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The field of optomechanics deals with the interaction between light and mechanical objects. One of the goals
in this field is to gain ability to coherently manipulate mechanical states with single-quantum precision and to
interface these states with electromagnetic radiation without loss. Recent achievements enabled by this power
include cooling of the mechanical oscillator to its quantum ground state, generating optical or mechanical squeez-
ing, or entangling mechanical and optical degrees of freedom. To accomplish these goals, one generally aims to
create a system with strong optomechanical coupling, while maintaining low optical and mechanical losses and
low temperature. Superfluid helium is a liquid which is uniquely well-suited to meet these requirements.

In this work I describe the cavity optomechanics systems in which we couple infrared light to a standing
acoustic wave in superfluid helium. With this system, we used light to coherently excite acoustic vibrations and
manipulate their frequency and damping rate using the dynamic back-action effect. In addition, we measured
thermal fluctuations of the mechanical mode corresponding to mean phonon number of five. These measure-
ments had sufficient precision to reveal quantum signatures in the motion of the acoustic waves and in their
interaction with light. Specifically, we observed the expected one-phonon difference between the Stokes and
anti-Stokes mechanical sidebands, and indirectly measured the action of the optical shot noise on the mechanical
object by investigating the correlations between these sidebands.
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â · b̂

]
Cii(τ) Photocurrent autocorrelator A2

Cxx(τ)
Cyy(τ)

Autocorrelator of the classical amplitude / phase noise 1

Cxy(τ) Cross-correlator between the classical amplitude and phase noises 1

C Optomechanical cooperativity 1

Cth Optomechanical thermal cooperativity 1

d̂ Fluctuations around the steady state of the optical mode 1

d̂out Fluctuations around the steady state at the optical output s−1/2

d̂pt
Contribution to optical mode fluctuations due to the photothermal loss channel
noise

1
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Chapter 1

Introduction

As is evident from its name, optomechanics deals with coupling between optical (or, more generally, electro-
magnetic) and mechanical (i.e., associated with macroscopic motion) degrees of freedom. Taken at its face
value, this is a very broad definition, as it includes any experiment in which light reflects off a potentially
moving surface: interferometry, microscopy, or even just observing an indicator needle. This is why the term
“optomechanics” is oftentimes restricted to the kind of experiments and systems where this interaction is bidi-
rectional. Just as the mechanical position affects light (e.g., by changing its direction or phase), so does the
light act on the mechanical object by exerting a force. In practice, such force can manifest in many ways:
radiation pressure (which is the colloquial general name for this kind of force), electrostriction, optical tweezing
(dipole forces), or just static Coulomb force. All these forces share the same important characteristics: they
are unitary, in the sense that they arise from the same part of the Hamiltonian that describes the influence of
the mechanical position on light (often referred to as the optomechanical interaction term). This means that
the system evolution induced by these forces is, in principle, reversible and information-conserving. In contrast,
another class of radiation-induced forces, so-called “photothermal” forces (which include temperature-related
effects, such as thermal expansion or temperature-dependent refractive index), are inherently associated with
some optical absorption and heating. Hence, these forces lead to loss of quantum coherence, and are less suitable
for quantum operations.

There are many different reasons to be interested in optomechanics. The one that I will focus on most in
this work involves quantum applications of optomechanics, where one can use light to manipulate or measure
a state of a mechanical object with single-quantum precision. This ability gives rise to several important
applications: transferring a quantum state between different systems by using the mechanical object as a bus;
manipulating properties of light through its interaction with the mechanical object (e.g., generating optical
quadrature squeezing); or creating non-classical mechanical states, which can be used, e.g., for testing different
decoherence mechanisms (such as the ones arising from the gravitational interaction of mechanical objects).

Our system of choice for studying quantum optomechanics is superfluid helium, which for us has several
attractive properties (low optical absorption, low temperature, low mechanical loss). The experimental efforts
in this direction started in the Harris Lab about six years ago, and for the last 3.5 years I have been a part of
this project. In that time, we have built two generations of superfluid helium optomechanics devices, performed
some standard and less standard optomechanics experiments, and learned a great deal about the applicability
and limitations of superfluid helium as an optomechanics medium. This thesis is my attempt to document these
endeavors.

The thesis proceeds as follows:

• In Chapter 2 I describe the canonical optomechanical system and derive several standard optomechanics
effects such as position detection, dynamical backaction and driven response measurements. This chapter
mostly serves to establish the notation and to give an introduction to basic concepts, which are used and
expanded upon in later chapters.

• Chapter 3 gives a brief overview of the field of optomechanics by describing the most common imple-
mentations of optomechanical systems and recapping recent achievements in quantum optomechanics.
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It also introduces the thermal cooperativity, which is an important figure of merit in linear quantum
optomechanics.

• Chapter 4 gives a description of superfluid helium, particularly in its relation to optomechanics. In
this chapter I also provide expressions for some of its relevant properties, such as acoustic loss and
optomechanical coupling.

• Next, in Chapter 5 I present our experimental schematic, including both the experimental device and the
measurement setup.

• Chapter 6 shows the experimental results obtained with the first-generation experimental device, and
describes limitations of its design.

• In Chapter 7 I take a brief intermission to give a theoretical description and an interpretation for the
main measurements of this thesis: mechanical sideband asymmetry and the sideband cross-correlator.

• After that, in Chapter 8 I describe the improved version of the experimental device, and demonstrate the
new measurements that we were able to perform with it: the dynamical backaction, and the undriven
motion measurements (which is the focus of Chapter 7).

