100 Hz, which is comparable to the optically damped mechanical linewidths.

Eigenvalues of the rotated dynamical matrix Drot can now be solved for a given (∆, P). Numerical

calculation shows that a degeneracy is achieved at ∆VEP = −2π × 15 kHz and PVEP = 4.7 µW

(illustrated in Fig. 4.3). To measure these eigenvalues experimentally, recall that the driven response

of a mechanical mode can be used to extract the resonance frequency and the linewidth at a fixed

point in (∆, P) space. We may vary both control parameters over a grid spanning a wide range in this

space to trace out the eigenvalue spectrum (details follow later in this section). After that, we employ

loops encircling the VEP to observe the nonreciprocal energy transfer.
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VEP

Figure 4.3: Eigenvalue spectrum of Drot near a VEP, calculated numerically. The frequencies plotted are numbers relative
to the average mechanical frequeny (ωm,1 + ωm,2)/2.

4.2.1 Measurement of mechanical driven responses

We perform two driven measurements (near 557 kHz and 705 kHz) at each chosen point in the

parameter space. As outlined in Ch. 3 and the previous paragraphs, the control laser generates two

tones, described by (∆, P), and the measurement laser provides the heterodyne signal. The drive

of the mechanical modes are created optically, by applying an amplitude modulation at frequency

ωdrive to the RF signal generator that drives the measurement laser AOM (i.e., AOM1 in Fig. 4.5).

The beat note between the 1st order modulation sideband and the measurement beam is at ωdrive,

and therefore applies an oscillating radiation pressure force to the membrane.6. The magnitude and

phase of the response at ωdrive is recorded by the HF2, where an internal narrow-bandwidth filter

(≤ 1 Hz) is applied to the signal. To have the response as a function of ωdrive, this driving frequency

(controlled by the HF2) is swept over a frequency band.

An example of such a driven measurement is shown in Fig. 4.4, where the frequencies are shifted

for the sake of better visualization. Specifically, the driven response near 557 kHz is shifted upward

by ∆12/2 ≈ 75 kHz, and the driven response near 705 kHz is shifted downward by the same amount.

We emphasize that we have entered the rotating frame defined in Eq. (4.20) via such post-processing

of the response signal. This can be appreciated by recalling the mapping between motions in the lab

frame and in the rotating frame (see in Eq. (4.24)), as well as the fact that measured response signal

of mode k is proportional to the amplitude ck.

6. Alternatively, one can drive the mechanical modes via the piezo attached to the membrane support. But such drives
seem to excite resonances somewhere in the membrane support structure, which introduces giant additional noise.
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a

b

Figure 4.4: Sample driven responses of mechanical modes. a, Shifted data of the measurement near ωm,1 ≈ 557 kHz. Both
real and imaginary parts are plotted as functions of the driving frequency. Double-Lorentzian lineshape of the amplitude
indicates the coupling to the other mode. The coupling can also be noticed in the plot of real vs. imaginary quadratures,
where the trace looks like two half circles sitting on top of each other. b, Shifted data of the measurement near ωm,2 ≈ 705
kHz. Solid black lines are results from the fitting described in the main text.

To extract the eigenvalues of Drot from these measurements, we fit the two (shifted) data sets

simultaneously according to the theoretical model Eq. (4.28). Explicitly, the fitting functions are:

b1 +
h1

ω − ω+ + iγ+

2
+

h2

ω − ω− + iγ−2
for response near ωm,1

b2 +
h3

ω − ω+ + iγ+

2
+

h4

ω − ω− + iγ−2
for response near ωm,2

(4.31)

with bi, hi, ω± and γ± as fitting parameters. b1 (b2) is a complex noise background, h1 (h2, h3, h4) is

a complex height of a Lorentzian, and ω± (γ±) are the centers (linewidths) of the two Lorentzians.

Since our theoretical model suggests that the complex heights may not be independent from each

other (e.g., (h1 + h2)/(h3 + h4)=const), there is redundancy in the above fitting parameters. However,

as we only care about ω± and γ±, it is convenient to leave all the hi as free parameters.
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4.2.2 Measurement of nonreciprocal energy transfers

We can study nonreciprocal topological energy transfers once the existence of an VEP is established.

To measure the transfer efficiency (defined below) experimentally, we first initialize the system with

one mechanical mode (by driving it to several orders of magnitude larger than its thermal motion),

then turn on the two-tone control laser and vary the parameters (∆ and P) to form a closed loop in

(∆, P) space that encircles the VEP, after which the energy in both modes is measured.

The initial excitation of a chosen mechanical mode is achieved by applying a sinusoidal drive to

the membrane piezo7. We generate two tones in the control laser by driving an AOM (i.e., AOM2 in

Fig. 4.5) with two frequencies (separated by ∆12) near 80 kHz. This RF driving signal comes from

mixing a 100 MHz oscillator with an output from the lock-in amplifier (HF2) near 20 MHz. The HF2

uses two internal oscillators for both creating the output and demodulating8 the heterodyne signal.

AWG1: Clock

Trig

ZI HF2

50 MHz

ch1

Osc2:
20 MHz+ω2

50 Hz
ch2

Heterodyne signal

Out1

AuxIn1

TTL

HP8642B
 100 MHz HP8648A

  80 MHz

Osc1: 
20 MHz+ω1

50 Hz

ZHL-3A

ωdrive

Out2

AWG2:Δ(t) AWG3:P(t)

AMFM

ADC

AOM1

AM

Trig

Osc1 Osc2

ADC

In1

AOM2

Demod1

Demod2

Sync

Figure 4.5: Schematic of electric circuits for VEP experiment. AWG: arbitrary waveform generator (we use Rigol DG1022
signal generators in this experiment).

In order to vary ∆ and P dynamically, we apply a sequence of voltages to both the amplitude

and frequency modulation ports of the 100 MHz local oscillator (which up-mixes the HF2 output

7. We do not use optical drive as we need a much larger excitation to compete with the overall damping during the
experiment.

8. The bandwidth δ f for these demodulators should be set carefully. On the one hand, the minimum time for a channel
to respond to changes in the signal is proportional to 1/δ f , so we want δ f to be large. On the other hand, a very large δ f
may include the motion from the other mode. In this experiment, we set δ f = 50 Hz, such that the motion in each mode is
recorded separately. As a result, we have a response time of δt = 20 ms that is relevant in the data processing.
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and drives the control laser AOM). For simplicity reasons, we perform rectangular loops defined

by four points (∆min, Pmin), (∆min, Pmax), (∆max, Pmax), (∆max, Pmin), returning to (∆min, Pmin) after a

total time τ, as illustrated in Fig. 4.6. The voltage ramps that control a loop are provided by Rigol

DG1022 signal generators (AWG2 and AWG3 in Fig. 4.5).
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Figure 4.6: Sample measurement of the nonreciprocal energy transfer by encircling a VEP. a, Schematic of a clockwise
loop with ∆min = −2π × 604 kHz, ∆max = 2π × 374 kHz, Pmin = 0.08 µW, Pmax = 8.3 µW. b, Sample lock-in amplitudes
with an initialization in high frequency mode (ωm,2 ≈ 705 kHz) and the loop defined in a. The loop time τ ≈ 27 ms. We
observe energy transfer as the low frequency mode is excited after the loop. c, Sample measurement with the same loop
as in b, but initialized with low frequency mode (ωm,1 ≈ 557 kHz). After the loop, the other mode is not excited. The
gray lines in b, c indicate a period during which we have no accurate information on the eigenmode amplitudes/energies.
Eigenmode energies are converted from the voltage signal (explained later in the main text).

To synchronize the mode initialization, the control loop and the signal recording, a square wave

from another Rigol DG1022 signal generator (AWG1 in Fig. 4.5) serves as a clock for the whole

measurement process. Part of this square wave provides the control voltage for an RF switch, which

turns on the membrane piezo drive when the control signal is low. The square wave is also fed

to AWG2 and AWG3 as an external trigger. When it goes high, the mechanical drive is cut off,

whereas AWG2 and AWG3 will output the user-defined voltage ramps (which generate a parameter

loop). Finally, this waveform is recorded by an auxiliary input of the HF2, for the purpose of data

processing. In practice, the square wave should be at the low level long enough for the mechanical

mode to be excited to the desired amplitude, while it should stay in the high level during the loop, the

lock-in response (20 ms), and the mechanical modes’ relaxation. As illustrated in Fig. 4.7, the whole

measurement is repeated several times to increase the signal to noise ratio of the recorded voltage.
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Figure 4.7: Schematic of the measurement protocol. From top to bottom: the trigger signal for synchronization, the
sinusoidal drive for mechanical mode initialization, the power modulation profile, the detuning modulation profile. From
left to right: four cycles of the measurement, and a zoom-in illustration on one cycle.