• Finally, in Chapter 9 I conclude by assessing the device performance and outlining some possible future
improvements of this device and general potential directions in the superfluid helium optomechanics.
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Chapter 2

Canonical optomechanical system

In this Chapter I will consider the theoretical description of a generic optomechanical system and derive several
standard optomechanics effects. I will start by describing a single optical mode in input-output formalism
(section 2.1). Then I will present the canonical optomechanical system and the optomechanical Hamiltonian
arising from it (section 2.2). Using this Hamiltonian I will derive the Langevin-Heisenberg equations of motion
(section 2.3), which are the starting point for describing many optomechanical experiments, including the ones
described in later chapters. Finally, I will use this description to derive several standard effects in optomechanics
theory including position detection (section 2.4), dynamical backaction (section 2.5), mechanical fluctuations
and radiation pressure shot noise (section 2.6), and measurements of the driven mechanical response using the
optomechanically induced transparency and amplification (OMIT/A) approach (section 2.7). These and many
other effects are also described in a recent review [1].

2.1 Single optical mode

To introduce input-output theory, we start by considering a single optical mode without any mechanical ele-
ments. We derive a general form of Langevin-Heisenberg equation of motion for the mode’s amplitude, and
then solve this equation under the assumption of a single-tone external drive.

2.1.1 Closed system

In order to establish notation, let us first consider a single optical mode with a frequency ωc. The Hamiltonian
describing the internal dynamics of such system is that of a simple harmonic oscillator

Ĥc = ~ωc

(
â†â+

1

2

)
, (2.1)

where â is the annihilation operator of the mode, which obeys the standard bosonic commutation relation[
â, â†

]
= 1. Using this Hamiltonian, we can derive the Heisenberg equation of motion for the time-dependent

operator â:

˙̂a = − i
~

[
â, Ĥc

]
= −iωcâ. (2.2)

2.1.2 Open system

In order to describe damping as well as the outgoing fields, we are going to employ input-output theory[2]. It
assumes a weak coupling of the system to a set of continuum Markovian baths through several ports. Each port
i is described by its coupling rate κi, its input field âin,i(t) and the corresponding output field âout,i(t). The
input field determines the force exerted by the bath on the optical mode, while the output field describes how
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the information about the optical mode leaks back into the bath. The input and output fields corresponding
to the same port obey the commutation relations[

âin,i(t), â
†
in,i(t

′)
]

=
[
âout,i(t), â

†
out,i(t

′)
]

= δ(t− t′) (2.3)[
âin,i(t), âin,i(t

′)
]

=
[
âout,i(t), âout,i(t

′)
]

= 0. (2.4)

In addition, we assume that the baths coupled to different ports are completely independent, so the operators
corresponding to different baths commute with each other:[

âin,i(t), â
†
in,j(t

′)
]

=
[
âout,i(t), â

†
out,j(t

′)
]

=
[
âin,i(t), âin,i(t

′)
]

=
[
âout,i(t), âout,i(t

′)
]

= 0, i 6= j. (2.5)

Coupling to these baths leads to two effects: it adds random forces (one per port) acting on the optical
mode, and it induces damping (caused by the energy of the system leaking into the environment through the
same ports). With that, the Heisenberg equation of motion (2.2) turns into a Langevin-Heisenberg equation

˙̂a = − i
~

[
â, Ĥc

]
− κ

2
â+

∑
i

√
κiâin,i, (2.6)

where κ =
∑

i κi is the total damping of the optical mode. Substituting Hamiltonian (2.1) yields the equation

˙̂a = −
(κ

2
+ iωc

)
â+

∑
i

√
κiâin,i. (2.7)

Finally, input-output theory provides an expression for the outgoing fields, which is a combination of the
corresponding input fields and the optical mode escaping the cavity:

âout,i(t) = âin,i(t)−
√
κiâ(t). (2.8)

2.1.3 Input fields statistics

To determine the system dynamics, we need to define the properties of the incoming fields. If there is no
external drive (e.g., a laser or a microwave generator), then the incoming field is typically black-body radiation
corresponding to the bath temperature Ti. In the Markovian approximation this leads to the bath operators’
correlator 〈

(âin,i(t))
† âin,j(t

′)
〉

= nth(Ti, ωc)δi,jδ(t− t′), (2.9)

where nth is the bosonic occupation number defined as

nth(T, ω) =
1

e~ω/(kBT ) − 1
. (2.10)

This approximation is valid for a high-Q resonator, where the dependence of nth on frequency can be neglected.
As far as higher-order correlations are concerned, the input radiation is assumed to be Gaussian and have zero
mean (〈âin,i(t)〉 = 0), so all of the correlators can be expressed using Wick’s theorem[3].

The optical modes considered in this work lie in the near-infrared (near-IR) part of the spectrum at fre-
quencies of ∼ 200 THz. At such frequencies the occupation of a room temperature bath (with a characteristic
frequency kBTroom/~ ≈ 2π · 6 THz) is extremely small, and so can be approximated to be zero. Thus, the
external bath can be assumed to be in its ground state, so the incoming radiation will only have vacuum noise,
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which we will denote as as ξ̂i for ith port. The statistical properties of this noise can be derived from expressions
(2.3)-(2.5) and (2.9): [

ξ̂i(t), ξ̂
†
j (t
′)
]

= δi,jδ(t− t′) (2.11)〈
ξ̂†i (t)ξ̂j(t

′)
〉

= 0 (2.12)〈
ξ̂i(t)ξ̂

†
j (t
′)
〉

=
〈
ξ̂†i (t)ξ̂j(t

′)
〉

+
[
ξ̂i(t), ξ̂

†
j (t
′)
]

= δi,jδ(t− t′). (2.13)

If a port is externally driven, then the incoming operator will have an additional part corresponding to the
drive:

âin,i(t) = a
(dr)
in,i (t) + ξ̂i. (2.14)

Here a
(dr)
in,i (t) is the classical drive amplitude normalized by the photon flux, i.e.,

∣∣∣a(dr)
in,i (t)

∣∣∣2 yields the incoming

photon flux. For example, a single-tone drive of power Pd and frequency ωd will correspond to the amplitude

of a
(dr)
in (t) =

√
Pd
~ωd

e−iωdt.

2.1.4 Solution for a driven damped optical mode

As an instructive example, let us consider an optical mode â with two ports. The first is the so-called “loss” or
“internal” port with a coupling rate κint and an input âin,int; it is not driven externally, so its input is simply a

vacuum noise: âin,int = ξ̂int. The second port is called called “input” or “external”, and it has a coupling rate
of κext = κ − κint and an input operator âin,ext. We assume that this port experiences a classical drive ain(t),

so its total input is âin,ext(t) = ain(t) + ξ̂ext(t).
With these two ports the generic equation of motion (2.7) transforms into

˙̂a = −
(κ

2
+ iωc

)
â+
√
κintξ̂int +

√
κextξ̂ext +

√
κextain. (2.15)

Next, to simplify the equation, let us move into a frame rotating at the frequency ωc by making a substitution
â→ âe−iωct. This results in the equation

˙̂a = −κ
2
â+
√
κintξ̂int +

√
κextξ̂ext +

√
κextaine

iωct. (2.16)

To obtain this equation we have also made a transformation ξ̂int/ext → ξ̂int/exte
−iωct. However, this does not

change the statistical properties of the noise (as its autocorrelator is non-zero only for zero time difference where
the exponent is unity), so we can still treat these operators in the same way as before.

Let us assume that the drive is a single coherent tone with an amplitude ad and a frequency ωd: ain(t) =
ade
−iωdt. This turns the drive term in the equation of motion into

√
κextade

−i∆t, where ∆ = ωd − ωc is the
drive detuning from the cavity resonance. Since the equation of motion is linear, we can separate the classical
(driven) and the quantum (noise) parts of the intracavity field by looking for a solution in the form

â(t) = āe−i∆t + d̂(t), (2.17)

where ā is a steady-state amplitude and d̂(t) are fluctuations around it. Substituting this ansatz into the
equation and separating the steady state and the fluctuation parts leaves us with two equations

−i∆ā = −κ
2
ā+
√
κextad (2.18)

˙̂
d = −κ

2
d̂+
√
κintξ̂int +

√
κextξ̂ext. (2.19)

5



The first equation results in the steady state amplitude ā = χc[∆]
√
κextad, where the cavity susceptibility χc is

defined as

χc[ω] =
1

κ/2− iω
. (2.20)

The magnitude and phase of the susceptibility are illustrated in Figure 2.1.

Figure 2.1: Relative magnitude of the cavity response |χc[∆]/χc[0]| (top) and the phase of the response
arg(χc[∆]) (bottom) as a function of detuning.

To solve the second equation, we can transform into the Fourier domain (for a discussion of the Fourier
transform and its properties, see appendix A.2):

−iωd̂[ω] = −κ
2
d̂[ω] +

√
κintξ̂int[ω] +

√
κextξ̂ext[ω] (2.21)

d̂[ω] = χc[ω]
(√

κintξ̂int[ω] +
√
κextξ̂ext[ω]

)
. (2.22)

The statistical properties of the vacuum noise in the Fourier domain follow from its properties in the time
domain (2.11)-(2.13) and our definition of the noise Fourier transform described in appendix section A.2:[

ξ̂i[ω], ξ̂†j [−ω]
]

= δi,j (2.23)〈
ξ̂†i [ω]ξ̂j [−ω]

〉
= 0 (2.24)〈

ξ̂i[ω]ξ̂†j [−ω]
〉

= δi,j . (2.25)

These lead to the following statistical properties of the intracavity vacuum noise:[
d̂[ω], d̂†[−ω]

]
=

κ

(κ/2)2 + ω2
(2.26)〈

d̂†[ω]d̂[−ω]
〉

= 0 (2.27)〈
d̂[ω]d̂†[−ω]

〉
=

κ

(κ/2)2 + ω2
. (2.28)
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The equal-time commutator can be calculated (using the Wiener-Khinchin theorem similarly to equation (A.5)
in appendix A.1.2) as[

d̂(t), d̂†(t)
]

=

∫ +∞

−∞

[
d̂[ω], d̂†[−ω]

]dω
2π

=

∫ +∞

−∞

κ

(κ/2)2 + ω2

dω

2π
= 1. (2.29)

Thus, the intracavity field obeys the expected bosonic commutator relations (note that from (2.17)
[
â, â†

]
=[

d̂, d̂†
]
, since the rest of â is a classical amplitude).