To process the collected data, we first use the sync signal to align all the individual measurements

(shown in Fig. 4.8). Next, we convert the voltage signals into the mechanical energy in each mode

(measured by the number of phonons nk). The conversion factor can be derived via calculating the

heterodyne spectrum of a mechanical oscillator equilibrated within a thermal bath [148], such that

the phonon number in mode k converted from the red (blue) sideband of the measurement beam is:

nk =
Vr(b)~ωc

Gr(b)σ2β2κing
2
0|χ(∓ωm,k)|PloPmeas

(4.32)

where Vr(b) is the voltage signal, Gr = 5.548×10−16 V/Hz (Gb = 5.533×10−16 V/Hz) is the electrical

gain of the photodiode at frequency ωif ∓ ωm,k (with ωif = 80.5 MHz being the separation between

the LO beam and the measurement beam), β = 0.877 is the dimensionless photon coupling rate,

σ = 0.359 is the dimensionless detection efficiency [123]. We may then calculate the energy in each

mechanical mode by Ek = nk~ωm,k.
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Figure 4.8: Alignment of individual transfer measurements. The faint red (blue) lines represent individual energy transfer
measurement results. The solid black lines are the averaged results.

We use the averaged, converted data to quantify the amount and efficiency of the energy transfer

during the loop. Suppose the loop is employed during [0, τ]. The information we need is Ek(τ) for

k = 1, 2. As shown in Fig. 4.9, we fit the energy over a wide range of t > τ, where τ represents the

loop time. Note that the fitting window is offset from τ by δt = 20 ms intentionally. This is because

demodulators of the HF2 only capture the motion at frequencies set by the internal oscillators, while

the instantaneous eigenmode frequencies change as the parameters vary, which makes the data

recorded during the control loop meaningless. The data within [τ, τ + δt] is thus not accurate, as it

contains signals during the loop (given the limited bandwidth of the demodulators).

Since both modes relax to thermal equilibrium after the loop, Ek(t) (t > τ) can be described by

an exponential decay function. Once the fitting is completed, we extrapolate the result backward

to get Ek(τ) (black dots in Fig. 4.9). The efficiency of the energy transfer can be defined as η f =

E f (τ)/(E1(τ)+ E2(τ)), where f = 1 (2) if mode 2 (1) is excited initially. The transfer is nonreciprocal

when η1 , η2.

One may also calculate the magnitude of elements of the propagation matrix U(τ) for such an

energy transfer process (c(τ) = U(τ)c(0), see in Ch. 2 for results with nearly-degenerate modes).

For example, consider a clockwise loop with initialized energy in mode i, the propagation matrix

element can be expressed as:

|U�, ji(τ)| =
|c j(τ)|
|ci(τ)|

=
|
√

E j(τ)|

|
√

Ei(τ)|
(4.33)
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Figure 4.9: Sample fitting of the mechanical motions. The loop (data) is described in Fig. 4.6a (b). Red (blue) lines are
the averaged signal. Black lines are fittings to the exponential function. The energy in each mode right after the loop is
indicated by the black dot.

4.3 Data analysis

With details of the measurement explained in the previous section, we now focus on the post-

processed data of this experiment.

4.3.1 Eigenvalue spectrum near VEP

Fig. 4.10 shows the eigenvalues of Drot in the vicinity of an VEP. In the (∆, P) parameter space, both

the real and imaginary parts of the eigenvalue spectrum exhibit a sharp feature as they approach

the VEP (at ∆ ≈ −15 kHz, P ≈ 4.7 µW). Our measurement result agrees well with the theoretical

predictions (smooth gray sheets in Fig. 4.10a, b and e), which are solved by fitting the data to a full

optomechanical model. In fact, this global fit to all the data points (extracted from fitting the driven

response measurements) can be used as a good estimation of some system parameters, such as the

natural mechanical frequencies ωm,1(2), linewidths γ1(2), and the optomechanical couplings g1(2).
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Figure 4.10: Eigenvalue spectrum near a VEP. a (b), The frequencies (linewidths) extracted from a set of driven response
measurements, plotted in the rotating frame. The smooth gray sheets are least-squares fit, with (ωm,1, ωm,2, g1, g2) as fitting
parameters. c, d, Fitting residuals against ∆ and P. e, Eigenvalue differences calculated from data in a and b.

4.3.2 Nonreciprocity as a function of time

To examine the nonreciprocity in the energy transfer processes, we measure the transfer efficiency

for loops encircling the VEP in both the CCW and CW senses, with the initial excitation in either

mode 1 or mode 2. For each of the four possible combinations, we perform loops with the same

shape defined in Fig. 4.6a, and the loop duration τ changes from 1 ms to 40 ms.

Fig. 4.11 shows the energy transfer efficiency η all these cases. As τ→ 0, the transfer efficiency

goes to zero, which is expected for a diabatically (suddenly) perturbed system. In the adiabatic limit

(τ → ∞ mathematically, and τ > 10 ms in practice), we can see η → 1 if the loop is CCW (CW)

and the system is initialized with mode 1 (2), while η→ 0 if the loop is CW (CCW) and the system

is initialized with mode 1 (2). The nonreciprocity observed here reflects the fact that during an

adiabatic evolution, the system tries to follow the topological structure of the eigenvalue spectrum,

while the difference between the damping rate in the two modes tends to leave the system in the

less-damped mode [98].
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Figure 4.11: Energy transfer efficiency as a function of the loop duration. a, Clockwise loops. Red (blue) points mean the
system is initialized in mode 1 (2). b, The same as a except the loops are counterclockwise. The solid black lines in both
a and b are results from numerical simulations of the evolution described by Eq. 4.18, with the system parameters given in
the previous section.
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Static optomechanical nonreciprocity

In previous chapters, transient nonreciprocity has been demonstrated within our optomechanical

setup by driving the optical cavity with two control laser tones, whose powers and detunings are

time-dependent. More precisely, to realize nonreciprocal phononic energy transfer, the (common)

power and detuning should be varied in an adiabatic way such that an EP or VEP is encircled

[141, 142]. By contrast, in this chapter I will describe a scheme for achieving nonreciprocity with

stationary modulation and continuous operation. Moreover, since our experiment directly measures

the device’s internal degrees of freedom, it differs from typical experiments on a nonreciprocal device

(in photonics as well as other fields) that measure the scattering matrix that describes propagating

waves landing on and emanating from the device. This feature allows us to control the states of a

system of resonators via the nonreciprocal interactions between them. We illustrate this by using the

nonreciprocity to control the direction of heat flow between two modes of the membrane, thereby

realizing a qualitatively new way to laser-cool the mechanical resonators.

I will begin with some insight on the two-tone scheme discussed in Ch. 4 that motivates our

current scheme, and then present a theoretical description of the current scheme (Sec. 5.1). The

experimental implementation, which is just slightly modified from the previous chapter, will follow

in Sec. 5.2. This chapter ends with a discussion on the measurement results (Sec. 5.3).
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5.1 Theoretical derivation

Recall that in Ch. 4, near-resonant coupling between two (non-degenerate) mechanical modes can be

induced by modulating the dynamical backaction at a frequency near δωm = ωm,2 − ωm,1. As shown

in Fig. 5.1a, such modulation arises from the intracavity beat note between a pair of cavity drive

with detunings ∆1 = −ωm,1 + ∆l + ζ, ∆2 = −ωm,2 + ∆l (where ζ is comparable to the mechanical

linewidths). In this arrangement, a photon can scatter from one drive tone to the other by transferring

a phonon between the modes. This process (illustrated by the light and dark red arrows in Fig. 5.1b)

occurs via a virtual state in which the photon is at an anti-stokes sideband of the drive tones.

m,23 4 m,11 2

Figure 5.1: Four-tone scheme for nonreciprocal coupling between two mechanical modes. a, The frequency domain
illustration. The gray curve is the cavity lineshape. The thin dash line is the cavity resonance, and the thick dash lines are
negative detunings equal to the mechanical mode frequencies ωm,1(2). The colored arrows are control tones with detunings
(with respect to the cavity resonance) ∆i (i = 1, 2, 3, 4), whose motional sidebands (that dominate the phonon transfer
process) are represented by colored Lorentzians. The horizontal axis shows detuning from cavity resonance. b, The energy
domain illustration. The solid horizontal lines are states labelled by the number of phonons in each mode (n1, n2) and the
number of cavity photons (nc). The absolute frequency of the ith control tone is Ωi. The dashed horizontal lines are virtual
states through which the transfer process occurs. The cavity linewidth is indicated by the grey shading.

We emphasize two crucial features of the modulation induced phonon transfer. Firstly, the transfer

amplitude is proportional to the complex-valued cavity susceptibility χ(∆l) (where χ(ω) = 1/(κ− iω)

is introduced in Ch. 4) regardless of the direction of transfer, and thus has both a dissipative and a

coherent character. Secondly, the phase of the intracavity beat note appears explicitly in the transfer

coefficient. While these features alone do not result in nonreciprocal energy transfer (e.g., the beat

note phase can be gauged away), interference between two such processes can break reciprocity. As

we will see below, the additional phonon transfer process is achieved by incorporating a second pair

of drive tones (thus a second beat note) into the cavity. Moreover, the interference is controlled by

the relative phase between the two beat notes and therefore can not be gauged away.
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5.1.1 Nonreciprocal coupling in a four-tone scheme

Suppose the cavity is driven by four red-detuned control laser tones, with detunings ∆n, powers

Pn, and phases φn (n = 1, 2, 3, 4). The detunings of the four tones are chosen to provide two beat

notes that each induce near-resonant coupling between the two mechanical modes (i.e., ∆1 − ∆2 =

∆3 − ∆4 ≈ δωm). Hence there are two distinct copies of the phonon transfer process. The four

detunings are also chosen such that the dominant mechanical sideband in each transfer process has a

distinct detuning ∆l(u), where ∆l = ∆1 + ωm,1 − ζ = ∆2 + ωm,2 and ∆u = ∆3 + ωm,1 − ζ = ∆4 + ωm,2.