The output field can be found using relation (2.8) and then decomposing into stationary and fluctuating
parts similarly to expression (2.17). In the frame which is still rotating at ωc we can write

âout,ext(t) = āoute
−i∆t + d̂out(t) (2.30)

āout = ad −
√
κextā = ad

(
1− κext

κ
2 − iω

)
(2.31)

d̂out[ω] = ξ̂ext[ω]−
√
κextd̂[ω]

=

(
1− κext

κ
2 − iω

)
ξ̂ext[ω]−

√
κextκint
κ
2 − iω

ξ̂int[ω]. (2.32)

The statistics of the output noise is[
d̂out[ω], d̂†out[−ω]

]
=

∣∣∣∣1− κext
κ
2 − iω

∣∣∣∣2 +

∣∣∣∣√κextκint
κ
2 − iω

∣∣∣∣2 = 1 (2.33)〈
d̂†[ω]d̂[−ω]

〉
= 0 (2.34)〈

d̂[−ω]d̂†[ω]
〉

= 1. (2.35)

The commutator expression (2.33) agrees with the expectation (2.3) for the output mode.

2.2 Optomechanical coupling and its interpretations

In this section we add a mechanical mode to produce the canonical optomechanical system, derive a Hamiltonian
describing the optomechanical coupling, and discuss its interpretations.

2.2.1 Canonical system and its Hamiltonian

Figure 2.2: Schematic representation of the canonical optomechanical system.
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The canonical optomechanical system is shown in Figure 2.2. It consists of two mirrors forming a Fabry-
Perot cavity, with the output mirror being placed on a spring to create a mechanical oscillator. Let us denote the
length of the cavity by L and let us consider the nth cavity longitudinal mode, i.e., the mode with the wavelength
λc0 = L/(2n) (assuming perfect conductor boundary conditions, i.e., zero electric field at the mirror surfaces;
for a more general treatment, see section B.2) and the corresponding frequency ωc0 = 2πc/λc0 = 4πnc/L. As
in the previous section, the cavity mode is described by the Hamiltonian

Ĥc = ~ωc0

(
â†â+

1

2

)
. (2.36)

Next, we need to introduce a mechanical Hamiltonian. Let us assume that the mechanical oscillator has
mass m and spring constant k, such that its resonant frequency is ωm =

√
k/m. This results in a similar

Hamiltonian

Ĥm = ~ωm

(
b̂†b̂+

1

2

)
, (2.37)

where now b̂ is the annihilation operator of the mechanical oscillator. Its displacement can be expressed in
terms of this annihilation operator as

x̂ = xZPF

(
b̂+ b̂†

)
= xZPFẑ (2.38)

xZPF =

√
~

2mωm
. (2.39)

The zero-point fluctuation (ZPF) amplitude xZPF specifies the RMS mechanical displacement in the ground
state: we can see that in the ground mechanical state〈

x̂2
〉

= x2
ZPF

〈(
b̂+ b̂†

)(
b̂+ b̂†

)〉
= x2

ZPF

〈
b̂b̂†
〉

= x2
ZPF. (2.40)

For brevity we have also introduced the dimensionless displacement operator

ẑ = b̂+ b̂† =
x̂

xZPF
, (2.41)

which represents the mechanical position normalized by the ZPF amplitude.
Finally, we need to consider the fact that the cavity length (and, therefore, the optical resonance frequency)

depends on the mechanical mode position:

ω̂c(x̂) =
4πnc

L̂
=

4πnc

L+ x̂
, (2.42)

In practice, the typical mechanical displacement x̂ is much smaller than the average cavity length L. There-
fore, we can expand the optical frequency expression (2.42) to first order in x̂:

ω̂c ≈ ωc0 +
∂ωc

∂x
x̂ = ωc0 +

∂ωc

∂x
xZPFẑ = ωc0 + g(0)ẑ, (2.43)

where ωc0 is the optical resonance frequency for zero displacement and

g(0) =
∂ωc

∂x
xZPF. (2.44)

is the single-phonon optomechanical coupling. With this expansion the total Hamiltonian of the system becomes

Ĥ = ~
(
ωc0 + g(0)ẑ

)(
â†â+

1

2

)
+ ~ωm

(
b̂†b̂+

1

2

)
= ~ωc0

(
â†â+

1

2

)
+ ~ωm

(
b̂†b̂+

1

2

)
+ ~g(0)ẑ

(
â†â+

1

2

)
= Ĥc + Ĥm + Ĥom, (2.45)
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where the optomechanical interaction Hamiltonian is

Ĥom = ~g(0)ẑ

(
â†â+

1

2

)
. (2.46)

The additional 1
2 term in this expression represents the Casimir force[4, 5], or, more precisely, the contribution

to this force due to this particular optical mode. This effect is insignificant for the systems which are considered
in this work, and to take it into account consistently we would need to consider all of the optical modes both
inside and outside of the cavity (which, among other things, changes the sign of the force from repulsive to
attractive). Thus, we will ignore this term for simplicity. Furthermore, we will also omit the 1

2 terms in the bare
optical and mechanical parts, since all they contribute is a static shift to the Hamiltonian. These simplifications
result in a slightly different Hamiltonian

Ĥ ≈ ~ωc0â
†â+ ~ωmb̂

†b̂+ ~g(0)ẑâ†â. (2.47)

This Hamiltonian is universal, and it describes any optomechanical system which has one mechanical and one
optical mode, and in which the optomechanical coupling is linear (i.e., expansion (2.43) is valid).