We can describe this system via the standard linearized optomechanical equations of motion for

one cavity mode and two mechanical modes. Specifically, with the cavity drive:

ain =

4∑
n=1

√
Pn

~Ωn
e−iωct+∆nt+φn) = e−iωct

4∑
n=1

√
Pn

~(ωc + ∆n)
e−i(∆nt+φn) (5.1)

we linearize the optical field around a coherent amplitude α̃ by setting a = e−iωct(α̃ + d), such that

α̃ =
∑4

n=1 αne−i(∆nt+φn) where αn =

√
κinPn
~(ωc+∆n)

1
κ/2−i∆n

, and d is the fluctuation of the cavity mode.

The system’s equations of motion (in a frame that oscillates at ωc) can be written as:

ḋ(t) = −
κ

2
d(t) − i

2∑
k=1

gkα̃(c∗k(t) + ck(t)) (5.2)

ċk(t) = −(
γk

2
+ iωm,k)ck(t) − igk(α̃∗d(t) + α̃d∗(t)) (5.3)

which are identical to Eq. (4.4) and Eq. (4.5) except ᾱ→ α̃. Therefore we may follow the steps in

Ch. 4 to adiabatically eliminate the cavity field, and derive the dynamical matrix:

D(t) =

ωm,1 − iγ1/2 + σ11 σ12ei∆t

σ21e−i∆t ωm,2 − iγ2/2 + σ22

 (5.4)

where the diagonal components represent the usual single-tone dynamical backaction:

σkk =

4∑
n=1

ig2
n|αn|

2(χ(ωm,k − ∆n) − χ(ωm,k + ∆n)
)

(5.5)

and the off-diagonal components describe the coupling between the two mechanical modes mediated

83



by the intracavity beat notes:

σ12 =

2∑
n=1

ig1g2α
∗
2n−1α2nei(φ2n−1−φ2n)(χ(ωm,1 − ∆2n) − χ(ωm,1 + ∆2n−1)

)
σ21 =

2∑
n=1

ig1g2α2n−1α
∗
2ne−i(φ2n−1−φ2n)(χ(ωm,2 − ∆2n−1) − χ(ωm,2 + ∆2n)

) (5.6)

Note that ∆ = ∆1 − ∆2 = ∆3 − ∆4.

To understand how strong nonreciprocal coupling can be induced in the system, consider

|D12(t)| = |σ12| ≈ gei(θl+φ12) + hei(θu+φ34)

|D21(t)| = |σ21| ≈ gei(θl−φ12) + hei(θu−φ34)
(5.7)

where we have defined the phase differences φ12 = φ1−φ2 and φ34 = φ3−φ4. The real coefficients are

g ≈ g1g2|α
∗
1α2χ(∆l)|, h ≈ g1g2|α

∗
3α4χ(∆u)|, where small terms in g and h that are due to non-resonant

mechanical sidebands are ignored. (For clarity, these terms are ignored just for the discussion

here, and will be included in the analysis and fits presented later in this chapter.) The isolation

between the two mechanical modes can be achieved by choosing parameters to make |D12| � |D21|

or |D12| � |D21|. To achieve this, we first set Pn and ∆n such that |g| ≈ |h|1. We then adjust the

phases φ12 and φ34 to ensure that one off-diagonal element of D(t) almost vanishes while the other

does not. This is illustrated in Fig. 5.2, where D12 and D21 are plotted as functions of φ = φ12 − φ34.

We can see that |D12| � |D21| when φ ≈ −π/2, so the energy is allowed to flow from mode 1 to

mode 2 but not vice versa. The situation is reversed for φ ≈ +π/2. By contrast, φ ≈ 0 (φ ≈ ±π) gives

|D12| ≈ |D21|, so the energy transport is almost reciprocal. Notably, the tunability between isolation,

reciprocity and reverse isolation is realized by only varying the φ, while keeping Pn and ∆n fixed.

1. In this chapter, we focus on the same two mechanical modes as in Ch. 4. |g| ≈ |h| can be satisfied by choosing
Pn = 5 µW, ∆l = −2π × 60 kHz, ∆u = 2π × 150 kHz, ζ = 2π × 100 Hz.
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Figure 5.2: The off-diagonal elements of the dynamical matrix. The real and imaginary parts of D12 and D21 (in units
of Hz) are plotted parametrically versus the relative phase φ between the two beat notes. The powers and detunings of
control laser tones are given in the main text. The color scale encodes the value of φ. The grey (brown) arrow indicates the
evolution of D12 (D21) as φ increases from 0.

5.1.2 Asymmetric cooling in a common thermal bath

Let us apply the four-tone scheme to modify the thermal fluctuations of mechanical modes. In

general, a mechanical resonator is in the thermally steady state when detailed balance between its

modes and the environment is achieved. To describe the steady-state thermal fluctuations of our

system, we note that both mechanical modes couple to a thermal bath (Tbath = 4.2 K) and to the

cavity field (a bath with effective TC ≈ 0 as ~ωc � kBTbath). In the absence of couplings between

the modes, if we turn on a red-detuned monochromatic control beam, each mode will equilibrate to

a temperature Ta = (γ f
a )−1γaTB (a = 1, 2), where γ f

a is the single tone optical damping rate2. This

reduction of Ta with respect to Tbath is known as the effect of cold damping or laser cooling [113].

If the modes interact with each other (e.g., via the aforementioned two-tone or four-tone scheme),

2. We assume γ f
a � γa throughout this chapter.

85



thermal phonons may transport between the modes and lead to new steady-state temperatures that

have more complicated expressions (which we discuss below). In the case where the energy transport

is reciprocal (|D12| = |D21|), thermal phonons are exchanged between the modes, which tends to

bring T1 and T2 closer to each other. When the energy transport is unidirectional, by constrast,

thermal phonons are emitted from the isolated mode into the other mode, but not vice versa. This

results in cooling of the isolated mode (and heating of the other mode), even if the former is the

colder of the two in the non-interacting case.

To quantitatively describe this isolation-based cooling, we introduce the concept of effective

temperature T eff
a for a mode a, which is associated to the effective phonon number neff

a via T eff
a =

neff
a ~ωm,a/kB

3. The effective phonon number in mode a can be expressed as an integral of the

membrane spectrum S c∗c
a [ω] over the frequency space:

neff
a =

1
2π

∫ ∞

−∞

S c∗c
a [ω]dω (5.8)

where by definition:

S c∗c
a [ω] ≡ 〈c∗a[ω]ca[−ω]〉 =

∫ ∞

−∞

eiωτ 〈c∗(t)ca(t + τ)〉 dτ (5.9)

Note that the second equivalence results from the Wiener-Khinchin theorem [149].

We can derive S c∗c
a [ω] by solving the equations of motion in the Fourier domain4:

c1[ω] = χ̃1(ω)
(
σ12c2[ω + δωm] +

√
γ1η1[ω]

)
(5.10)

c2[ω] = χ̃2(ω)
(
σ21c1[ω − δωm] +

√
γ2η2[ω]

)
(5.11)

where we have introduced the optically mediated susceptibilities χ̃a(ω) = (γa/2 − i(ω − ωm,a) +

σaa)−1 = (γ̃a/2 − i(ω − ω̃a))−1 for a = 1, 2. (The real numbers ω̃a, γ̃a represent the modulated

mechanical frequencies and dampings). The Fourier component ηa[ω] of the Langevin force ηa(t)

3. The discussion here is just pedagogical, since the effective “mode frequency” is not well defined in a coupled-mode
system. The general form of the effective temperature will be addressed later.

4. Suppose the mechanical modes are only driven by the thermal noise (Langevin force), and we ignore the noise in
control laser tones.
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(defined in Ch. 2) satisfies:

〈ηa[ω]η∗a[−ω]〉 = 〈η∗a[ω]ηa[−ω]〉 = nth
a

〈η∗a[ω]ηb[−ω]〉 = 〈ηa[ω]η∗b[−ω]〉 = 0
(5.12)

Write down explicitly the solutions to Eq. (5.10) and Eq. (5.11):

c1[ω] = χ̃1(ω)
√
γ1η1[ω] + σ12χ̃2(ω + δωm)

√
γ2η2[ω + δωm]

1 − χ̃1(ω)χ̃2(ω + δωm)σ12σ21

c2[ω] = χ̃2(ω)
√
γ2η2[ω] + σ21χ̃1(ω − δωm)

√
γ1η1[ω + δωm]

1 − χ̃2(ω)χ̃1(ω − δωm)σ12σ21

(5.13)

and treat ca (a = 1, 2) as sums of complex Lorentzians similar to Eq. (4.28). Then substitute ca and

c∗a in Eq. (5.9) with the solutions above, after the integration:

neff
1 = c11nth

1 + |σ12|
2c12nth

2

neff
2 = |σ12|

2c21nth
1 + c22nth

2

(5.14)

where the coefficients can be found in App. A. The ratio between effective temperatures of the two

modes is therefore:
T eff

2

T eff
1

∝
neff

2

neff
1

=
c11nth

1 + |σ12|
2c12nth

2

c22nth
2 + |σ21|2c21nth

1

(5.15)

We can see from Eq. (5.15) that the ratio depends on the off-diagonal terms in the Hamiltonian, and

thus is a function of φ. We will demonstrate this experimentally in the next section.