It is interesting to note that while in the canonical optomechanical system the definition of the mechanical
displacement x̂ is very clear and natural, this is not the case for every optomechanical system. For example, in
systems based on phononic defect cavities[6] the mechanical mode is described by a complicated displacement
profile, so choosing how to quantify it with a single number is fairly subjective (in Ref. [6] the authors use
the maximal point displacement); and in the case of the standing acoustic wave mode discussed in this thesis
such displacement does not make much sense. This ambiguity also implies that values of the effective mass
m, the effective spring constant k, and, correspondingly, the ZPF amplitude xZPF could be similarly poorly
defined. Nevertheless, it turns out that the mechanical frequency ωm and the single-photon optomechanical
coupling g(0) are still model-independent and can be derived for any optomechanical system (e.g., see section
4.7 for the derivation in our system). Since these are the only mechanical system parameters entering the final
Hamiltonian (2.47), the description presented in this section is universal, even though its derivation is not.

2.2.2 Interpretation of the optomechanical coupling

The optomechanical interaction Hamiltonian (2.46) can be understood in several different ways:

(1) It can be interpreted in the way we just derived it, i.e., as a position-dependent resonant frequency of the
optical cavity. To underscore this interpretation, we can write the interaction as Ĥom = ~

(
∂ωc
∂x x̂

)
â†â =

~δω̂câ
†â with δω̂c = ∂ωc

∂x x̂.

(2) We can also write the Hamiltonian in a different form: Ĥom =
(
~∂ωc
∂x â

†â
)
x̂ = F̂ x̂. This way it can

be seen as a force acting on the mechanical resonator which is proportional to the energy stored in the
optical mode. In the canonical optomechanical system this force is radiation pressure exerted by the light
reflected off the movable mirror, but in different optomechanical systems it can have different origins (e.g.,
electrostatic force, or electrostriction).

(3) Finally, by substituting ẑ = b̂+b̂† the interaction Hamiltonian can be written as Ĥom = ~g(0)
(
b̂â†â+ b̂†â†â

)
.

This form suggests the interpretation of a three-wave mixing process where one photon (quantum of the
optical mode excitation) is destroyed, one photon is created, and in the process one phonon (quantum of
the mechanical mode excitation) is either created or destroyed.

2.3 Equations of motion and steady-state solution

Now we use the optomechanical Hamiltonian (2.47) to derive the equations of motion describing the optome-
chanical system, similar to the derivation of equation (2.16) from the Hamiltonian (2.1).
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2.3.1 Equations of motion

As in section 2.1, equations of motion for the Heisenberg operators â and b̂ can be derived using the input-output
relation (2.6).

We consider the same two-port model for the optical mode as in the previous section. It leads to an equation
of motion

˙̂a = − i
~

[â, Ĥ] +
√
κintξ̂int +

√
κextξ̂ext +

√
κextain

= −
(κ

2
+ iωc0

)
â− ig(0)â

(
b̂+ b̂†

)
+
√
κintξ̂int +

√
κextξ̂ext +

√
κextain. (2.48)

We can again go into the frame rotating at ωc0 to obtain

˙̂a = −κ
2
â− ig(0)â

(
b̂+ b̂†

)
+
√
κintξ̂int +

√
κextξ̂ext +

√
κextaine

+iωc0t. (2.49)

A similar equation can be written for the mechanical mode as well. Since we are not going to consider any
external mechanical drive or measurement channels, it is sufficient to introduce a single port to describe the
intrinsic mechanical loss:

˙̂
b = − i

~
[b̂, Ĥ] +

√
γmη̂

= −
(γm

2
+ iωm

)
b̂− ig(0)â†â+

√
γmη̂. (2.50)

Here γm is the total mechanical damping and η̂ is the thermal noise force exerted by the bath. The statistics
of this thermal force can be derived using equations (2.3) and (2.9) to be[

η̂(t), η̂†(t′)
]

= δ(t− t′) (2.51)〈
η̂†(t)η̂(t′)

〉
= nth,mδ(t− t′) (2.52)〈

η̂(t)η̂†(t′)
〉

= (nth,m + 1)δ(t− t′) (2.53)

in the time domain, and, correspondingly (similar to equations (2.23)-(2.25)),[
η̂[ω], η̂†[−ω]

]
= 1 (2.54)〈

η̂†[ω]η̂[−ω]
〉

= nth,m (2.55)〈
η̂[ω]η̂†[−ω]

〉
= nth,m + 1 (2.56)

in the Fourier domain. The equilibrium mechanical bath occupation nth,m is found from equation (2.10)

nth,m = nth(T, ωm) =
1

e~ωm/(kBT ) − 1
≈ kBT

~ωm
, (2.57)

where the last approximation is done under the assumption of a relatively hot bath kBT � ~ωm.

2.3.2 Linearization and steady state solution

The system of equations (2.49), (2.50) is non-linear, so it is extremely hard to solve in general. Therefore,
we are going to obtain an approximate solution by linearizing these equations under the assumption of small

optomechanical coupling:
∣∣∣g(0)

(
b̂+ b̂†

)∣∣∣ � κ.a) Note that this condition is significantly stricter than simply

a)Strictly speaking, we only need to include the dynamical (oscillating) part of the mechanical displacement in b̂. As shown later
in this subsection, the static part can be absorbed in the optical drive detuning ∆.
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requiring g(0) � κ (which holds well for all optomechanical experiments up to date), as it puts a limit on the
maximal amplitude of the mechanical motion. In certain regimes, e.g., large mechanical oscillations caused by
dynamic instability[7, 8], this condition is not satisfied, and different methods are required to solve the equations
of motion. However, we will not consider these regimes in this work, so the linearization procedure will hold
for all the experiments described here.

Before we linearize the equations of motion, we obtain the steady state solution by ignoring all the noise
terms and assuming stationary optical and mechanical amplitudes. Thus, the intracavity field will become a
classical variable a(t), and, similarly, the mechanical mode will be described by a classical amplitude b(t).

To make the solution more concrete, we specify the the optical drive to be a single tone with amplitude ad

and frequency ωd. The steady state equation then takes form

ȧ = −κ
2
a− ig(0)a (b+ b∗) +

√
κextade

−i∆0t (2.58)

ḃ = −
(γm

2
+ iωm

)
− i|a|2, (2.59)

with ∆0 = ωd − ωc0 being the drive detuning from the bare cavity resonant frequency. As before, we will
look for a solution in the form a(t) = āe−i∆0t for the optical mode; for the mechanical mode we will simply
assume a static displacement b(t) = b̄. Depending on the parameters, this is not the only solution allowed by
the system of equations above (see, e.g., [8]), but it is the most “stationary” one in the sense that both optical
and mechanical displacements are simple oscillating functions (with the mechanical frequency being zero in this
case). Substituting this ansatz into the equations, we arrive at

ā =

√
κextad

κ
2 − i

(
∆0 − g(0)

(
b̄+ b̄∗

)) (2.60)

b̄ =
−ig(0)|ā|2

iωm + γm

2

. (2.61)

In the second equation we can make an approximation γm � ωm (as this is the approximation required for the
derivation of the equation (2.50) anyway), with which the amplitude b̄ becomes real. This leads to the final
system of equations

ā =

√
κextad

κ
2 − i

(
∆0 − 2g(0)b̄

) (2.62)

b̄ = −g
(0)|ā|2

ωm
. (2.63)

These equations could, in principle, have multiple solutions, which means that the optomechanical system could
have several steady states (a situation known as static bistability[1, 9]). We will mostly ignore this aspect and
assume that the system relaxes into one solution ā, b̄ (at least one solution always exists).

Next, we expand the equations of motion (2.49), (2.50) around this solution. In order to do so, let us look

for a solution in the form â =
(
ā+ d̂

)
e−i∆0t and b̂ = b̄+ ĉ (note that the expansion for â is different from (2.17)

as the perturbation is defined in the drive frame, not in the cavity frame; while the latter is more universal and
is suitable for the case of more complicated optical drive, the former significantly simplifies expressions for the
single-tone case). This expansion leads to the equations

˙̂
d = −κ

2
d̂− i

(
−∆0 + 2g(0)b̄

)
d̂− ig(0)

(
ā+ d̂

)(
ĉ+ ĉ†

)
+
√
κintξ̂int +

√
κextξ̂ext (2.64)

˙̂c = −
(γm

2
+ iωm

)
ĉ− ig(0)

(
ād̂† + ā∗d̂+ d̂†d̂

)
+
√
γmη̂. (2.65)

Now we linearize these equation by getting rid of the term −ig(0)d̂
(
ĉ+ ĉ†

)
in the first equation and the term

−ig(0)d̂†d̂ in the second equation, which both are small according to the linearization criterion. In addition, we
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redefine the drive detuning by making a substitution ∆ = ∆0 − 2g(0)b̄. This merely means that we include the
cavity frequency shift due to the static mechanical displacement δωc = 2g(0)b̄ into the definition of the detuning.
The linearized equations now take form

˙̂
d = −

(κ
2
− i∆

)
d̂− ig(0)ā

(
ĉ+ ĉ†

)
+
√
κintξ̂int +

√
κextξ̂ext (2.66)

˙̂c = −
(γm

2
+ iωm

)
ĉ− ig(0)

(
ād̂† + ā∗d̂

)
+
√
γmη̂. (2.67)

As a final step, since both of the equations are linear, we can transform them into the Fourier domain:

−iωd̂[ω] = −
(κ

2
− i∆

)
d̂[ω]− ig(0)ā

(
ĉ[ω] + ĉ†[ω]

)
+
√
κintξ̂int[ω] +

√
κextξ̂ext[ω] (2.68)

−iωĉ[ω] = −
(γm

2
+ iωm

)
ĉ[ω]− ig(0)

(
ād̂†[ω] + ā∗d̂[ω]

)
+
√
γmη̂[ω]. (2.69)

These equations, together with the output field relation

d̂out = ξ̂ext −
√
κextd̂ (2.70)

describe a variety of optomechanical effects, and we will spend the remainder of this chapter exploring their
consequences.

2.4 Position detection

One of the most direct consequences of the optomechanical interaction is imprinting of the mechanical motion
on the complex amplitude of the intracavity and the output fields.

2.4.1 General expression

We start by deriving a general expression for this effect, for which we express the intracavity field d̂[ω] from
equation (2.68):

d̂[ω] = χc[ω + ∆]
(
−ig(0)āδẑ[ω] +

√
κintξ̂int[ω] +

√
κextξ̂ext[ω]

)
(2.71)

(similar to ẑ before we have defined δẑ = ĉ+ ĉ†, which is the mechanical fluctuations amplitude normalized by
its zero-point fluctuations). The equation (2.70) lets us calculate the output field

d̂out[ω] =

{(
1− κext

κ
2 − i(ω + ∆)

)
ξ̂ext[ω]−

√
κextκint

κ
2 − i(ω + ∆)

ξ̂int[ω]

}
−
√
κextχc[ω + ∆]

(
−ig(0)āδẑ[ω]

)
. (2.72)

The first term depends only on the input noise and the bare cavity dynamics, and it is essentially the same
as it was for the empty cavity (2.32), barring the different rotating frame frequency. As we have already shown
in equations (2.33)-(2.35), the statistical properties of this term are the same as of the input vacuum noises
(2.23)-(2.25). This means that we can denote it as another vacuum noise operator