Experimentally, the thermal motion of a mechanical mode a is encoded in the heterodyne signal,

which can be converted into the displacement spectral density S xx
a . Since S xx

a [ω] = 2x2
zpfS

c∗c
a [ω]

in the classical regime, we can calibrate the effective phonon number by integrating the measured

spectral density over a wide range in the frequency domain (usually set by the bandwidth of the

demodulators in the HF2).

To end this section, we now provide a more rigorous definition of T eff. In general, the effective

temperature of a stationary system (not necessarily in thermal equilibrium) can be defined at each

frequency, by considering the ratio between the fluctuation and dissipation at that frequency [149].

Letting S xx
a denote the displacement spectral density and χxx

a [ω] be the full mechanical susceptibility

87



(i.e., the retarded x − x Green’s function) of the mode we are studying, we have:

coth
~ω

2kBTa(ω)
≡

S xx
a [ω] + S xx

a [−ω]
−2~Imχxx

a [ω]
(5.16)

If the effective temperatures are much larger than the frequencies of interest, i.e., ~ωa � 2kBTa(ω),

this relation becomes

S̄ xx
a [ω] ≡

S xx
a [ω] + S xx

a [−ω]
2

= −2kB
Ta(ω)Imχxx

a [ω]
ω

(5.17)

which we integrate to get

〈x2
a〉 =

∫ ∞

−∞

S̄ xx
a [ω]dω =

∫ ∞

−∞

−2kB
Ta(ω)Imχxx

a [ω]
ω

dω (5.18)

As we can see from Eq. (5.18), the position fluctuation 〈x2
a〉 is a weighted integral of Ta(ω), and

thus can be used to define a single effective temperature T = keff
a 〈x

2
a〉 /kB, where keff

a is the effective

spring constant:

keff
a =

( ∫ ∞

−∞

−2Imχxx
a [ω]

ω
dω

)−1
= −(Imχxx

a [ω = 0])−1 (5.19)

Note that we have used the Kramers-Kronig relation in the last equivalence. This definition of

effective temperature does not require the mechanical mode to have a Lorentzian resonance, but

if the system truly equilibrated at a physical temperature T0, then it follows (via the fluctuation-

dissipation theorem) that Ta(ω) = T0, irrespective of the frequency ω and the shape of χxx
a . For the

mechanical oscillator in our system, the bare spring constant k0
a = mω2

m,a, and we can verify that

keff
a ≈ k0

a, therefore T a = T eff
a . We will denote the effective temperature of mode a by Ta in the

remainder of this chapter.

5.2 Experimental implementation

The experimental setup in Ch. 4 can be easily modified to allow for a second pair of control laser

tones. We achieve this by including two additional oscillators of the HF2 into the output that (is

first mixed up to a frequency near 80 MHz and then) drives the control laser AOM, as illustrated in

Fig. 5.3.
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Figure 5.3: Electric circuit schematic for the four-tone scheme. To generate a control laser profile with four separate tones,
four channels of the HF2 are used to output signals that will be mixed up to drive the control laser AOM (AOM2 in the
schematic). The power, detuning, and phase of each control laser tone can be adjusted on the HF2 control panel via the
amplitude, frequency and phaseshift of the corresponding oscillator. The two channels left are used to demodulate the
heterodyne signal, monitoring the mechanical motions.

Since the nonreciprocity is tuned via adjusting the relative phase between the control laser tones,

we remove the FM/AM drive that is triggered by the square wave. Otherwise, the setup is similar to

that of Ch. 4: separate demodulation channels near ωm,1 and ωm,2 are used to record the amplitude

(energy) of each mechanical mode, while the membrane can be driven optically by a signal at

frequency ωdrive that modulates the measurement laser AOM.

5.3 Results and discussion

Without loss of generality, we set φ1 = φ2 = φ3 = 0, thus the control phase φ = φ4 can be adjusted

with one knob. Bare frequencies and linewidths, as well as the optomechanical coupling rates of the

two mechanical modes have been presented in Ch. 4. The settings on the HF2 are chosen such that

Pn ≈ 5 µW, ∆l = −2π × 60 kHz, ∆u = −2π × 150 kHz, ζ = 2π × 100 Hz.

5.3.1 Measurement of nonreciprocal energy transfers

To measure the amount of energy transfer from one mode to the other, say 1 → 2 (2 → 1), we

first excite mode 1(2) to a large amplitude, by applying a sinusoidal drive to the membrane piezo
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at ωm,1 (ωm,2). Then at t = 0, we stop the piezo drive, and turn on the control tones to couple the

two mechanical modes for a duration [0, τ] (shown in Fig. 5.4). The energy transfer between these

modes occurs during this duration. At t = τ, the control tones are turned off, and then the motion of

each mode decays freely to their thermal equilibrium (i.e., for t > τ).

a b
E1

E2

E1

E2

Figure 5.4: Measured mechanical energy in each mode as a function of time. a, The system is initialized in mode 1. The
control laser tones are on only during the grey region 0 ≤ t ≤ τ = 3 ms with φ = π/2. Data for t > τ + δ f = 23 ms is fitted
to a decaying exponential (black curves) and this fit is extrapolated to t = 3 ms to find E1(τ) and E2(τ), which represent the
energies in each mode at the end of the control pulse (black dots at t = 3 ms). b, Same control beam but system initialized
in mode 2.

The amount of energy transfer that has taken place can be calculated from the amplitude of the

mechanical motions at t = τ. Due to the limited response time (δ f = 20 ms) of the HF2 demodulators

and the thermal noise in the mechanical motions, this information is gained by first fitting the modes’

decay in a large time window (t > τ + δ f ) to an exponential function, and then extrapolating the

fit to t = τ ms. For the purpose of a better signal-to-noise ratio, the initialization and measurement

processes are repeated many times (see in Ch. 4 for details on data averaging).

5.3.2 Demonstration of tunability and robustness

To demonstrate the tunability of the nonreciprocity, we measure the transfer of energy between

the two modes for various choices of φ. We then calibrate the energy transmission coefficients

T↑(φ) ≡ Eφ
2 (τ)/E1(0) and T↓(φ) ≡ Eφ

1 (τ)/E2(0), which correspond to transfer from mode 1 to mode

2 and vice versa, and plot them as functions of φ in Fig. 5.5.
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Figure 5.5: Energy transmission coefficients plotted against the control phase φ. The error bars for the statistical
uncertainties are smaller than the symbols. The solid lines are the numerical simulation from the model discussed in the
previous section.

A common practice is to introduce the isolation ratio I(φ) ≡ T↑(φ)/T↓(φ), which is illustrated

in Fig. 5.6. We observe that the maximum isolation is realized near φ = π/2, where I(π/2) ≈

maxφ I(φ) > 30 dB. At this point, the energy transfer in the system is approximately unidirectional

from mode 1 to mode 2. Strong nonreciprocal energy transfer in the opposite direction is reached

near φ = −π/2, where I(−π/2) ≈ minφ I(φ) < −25 dB. The reciprocity is restored (I(φ) = 0dB,

corresponding to |H12| = |H21|) when φ ≈ 0. The figure also shows that I can be tuned over the entire

range by varying φ with all other parameters fixed. The solid lines in the figure are not fits but the

predictions from numerically evolving the theoretical dynamical matrix D(t).5

5. D(t) is no longer time dependent as we enter a proper rotating frame. The evolution can therefore be calculated by
taking the matrix exponential of D.
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Figure 5.6: Isolation as a function of φ. The values of I are extracted from the data in Fig. 5.5. The error bars for the
statistical uncertainties are smaller than the symbols. The solid line is the theoretical prediction described in the main text.

We then consider the transmission coefficients T↑(↓) and the isolation ratio I as functions of the

control tones’ duration τ. Measurement result of the transmission coefficients at φ = 0,±π/2 is

shown in Fig. 5.7. Both T↑ and T↓ decrease with τ, owing primarily to the damping induced by the

single-tone backaction since all four control tones are red-detuned from the cavity resonance.

Figure 5.7: The transmission coefficients as functions of the control tones’ duration. The error bars for the statistical
uncertainties are smaller than the symbols. The solid lines are the theoretical prediction described in the main text.
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By contrast, I(φ) remains independent of τ, as illustrated in Fig. 5.8. Thus, we have demonstrated

a robust, compact, stationary and tunable scheme for inducing nonreciprocity between phononic

resonators.