ξ̂out[ω] =

(
1− κext

κ
2 − i(ω + ∆)

)
ξ̂ext[ω]−

√
κextκint

κ
2 − i(ω + ∆)

ξ̂int[ω], (2.73)

which transforms (2.72) into

d̂out[ω] = ξ̂out[ω] + i
√
κextχc[ω + ∆]g(0)āδẑ[ω]. (2.74)

The second term is proportional to the mechanical fluctuations amplitude δẑ, and it is the term that provides
readout of the mechanical displacement.
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2.4.2 Unresolved sideband limit

It is interesting to consider the result above in the “unresolved sideband limit” (also known as “fast cavity
limit”), in which the cavity response time 1/κ is the fastest timescale in the problem, and in particular, faster
than the mechanical period: κ� ωm. This means that the cavity susceptibility χc[ω + ∆] can be treated as a
frequency-independent constant, which transforms the mechanical displacement term in equation (2.71) into

χc[∆]
(
−ig(0)āδẑ[ω]

)
≈ −iā g(0)

κ
2 − i∆

δẑ[ω]. (2.75)

Interestingly, the same answer can be obtained by Taylor-expanding equation (2.60) for small mechanical
fluctuations δb̂ ≡ ĉ:

â =

√
κextad

κ
2 − i

(
∆0 − g(0)

(
b̄+ ĉ+ b̄∗ + ĉ†

)) =

√
κextad

κ
2 − i

(
∆− g(0)δẑ

)
≈
√
κextad
κ
2 − i∆

(
1− ig(0)δẑ

κ
2 − i∆

)
= ā− iā g(0)

κ
2 − i∆

δẑ. (2.76)

The first-order term agrees with the mechanical displacement term in the expression (2.75).
One potential problem with this derivation is that, strictly speaking, equation (2.60) was derived in the

steady-state approximation, and is not applicable for the case of time-dependent δb̂. However, the unresolved
sideband limit ensures that the optical mode reacts quickly enough that it is essentially at the “steady state”
even when b̄ changes, since this change is slow compared to the cavity response time.

2.5 Dynamical backaction

Now we consider the effects of light acting on the mechanical oscillator. We start by describing a single
mechanical mode with no optomechanical interaction. After that, we include the optomechanical backaction
and derive an expression for the optomechanical self-energy, which we then use to obtain magnitudes of the
optical spring (change in the mechanical frequency) and the optomechanical damping (change in the mechanical
linewidth). Finally, we present alternative interpretations of these effects: we explain the optomechanical
damping as an imbalance between the Stokes process (which creates mechanical excitations) and anti-Stokes
process (which annihilates them), and we demonstrate how the optical spring arises from the position-dependent
radiation pressure force in the unresolved sideband limit.

2.5.1 Bare mechanical oscillator

First, let us first consider the mechanical equation of motion in the absence of optomechanical effects (e.g., by
setting ā = 0):

−iωĉ[ω] = −
(γm

2
+ iωm

)
ĉ[ω] +

√
γmη̂[ω]. (2.77)

Its solution can be expressed as

ĉ[ω] = χm[ω]
√
γmη̂[ω], (2.78)

where χm[ω] = (γm/2− i(ω − ωm))−1 is the mechanical susceptibility. This susceptibility describes a sharp
complex Lorentzian peak of width γm centered at ωm � γm. Since the driving force noise has a frequency-
independent spectrum (as can be seen from equations (2.54)-(2.56)), the power spectral density (PSD) Sĉ,ĉ† of
the mechanical annihilation operator will also be a Lorentzian centered around ωm:

Sĉ,ĉ† =
〈
ĉ[ω]ĉ†[−ω]

〉
=

γm(γm

2

)2
+ (ω − ωm)2

〈
η̂[ω]η̂†[−ω]

〉
=

γm(γm

2

)2
+ (ω − ωm)2

(nth,m + 1). (2.79)
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In contrast, the spectrum Sĉ†,ĉ of the creation operator will be centered at −ωm:

Sĉ†,ĉ =
〈
ĉ†[ω]ĉ[−ω]

〉
=

γm(γm

2

)2
+ (ω + ωm)2

nth,m. (2.80)

2.5.2 Optomechanical self-energy and modified mechanical susceptibility

Now we go back to the full equations of motion which includes the optomechanical coupling. In order to solve
the mechanical equation of motion, let us substitute the solution (2.71) for the optical field into the mechanical
equation of motion (2.69). To simplify the notation, let us separate the solution (2.71) into two parts:

d̂[ω] = d̂†ẑ[ω] + d̂ξ̂[ω] (2.81)

d̂†ẑ[ω] = χc[ω + ∆]
(
−ig(0)ā

(
ĉ[ω] + ĉ†[ω]

))
(2.82)

d̂ξ̂[ω] = χc[ω + ∆]
(√

κintξ̂int[ω] +
√
κextξ̂ext[ω]

)
. (2.83)

Substituting this into (2.69) yields(γm

2
− i(ω − ωm)

)
ĉ[ω] = −ig(0)

(
ād̂†ẑ[ω] + ā∗d̂ẑ[ω]

)
− ig(0)

(
ād̂†

ξ̂
[ω] + ā∗d̂ξ̂[ω]

)
+
√
γmη̂[ω]

=
∣∣∣āg(0)