Figure 5.8: The isolation ratio I as a function of the control tones? duration τ. The error bars for the statistical uncertainties
are smaller than the symbols. The solid lines are the theoretical prediction described in the main text.

5.3.3 Realization of asymmetric cooling

The derivation in the previous section indicates that we can adjust the ratio between the mode

temperatures by only varying φ. To demonstrate this nonreciprocal effect on the mode temperatures,

we calibrate the effective temperature of each mode from the motional sideband of the corresponding

mode. Fig. 5.9 shows three samples of the membrane’s power spectral density (which is proportional

to S xx), plotted as a function of frequency. In comparison with the energy transfer measurement,

no external drive is applied to the phonon modes, so we are simply recording the modes’ Brownian

motion. All parameters remain the same as for the energy transfer measurements, except that the

control laser tone power is cut down to Pn = 2.5 µW. We reduce the power simply to avoid the laser

unlocking during the data taking process.
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Figure 5.9: The power spectral density of the two modes’ thermal motions. Similar to the driven measurement results in
Ch. 4, the data have been offset horizontally such that the two modes (which oscillate near 557 kHz and 705 kHz) can
be compared directly. From left to right, the three panels correspond to φ = −π/2, 0 and +π/2. The solid black lines are
fitting results with functions in form Eq. (5.20).

As discussed in Ch. 4, the energy spectral density can be converted from the recorded heterodyne

signal with an appropriate scaling factor. The effective temperatures T1 and T2 are then determined

from the area under the peaks in S E,1 and S E,2, which are shown in Fig. 5.9 for φ = 0, ±π/2. Note

that the lineshape of the energy spectral density is not a single Lorentzian near the resonance of

each mode. Such asymmetric lineshapes are commonly observed in nearly-degenerate modes of

a system of damped harmonic oscillators [150, 151]; while in the present system the mechanical

modes are non-degenerate, and the lineshapes reflect the interference between two paths via which a

given mode is driven by the thermal bath. Mathematically, S E,a near ωm,a (a = 1, 2) is a constant

background plus the square modulus of the sum of two Lorentzians, and can be described by:

ba +

∣∣∣∣∣ uα
γα
2 − i(ω − ωα)

+
uβ

γβ
2 − i(ω − ωβ)

∣∣∣∣∣2 (5.20)

where ωα(β), γα(β), and uα(β) are the resonance frequency, linewidth and complex height of the

Lorentzian peak α, respectively. Suppose for mechanical mode a, peak α corresponds to single

Lorentzian lineshape when there is no intermode-coupling, then Ta is calibrated by the area of S E,a

under this peak, which is π|uα|2/γα.
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Figure 5.10: The calibrated temperature for both modes as a function of φ. The solid lines are theoretical predictions. This
data is used to calculate the normalized temperature diffenrence shown in Fig. 5.11a.

Fig. 5.10 shows the measured T1 and T2 for a set of different φs varying from −π to π. To

better visualize the effect of nonreciprocity on the mode temperatures, we define the normalized

temperature difference

Θ(φ) = 1 −
T2(φ)/T1(φ)
〈T2/T1〉φ

(5.21)

where 〈...〉φ denotes an average over φ. The merit of introducing this quantity is twofold. Firstly,

the extreme values of Θ(φ) indicates the maximum isolation between the modes. (Note the fact that

Θ(±π/2) being close to extremum is consistent with the previous result on nonreciprocal energy

transfers.) Secondly, changing the sign of Θ is equivalent to reversing the direction of heat flow

between the modes. Specifically, heat is transported from the colder mode to the hotter mode in

two scenarios: {〈T2/T1〉φ < 1,Θ > 0} and {〈T2/T1〉φ > 1,Θ < 0}. In the present setup we have

〈T2/T1〉φ = 1.79 > 1 (calculated from the data in Fig. 5.10), therefore the colder 557 kHz mode is

“cooled” by the hotter 705 kHz mode, as long as Θ < 0.
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Figure 5.11: Normal temperature difference as a function of φ, measured for four detuning offsets ∆off = 0, −2π × 100
kHz, −2π × 200 kHz, −2π × 300 kHz.

The data in Fig. 5.10 is converted to Θ in Fig. 5.11a, where the solid line shows the theoretical Θ

calculated from the optomechanical equations of motion. The agreement between the measured and

predicted cooling extends over a wide range of parameters. For example, Θ(φ) with different detuning

offset (i.e., frequencies of all four control tones move together) ∆off is illustrated in Fig. 5.11b–d.

Note the parameters at ∆off = 0 are the same as those in the energy transfer measurement.

We emphasize that the data in each panel of Fig. 5.11a–d are taken with fixed powers and

detunings, such that the additional cooling of one mode is accomplished just by varying the phases

of the control tones. Since conventional laser cooling techniques (e.g., those using the single-tone

dynamical backaction) are independent of these phases, the nonreciprocity demonstrated here can be

used as a new resource for controlling the thermal fluctuations of a phononic oscillator.
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high-order exceptional points

The concept of exceptional points is introduced in Ch. 1 as the degeneracy of an open (non-Hermitian)

system. It is shown in Ch. 2 and Ch. 4 that encircling an EP in the parameter space can lead

to nonreciprocal energy transfer within a two-level system. In the quasi adiabatic regime, such

nonreciprocity depends on the topology of the encircling loop, as we have demonstrated with our

optomechanical setup [141, 142]. For “trivial” adiabatic control loops that do not encircle an EP,

there is no energy transfer so the system’s evolution remains reciprocal.

It is natural then to think about EPs and the associated dynamics of an open system, consisting

of more than two harmonic modes. From a mathematical point of view, EPs (and DPs) are singu-

larities of a parameterized matrix. One may observe the emergence of such singularities by varying

parameters that changes the elements of a matrix. The emergence corresponds to a sudden response

of a system (e.g., its eigenvalues) to smooth changes of external conditions (e.g., the parameters),

whose features are well studied in the catastrophe theory [152, 153].

Besides the dynamics of a system around the singularity, systems at the singularity itself are

also of interest. For example, a matrix at DPs can be diagonalized because it can be regarded as

a perturbation of some other hermitian matrix with distinct eigenvalues, and the corresponding

eigenvectors remain linearly independent under any matrix perturbation1. In contrast, a matrix at

1. Note an Hermitian matrix with n distinct eigenvalues has n eigenvectors that are not only linearly independent but,
more than that, orthogonal. By a continuity argument, one would see that the matrix perturbation may transform different
eigenvalues to coincident ones, but it cannot make the orthogonal eigenvectors linearly dependent.
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an EP is non-diagonalizable (defective), since the eigenvectors corresponding to the degenerate

eigenvalues are parallel and therefore linearly dependent with each other. The effort to diagonalize

a defective matrix will in general lead to a Jordan block (defined later), during which procedure a

complete basis is formed by augmenting the eigenvectors with generalized eigenvectors.

This chapter covers basic theory of arbitrary-order singularities and our progress towards search-

ing for the third order exceptional points (EP3). In Sec. 6.1, I consider general perturbations of a

Jordan canonical form to answer the following question: how many parameters are necessary to

guarantee the existence of a certain singularity? Equivalently: given a singularity, how many linearly

independant ways are there to lift it? In Sec. 6.2, I study the space of second order EPs (EP2s) in the

vicinity of an EP3. The effort to demonstrate the existence of EP3 on our optomechanical platform

is discussed in Sec. 6.3. Then I conclude the chapter with future directions in Sec. 6.4.

6.1 Jordan canonical form and perturbations

It is well known in linear algebra that under a similarity transformation S , every n × n complex

matrix M can be brought into Jordan canonical form:

M → S MS −1 =



J1(λ1) 0 0 0

0 J2(λ2) 0 0

...

0 0 0 Jk(λk)


(6.1)

where λ1, λ2,...λk are the eigenvalues of M with degeneracies d1, d2,...dk, and the Jordan blocks Ji

are di × di with λi on the major diagonal, 1 or 0 on the diagonal above the major diagonal, and 0

elsewhere. Consider general perturbations of a 2 × 2 Jordan block:

J′2 = J2 + δJ =

 0 1

0 0

 +

 δJ11 δJ12

δJ21 δJ22

 (6.2)
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where the eigenvalues of J2 are set to be 0 without loss of generality2. It turns out that a large

collection of J′ can be obtained from J2 by performing a similarity transformation near the identity,

i.e.,

J′ = (I + δS )J2(I + δS )−1 = J2 + [δS , J2] + O(δS 2) (6.3)

We only keep the first order of δS on the right hand side since its elements are small. The

perturbation generated by δJ = [δS , J2] is trivial and can be neglected, as it leaves the eigenvalues

unchanged and corresponds to no more than a rotation of axes. If we choose the small matrix δS to

be:

δS =

 A B

a b

 s.t. [δS , J2] =

 −a A − b

0 a

 (6.4)

and compare with δJ, it is clear that the nontrivial perturbation must have the form:

δJ =

 0 0

δJ21 0

 (6.5)

This nontrivial perturbation of J2 eliminates the degeneracy of eigenvalues, namely λ(J2) = 0

and λ(J′) = ±
√
δJ21. Conversely, for a general 2×2 complex matrix M with distinct eigenvalues, we

may vary one off-diagonal element M21 to make the eigenvalues coincide. The fact that M21 being a

complex number indicates that we need two independently tunable real parameters to guarantee the

existence of an EP.

We have demonstrated the existence of an EP in our optomechanical setup, with the two param-

eters chosen to be laser power and detuning. Combine with the discussion in previous paragraph,

having two real parameters are necessary and sufficient to realize EP2 in a coupled two-mode system.

Similar treatment can be applied to 3 × 3 matrices to gain some insight onto EP3. The perturbed

matrix is:

M′ = M + δM =


0 1 0

0 0 1

0 0 0

 +


δM11 δM12 δM13

δM21 δM22 δM23

δM31 δM32 δM33

 (6.6)

The trivial perturbation, which can be written as the commutator of some small matrix S with M,

2. This is because the spectrum of a matrix can be shifted arbitrarily, which corresponds to adding λIn×n to the matrix.

99



has the form:

δM =


−a A − b B − c

−α a − β b − γ

0 α β

 where S =


A B C

a b c

α β γ

 (6.7)

The general nontrivial perturbation δM should obey (δM)31 , 0 and (δM)21 , −(δM)32, thus

can be written as:

δM =


0 0 0

0 0 0

x y 0

 (6.8)

where x, y are independent complex numbers. Therefore, a general three-mode open system with

four linearly independent real parameters can be tuned to an EP3. Furthermore, one can show that

2(N − 1) real parameters are necessary to realize an Nth order EP for a general N-mode open system.

It is worthwhile to draw a comparison with DPs — the counterpart of EPs in closed (Hermitian)

systems. The perturbations are added on a trivial matrix (i.e., a matrix with all elements zero), instead

of on a Jordan block in the non-Hermitian case. Therefore to get an nth order DP, we need to control

n(n − 1)/2 off-diagonal complex numbers as well as (n − 1) diagonal real numbers (not n as the

matrix is assumed to be traceless), that is (N2 − 1) real parameters in total. Roughly speaking, given

a large number n (the order of degeneracy), it is easier to access EPs than DPs, since less parameters

are required to be changed. In this sense, EPs are more general and stable.

6.2 EP2 space near EP3

In this section we consider another question: if a system originally sitting at an EP3 is slightly

perturbed, what kind of perturbation would leave the system at some EP2?

According to the previous section, the perturbed Hamiltonian of the system can be written

(directly or after a similarity transformation) as:

H(x, y) =


0 1 0

0 0 1

x y 0

 (6.9)
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Figure 6.1: Knot structure of EP2 subspace. For illustration purpose, the parameters are set numerically and have arbitrary
units.

The eigenvalues of H(x, y) are denoted as λi (i = 1, 2, 3), which are roots of the characteristic

polynomial f (λ) ≡ −λ3 + yλ + x.

To characterize the degeneracy of eigenvalues, it is convenient to introduce the discriminant

of the characteristic polynomial. In general, for a polynomial P(x) =
∑n

i=0 aixi with roots λi, one

can define Disc(P) = (−1)n(n−1)/2a2n−2
n Πi< j(λi − λ j), which is zero if and only if P has at least one

multiple root. Specifically, Disc( f ) = 4y3 − 27x2 = 0 for |x|2 + |y|2 > 0 if and only if the system is at

EP23.

The parameter space of the system is four dimensional since x, y ∈ C, and the EP2 subspace

characterized by Disc( f ) = 0 is a two dimensional structure. Since it is unintuitive to imagine

a coordinate system with more than three axes, we may cut a “slice” from the four dimensional

parameter space and study the EP2 structure enclosed in this slice. A natural slice would be a

3-sphere, described by

|x|2 + |y|2 = r2
x + r2

y = r2
0 (6.10)

where x = rxeiθx , y = ryeiθy (rx, θx, ry, θy ∈ R+) and r0 is some fixed small real number. The

parameters of an EP2 on this 3-sphere also satisfies:

Disc( f ) = 0 ⇐⇒ 27r2
x = 4r3

y , θx =
3
2
θy (6.11)

3. The system is at EP3 when x = y = 0.
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Combining Eq. 6.10 and Eq. 6.11, we can solve rx,y as functions of r0, and the constraint on θx,y

specifies a trefoil knot, which lies on the surface of some torus. The EP2 subspace on the 3-sphere is

visualized in Fig. 6.2.

Recall that the EP subspace of a two-mode systems is a single point in 2D parameter space. The

associated topological dynamics for a parameter loop is simple: the loop may either encircle the

EP2 or not. In three-mode systems, the topological dynamics can be much more complicated. A

parameter loop can be chosen to “encircle” the EP2 space (the knot in Fig. 6.2 in four topologically

distinct ways. (A loop cannot “encircle” EP3 in this space.)

6.3 Optomechanical EP3

We now examine how an EP3 can be demonstrated with our optomechanical setup. Three mechanical

modes can be selected and coupled with each other via cavity mediated optomechanical interaction.

A naive approach would be to use a straightforward generalization of Ref. [141], where three modes

of a nearly degenerate triplet (e.g., {1, 7}, {7, 1}, {5, 5}) are coupled. These mechanical modes are

indeed coupled together as long as a laser is sent into the cavity. However, one can show that the

couplings between the three modes are linearly dependent on each other4, so an EP3 can not be

reached in this way.

Alternatively, we may consider to generalize the concept of the VEP [142], and to demonstrate

EP3 of the dynamical matrix in some rotating frame (while the modes are non-degenerate in the lab

frame). The idea is to select three non-degenerate mechanical modes ωm,i (i = 1, 2, 3), and apply

three control laser tones with detunings ∆i ≈ −ωm,i. The mechanical sidebands added on lasers will

be close to the cavity resonance, and the beat notes between these sidebands and the laser tones may

drive the mechanical modes, thereby coupling the modes effectively.

4. In fact, the inter-mode couplins have the same form as the off-diagonal terms of H in Ref. [141]. They will be
proportional to the laser power, and is not sensitive to changes in the detuning.
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Figure 6.2: Possible setups to search for EP3s. Left: a single control laser tone to couple a near-degenerate triplet. Right:
three control laser tones to couple three non-degenerate modes.

The dynamical matrix of such a system can be derived following the same procedure as in Ch. 4,

D(t) =


ω1 − iγ1

2 + σ11 σ12ei∆12t σ13ei∆13t

σ21ei∆21t ω2 − iγ2
2 + σ22 σ23ei∆23t

σ31ei∆31t σ32ei∆32t ω3 − iγ3
2 + σ33

 (6.12)

where σmn = igmgnα
∗
mαn (χ (ωm − ∆n) − χ (ωm + ∆m)) and ∆i j = ∆i − ∆ j. Define the rotating matrix

U =


1 0 0

0 e−i∆12t 0

0 0 e−i∆13t

 (6.13)

which transforms the mode amplitude vector c (t) = (c1 (t) , c2 (t) , c3 (t))T into c′ (t) = Uc (t), we

end up with a time-independent dynamical matrix written as:

Dr =


ω1 − iγ1

2 + σ11 σ12 σ13

σ21 ω2 − ∆12 − iγ2
2 + σ22 σ23

σ31 σ32 ω3 − ∆13 − iγ3
2 + σ33

 (6.14)

such that the equation of motion is iċ′ (t) = Drc′ (t). We are able to access an EP3 of Dr as long

as σi j can be tuned linearly independently. For the setup with three control laser beams, there

are six parameters in total (the power and detuning of each tone), which is more than the minimal

theoretical requirement. Experimentally, one can set control laser powers as three free parameters and
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choose some common detuning (relative to the bare mechanical mode) as the fourth parameter. For

{1, 2}{2, 1} mode pair and {2, 2} singlet mode, numerical simulation shows that a triplet degeneracy

emerges when lasers are ∼10 µW and the common detuning tens of kHz5.

Yet another scheme to explore EP3 is to use one laser tone to create an EP for a pair of nearly-

degenerate mechanical modes, and then add a second laser tone to bring a third mechanical mode

into effective degeneracy with the other two. This scheme may be treated as a special case of the

above proposal. Assume ω1 ' ω2, the two tones detuned at ∆1,∆2 in above proposal are equivalent

to the first tone in current scheme. Specifically, we have ∆12 = 0, σ12 = σ21, σ13 = σ23, σ31 = σ32.

Note the number of parameters is reduced to four in this scheme, which is just enough to access

an EP3. Numerical simulation shows that (again for {1, 2}{2, 1} mode pair and {2, 2} singlet mode)

an EP3 can be accessed with P1 ≈ 150 µW, ∆1 ≈ −2π × 500 kHz, P2 = 50 µW, ∆2 ≈ −2π × 600

kHz. In practice, the optical damping effect makes the measurement of the modes’ oscillations quite

challenging.

Experimentally, the eigenvalues of Dr are extracted from the mechanical driven measurements

described in Ch. 4, with fitting functions derived in App. A. Note that the spectrum near each center

frequency has three peaks, instead of two in the previous two-mode case. These measurements are

were begun during this thesis writing, and we expect to have some result in the near future.

6.4 Future directions

A lot of static and dynamic behaviors can be studied once we demonstrate an EP3 of our system.

It will be interesting to show the knot structure of EP2s nearby the EP3. We may also observe

the evolution of the system along various parameter loops to study the (non)reciprocal as well as

topological features of such energy transfer. As pointed out in a recent theoretical study, that the

geometric phase for adiabatic closed-loop operation within the degenerate EP space is topological

and it is determined by the homotopy class of the control loop [154].

Meanwhile, a potential application of EPs in sensing technique has been proposed recently [155].

The idea is based on the high sensitivity of the eigenvalues to perturbations in coupling parameters

5. For numerical simulation, we consider the Jordan normal form for Dr and numerically find the solution of x =

Det(Dr) = 0 and y = Tr(Dr · Dr)/2 = 0. We do not present the exact numerical values here, as they are very sensitive to
the optomechanical coupling coefficients, which are subject to change over months in experiments.
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(e.g., near an EPn, a parameter perturbation ε leads to ε1/n−1 change of the eigenvalues, which is

considerably largger than the linear term ε for perturbation at regular points). Following this path,

enhanced mode splitting via utilizing exceptional points has been experimentally demonstrated in

microtoroid cavities [110,111]. We can explore this sensitivity in our setup, perhaps as a transducer of

the quantum fluctuations of the cavity photons. Nonreciprocity is shown to be useful in sensing, as it

allows one to exceed the fundamental bounds constraining any conventional, reciprocal sensor [156].

It is worth mentioning that noises should be treated properly when characterizing the EP-based

sensors [157, 158].

There has been a growing interest in the study of high-order EPs in other systems as well.

Existence of high-order EPs has been demonstrated in various systems such as ultracold Bose

gases [159], coupled photonic resonators [160] and cavity magnons [161].
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Concluding remarks

This dissertation reviews the work in HarrisLab that demonstrates robust nonreciprocal interaction

between two phononic resonators. The nonreciprocity, either transient or static, is realized via

the cavity mediated optomechanical interaction, and can be noticed by the asymmetry between

off-diagonal elements of the modes’ dynamical matrix. If the mechanical modes are coupled via two

control laser tones (Ch. 4), only the phases of these elements are different, and the nonreciprocal

energy transfer is investigated in the presence of a VEP. With two additional tones (Ch. 5), both

amplitudes and phases of these elements differ from each other, and we have demonstrated the

isolation in phonon transmission and also the ability to control the thermal fluctuations.

The study of nonreciprocity is an active field. Optomechanical systems are shown to be a

promising candidate for realizing on-chip nonreciprocal devices, yet it is hard to draw a definite

comparison with the current commercial devices, as the desired metrics of performance may vary

with the application, and optomechanical approaches are still in their infancy. Several crucial

parameters such as bandwidth, linearity, power consumption and noise should be characterized as

these devices continue to be improved.

Other intriguing possibilities in optomechanical nonreciprocity include realizing topological

insulators for photons and phonons [162]. Coupling together large networks of optomechanical

resonators may provide a natural integrated, compact platform to realize largely reconfigurable

unidirectional transport for sound and light.
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I hope this dissertation has provided a clear introduction to the field of optomechanical non-

reciprocity, as well as a motivation to further exploration on high-order EPs in optomechanical

systems.
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Additional theoretical derivations

A.1 A note on nonreciprocity of EP encircling

Dynamically encircling an EP can be mapped to a two-mode scattering problem in a microwave

waveguide. The full scattering matrix is symmetric, meaning it is reciprocal. In our system (coupled

nearly-degenerate mechanical modes), it is guaranteed by the dynamical matrix being symmetric.

U	(τ, 0) = e−i
∫ τ

0 D(r	(t))dt = e−i
∫ τ

0 D(r�(τ−t))dt

= [e−i
∫ τ

0 DT(r�(t))dt]T = [e−i
∫ τ

0 D(r�(t))dt]T = UT
�(τ, 0)

(A.1)

where we have already used DT = D. Note that according to matrix multiplication rule (AB) =

(BTAT)T, the change of order in the integral is associated with the transposing the matrices.

A.2 Heterodyne measurement signal

In general, an optical field âout(t) landing on a photodetector creates a photocurrent I(t) = σG 〈N̂(t)〉,

where N̂(t) = â†out(t)âout(t) is the photon number operator, σ is the quantum efficiency of the detector

and G is the gain. Introduce the current autocorrelation function:

i(t)i(t + τ) = G2σ2 〈: N̂(t)N̂(t + τ) :〉 + σ 〈N̂(t)〉 δ(t) (A.2)
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where :: indicates normal and time ordering. The first term is the time-ordered correlation of double-

photon counting, and the second term is the autocorrelation of single-photon counting. Note that

we have assumed the detector to have an infinite bandwidth in Eq. (A.2). For a finite-bandwidth

photodetector, we visualize the photon counting events as generating photoelectric pulses within

a nonzero duration τd. A single photon arrived in [t, t + τ] will contribute to both i(t) and i(t + τ),

thereby adding a nonzero contribution to S [ω].

The power spectrum of the photocurrent can be written as:

S [ω] = lim
T→∞

1
T

∫ T
2

− T
2

dt
∫ ∞

−∞

dτi(t)i(t + τ) (A.3)

To calculate the heterodyne signal in our measurement, consider the input mode

âin(t) = e−iΩt[K(1 +
√

rei(ωi f t+θ)) + ξ̂(t)
]

(A.4)

where we have included the local oscillator beam at Ω − ωi f , and r = Plo/Pmeas � 1 is the ratio

between the LO and the measurement beam. K =
√

P/~Ω, and θ is the phase of the spectrum. Note

we have neglected the classical noise of lasers. According to input-output theory, the output mode is

âout(t) = âin(t) −
√
κinâ(t) (A.5)

where â(t) is the intra-cavity field that can be linearized into an average amplitude and a small

fluctuating term. Namely,

â(t) = e−iΩt(α + d̂(t)) where α =

√
κinK

κ/2 − i∆
(A.6)

By solving d̂ in the equations of motion for the optomechanical system, we can use the above

equations to derive S [ω], which includes both red and blue sidebands.

A.3 PDH error signal

Pound-Drever-Hall (PDH) technique is generally used to keep a laser and a Fabry-Perot cavity mode

on resonance. Here we describe how the error signal is generated.

109



In the PDH setup, the laser beam is phase modulated before it enters the cavity, which is usually

done by an electro-optic modulator (EOM). Suppose the laser generates a coherent electromagnetic

field with amplitude E0 at ωL/2π, and the EOM provides phase modulation at frequency Ω/2π with

a small modulation depth β, the electric field incident on the cavity input mirror is:

Einc = E0e−i(ωLt+β sin Ωt)

' E0[J0(β) − 2iJ1(β) sin Ωt]e−iωLt

= E0[J0(β)e−iωLt + J1(β)e−i(ωL+Ω)t − J1(β)e−i(ωL−Ω)t]

(A.7)

where Js are Bessel functions. As we can see, there are three different beams: a carrier with

frequency ωL/2π and two sidebands with frequencies (ωL ± Ω)/2π. If P0 is the total power in the

beam, then the power in the carrier and sidebands are Pc = J2
0(β)P0 and Ps = J2

1(β)P0, separately.

For a single incident field Einc = E0e−iωt, the reflected beam is the coherent sum of two different

beams: the promptly reflected beam off the front mirror, and the leakage beam from the cavity

(which contains multiple components that bounces between two mirrors and transmitted through the

front mirror). Let r1 (r2) denote the amplitude reflection coefficient for the front (back) mirror, and

t1 =

√
1 − r2

1 is the transmission coefficient for the front mirror. The total reflected beam is:

Eref = E0[−r1e−iωt +

∞∑
k=1

t1rk
2rk−1

1 t1e−iω(t+2kL/c)] (A.8)

so the total reflection coefficient is:

F(ω) =
Eref

Einc
=

r2e−iω/∆νFSR − r1

1 − r1r2e−iω/∆νFSR
(A.9)

where ∆νFSR = c/2L is the free spectral range of the cavity.
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Figure A.1: PDH error signal (a.u.) as a function of detuning. The phase modulation frequency Ω ' 0.004ωc, the mirror
reflection coefficients are r1 = 0.9998 and r2 = 0.99997, respectively.

To calculate the reflection when there are multiple incident beams, we multiply each incident

beam with the reflection coefficient at beam frequency. The reflected beam in PDH setup is therefore:

Eref = E0e−iωLt[F(ωL)J0(β) + F(ωL + Ω)J1(β)e−iΩt − F(ωL −Ω)J1(β)eiΩt] (A.10)

The beam is measured with a photodetector, which yields:

Pref = |Eref|
2 = Pc|F(ωL)|2 + Ps[|F(ωL + Ω)|2 + |F(ωL −Ω)|2]

+ 2
√

PcPs{<[F(ωL)F∗(ωL + Ω) − F∗(ωL)F(ωL −Ω)] cos Ωt

− =[F(ωL)F∗(ωL + Ω) − F∗(ωL)F(ωL −Ω)] sin Ωt}

(A.11)

where we have neglected 2Ω and higher order terms. The detected signal is mixed with the EOM

driving signal, which is proportional to sin Ωt, and the resulting error signal is:

ε = 2
√

PcPs=[F∗(ωL)F(ωL −Ω) − F(ωL)F∗(ωL + Ω)] (A.12)

Fig. A.1 shows our measured error signal as a function of laser detuning ∆ = ωL − ωc, where

ωc = n∆νFSR for some positive integer mode number n is a cavity resonance frequency. We can

see the error signal is linear within a small range near ωc, and can be used in the feedback loop to
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stabilized ∆ around 0.

A.4 Driven response measurement of three modes

Write down the equations of motion in the Fourier domain:

c′ [ω] =
(
ωI3×3 − Dr)−1 F [ω] (A.13)

which indicates the spectrum near each center frequency has three peaks. To see this explicitly, we

consider ω ≈ ωm,1. The main contribution to the photocurrent comes from c1 that yield the form:

c1 [ω] =

3∑
i=1

h1i

ω − ω̃i
F1 [ω] (A.14)

where ω̃i (i = 1, 2, 3) is the eigenvalue of Dr and h1i is the corresponding complex height. Suppose

the diagonal elements of Dr are denoted as D1, D2 and D3 and let

A = − (D1 + D2 + D3)

B = D1D2 + D2D3 + D3D1

(A.15)

Compare two expressions Eq.A.13 and Eq.A.14 of c1, we have

(ω̃2 + ω̃3) h11 + (ω̃1 + ω̃3) h12 + (ω̃1 + ω̃2) h13 = D2 + D3

ω̃2ω̃3h11 + ω̃3ω̃1h12 + ω̃1ω̃2h13 = D2D3 − σ23σ32

h11 + h12 + h13 = 1

(A.16)

Now set h1i = 1
3 + xi, we derive:

3∑
i=1

(
ω̃(i+1)%3 + ω̃(i+2)%3

)
xi = D2 + D3 +

2
3

A

3∑
i=1

ω̃(i+1)%3ω̃(i+2)%3xi = D2D3 − σ23σ32 −
1
3

B

3∑
i=1

xi = 0

(A.17)
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from where we can solve

x1 =
ω̃1

(
D2 + D3 + 2

3 A
)
− D2D3 + σ23σ32 + 1

3 B

(ω̃1 − ω̃2) (ω̃3 − ω̃1)
(A.18)

x2 =
ω̃2

(
D2 + D3 + 2

3 A
)
− D2D3 + σ23σ32 + 1

3 B

(ω̃1 − ω̃2) (ω̃2 − ω̃3)
(A.19)

x3 =
ω̃3

(
D2 + D3 + 2

3 A
)
− D2D3 + σ23σ32 + 1

3 B

(ω̃2 − ω̃3) (ω̃3 − ω̃1)
(A.20)

Note that when σi j = 0 ( j , i) we have h11 = 1 and h12 = h13 = 0, which means the first peak is the

real (or physical) peak and the other two are “ghost” peaks.

Similarly for the other two modes, we write:

c2 [ω] =

3∑
i=1

h2i

ω − ∆12 − ω̃i
F2 [ω] (A.21)

c3 [ω] =

3∑
i=1

h3i

ω − ∆13 − ω̃i
F3 [ω] (A.22)

Set h2i = 1
3 + yi and h3i = 1

3 + zi such that:

yi =
ω̃i

(
D1 + D3 + 2

3 A
)
− D1D3 + σ13σ31 + 1

3 B(
ω̃i − ω̃(i+1)%3

) (
ω̃(i+2)%3 − ω̃i

) (A.23)

zi =
ω̃i

(
D1 + D2 + 2

3 A
)
− D1D2 + σ12σ21 + 1

3 B(
ω̃i − ω̃(i+1)%3

) (
ω̃(i+2)%3 − ω̃i

) (A.24)

To summarize, mechanical driven response is:

c j [ω] =

3∑
i=1

h ji

ω − ∆1 j − ω̃i
F j [ω] (A.25)

where

h ji =
ω̃i

(
D j+1 + D j+2 + 2

3 A
)
− D j+1D j+2 + σ( j+1)( j+2)σ( j+2)( j+1) + 1

3 B

(ω̃i − ω̃i+1) (ω̃i+2 − ω̃i)
(A.26)

where all subscriptions are in mod3 sense such that 4=1 and 5=2 (3=3, not 0).
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Additional experimental details

B.1 Characterization of the system

B.1.1 Linewidth of the mechanical modes

The bare linewidth of a mechanical mode is characterized by the membrane ring-down measurement.

Specifically, the mode is first driven to some large amplitude via a sinusoidal wave that is sent to the

membrane piezo, and then oscillates freely without the external drive.

Figure B.1: Examples of mechanical ringdowns for the {1, 1}, {2, 2}, and {3, 3} modes at the corresponding frequencies,
plotted in red, blue, and green, respectively. The black lines are fits of the decaying amplitude to

√
a2e−γt + b2, where a is

the initial amplitude of the motion and b is a background.
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We use a 1310 nm laser (manufactured by ThorLabs) instead of the 1064 nm measurement

laser to measure the motion in the mode. The reasons are(i) the optical damping effect caused by a

near-resonance 1064 nm laser perturbs the mechanical linewidth significantly even when the beam is

weak, and (ii) it is difficult to lock the 1064 nm beam to the cavity when the membrane oscillates

with a large amplitude. The 1310 nm beam can enter the cavity without any need for locking since

the finesse of the cavity at 1310 nm is close to unity. Moreover, as the finesse is so low, the optical

damping is negligible.

Time traces of such measurement on three different mechanical modes are shown in Fig. B.1.

The bare linewidth of each mode can be extracted from the fitting result.

B.1.2 Linewidth of the optical cavity

To characterize κ and κin of the optical cavity, we sweep the frequency of the measurement laser

over the cavity resonance and record the DC reflection spectrum and the PDH error signal on an

oscilloscope (shown in Fig. B.2). The error signal is used to calibrate the time axis of the sweep into

unit of Hz, and the reflection voltage signal near cavity resonance is fit with:

V(∆) = G|1 −
κin

κ/2 + i(∆ − ∆0)
|2 + b (B.1)

where G is the overall gain, b is the background, ∆0 is the detuning offset.

Frequency (kHz)

R
ef
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ct

io
n

Figure B.2: Cavity linewidth measurement via reflection.
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B.1.3 Optomechanical coupling rates

The optomechanical coupling rates ga for mode a can be extracted via fitting to the optical spring

and damping measurement result. As illustrated in Fig. B.3.

705.2 kHz mode557.4 kHz mode

Figure B.3: Examples of dynamical backaction fitting for the {2, 1} and {2, 2} modes. The control beam is 14 µW with
detuning varied over a large range. The optical spring and damping data is from the fitting to the brownian motion
sidebands.

B.2 Initialization of the experiment

The optical alignment and the cool down of the cryogenic platform was already completed when I

joined Harris lab in March 2015. The initialization I discuss here refers to locking the lasers in order,

and relocating the membrane position every time after the helium transfer1.

The preparation for a measurement is as follows. We first bypass the filter cavities and lock the

probe beam to cavity (with PI controller No. 1&2). Then we lock the control beam to the probe

(with PI controller No. 3). At this point we can locate the membrane to its optimal position or ”sweet

spot” (discussed below). We then lock the filter cavities (with PI controller No. 4&5). The steps to

do that are (i) break all prior lockings, (ii) lock measurement laser filter cavity, (iii) relock the probe

and control lasers, and (iv) lock the control laser filter cavity.

The sweet spot refers to the membrane position where the frequency separation between two

cavity modes (addressed by control and measurement laser, respectively) is maximized. To measure

1. The cryostat is de-floated before transferring helium, so the position of membrane in the cavity may shift after
re-floating by the end of the transfer.
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this frequency separation, we sweep the frequency of the Rohde&Schwarz signal generator (that

produces the ≈ 8 GHz reference signal) with a deviation of several MHz at a frequency of ≈ 2 Hz.

The control laser lock tracks the frequency sweep of reference signal, so the frequency of the control

laser experience the same sweep. As control laser frequency passes over the cavity mode, a dip

in reflected light is observed. We then adjust the center frequency of the sweep until the dip is in

the middle of the whole sweeping range. (A coarse way to verify that is to observe equal-distant

reflection dips on an oscilloscope.) Now the center frequency is a good approximation to the mode

separation, which we maximize by adjusting the membrane position.2

2. Note that this method relies on the fact that the probe beam is exactly on resonance with the cavity mode it addressed,
which may not be the case. We usually keep the probe beam slightly red-detuned to self-oscillations and unlocking of our
system.
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[108] Z. Lin, A. Pick, M. Lončar, and A. W. Rodriguez. Enhanced spontaneous emission at third-

order dirac exceptional points in inverse-designed photonic crystals. Physical Review Letters,

117(10):107402, 2016.

[109] W. D. Heiss and G. Wunner. A model of three coupled wave guides and third order exceptional

points. Journal of Physics A: Mathematical and Theoretical, 49(49):495303, 2016.

[110] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides,

and M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 548:187–

191, 2017.
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