∣∣∣2 (χc[ω −∆]− χc[ω + ∆])
(
ĉ[ω] + ĉ†[ω]

)
−ig(0)

(
ād̂†

ξ̂
[ω] + ā∗d̂ξ̂[ω]

)
+
√
γmη̂[ω]

= −iΣ[ω]
(
ĉ[ω] + ĉ†[ω]

)
− iF̂RPSN[ω] + F̂th[ω]. (2.84)

Here we have defined two stochastic forces acting on the mechanical oscillator: the thermal force

F̂th[ω] ≡ √γmη̂[ω] (2.85)

coming from the mechanical bath, and the radiation pressure shot noise (RPSN)

F̂RPSN[ω] ≡ g(0)
(
ād̂†

ξ̂
[ω] + ā∗d̂ξ̂[ω]

)
(2.86)

coming from the vacuum fluctuations of the optical field. The properties of these forces are explored in more
detail in section 2.6. Additionally, we have introduced the optomechanical self-energy term

Σ[ω] = −i
∣∣∣āg(0)

∣∣∣2 (χc[ω + ∆]− χc[ω −∆]) . (2.87)

Let us consider the self-energy term more closely. It represent an extra force acting on the mechanical
oscillator, and is proportional to the displacement of the oscillator (hence the term “self-energy”). In fact, this
force consists of two components: −iΣ[ω]ĉ[ω] and −iΣ[ω]ĉ†[ω]. As equations (2.79) and (2.80) demonstrated,
the first term is mostly non-zero around the mechanical frequency ωm, while the second term is only significant
around −ωm. However, both of these forces are filtered by the same mechanical susceptibility χm[ω], which is
centered around the positive frequency +ωm. This means that the effect of the counter-rotating term−iΣ[ω]ĉ†[ω]
is going to be significantly reduced (by a factor of ∼ Qm = ωm/γm) compared to the other one, so we can neglect
it entirely. After that, we can move the other term to the LHS, which results in the solution

ĉ[ω] = χm,eff [ω]
(
−iF̂RPSN[ω] + F̂th[ω]

)
(2.88)

χm,eff [ω] =
1

γm

2 − i(ω − ωm) + iΣ[ω]
. (2.89)

This solution is very similar to the bare mechanical oscillator (2.78), but it has two important differences. First,
there is an additional stochastic force F̂RPSN acting on the mechanical object (the consequences of this force are
considered in section 2.6). Second, the mechanical susceptibility is now modified by the self-energy term iΣ[ω].
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2.5.3 Optical spring and optomechanical damping

While the expression (2.89) is fairly general (it only requires the linearized equations of motion (2.68), (2.69)
and neglecting the counter-propagating term −iΣ[ω]ĉ†[ω]), its intuitive meaning is easier to grasp with an
additional assumption that the cavity susceptibility χc[ω] has weaker frequency dependence than the mechanical
susceptibility χm,eff (in other words, its width κ is mach larger than the mechanical linewidth γm). This
assumption lets us replace Σ[ω] by its value at the susceptibility peak Σ[ωm]. With that we can rewrite the
mechanical susceptibility as

χm,eff [ω] ≈ 1
γm−2Im{Σ[ωm])}

2 − i(ω − (Re {Σ[ωm]}+ ωm))
. (2.90)

Thus, the self-energy leads to a modification of the mechanical frequency and damping, known as the optical
spring effect and optomechanical damping (or anti-damping in the case of reduced mechanical linewidth). The
new values of the mechanical parameters can be found as

ωm,eff = ωm + Re {Σ[ωm,eff ]} (2.91)

γm,eff = γm − 2Im {Σ[ωm,eff ]}. (2.92)

Note that in order for the definitions to be self-consistent, the value of Σ should be calculated at the modified
frequency ωm,eff , which means that definition (2.91) is really a non-linear equation.

Finally, to make sure that the derivation is still consistent, we need to re-evaluate the assumptions that
relied on the mechanical parameters. The first one concerned the counter-rotating terms ĉ†[ω] and required
a high mechanical quality factor Qm = ωm/γm � 1; now we have a potentially more strict requirement
Qm,eff = ωm,eff/γm,eff � 1. Second, the “broad cavity” assumption κ � γm should also be modified as
κ � γm,eff . In the resolved sideband regime ωm,eff � κ this leads to an additional “weak optomechanical
coupling” requirement |g(0)ā| � κ. In the experiments considered in this work all of these assumptions hold,
so we can safely use expressions (2.91), (2.92).

Let us reiterate the way we derived the optical spring and damping effect. First, we have calculated the
effect that the mechanical motion has on the field amplitude, i.e., the d̂ẑ part of the intracavity field. Second, we
used d̂ẑ to derive the radiation pressure force acting on the mechanical oscillator. Since this force is dependent
on the mechanical position, it effectively results in a feedback loop mediated by the optomechanical interaction.
It is this interpretation that resulted in the term “dynamical backaction”: the mechanical motion gets imprinted
on the cavity field, which then acts back on the mechanical object through the radiation pressure force.

2.5.4 Sideband cooling

Different interpretations of the dynamical backaction effects are possible. One particularly useful and intuitive
interpretation of the optical damping comes from the rates of the Stokes and anti-Stokes processes mediated by
the optomechanical interaction.

Let us start by examining the expression (2.82). It can be split into two parts:

d̂ẑ[ω] = d̂ĉ[ω] + d̂ĉ† [ω] (2.93)

d̂ĉ[ω] = −ig(0)āχc[ω + ∆]ĉ[ω] (2.94)

d̂ĉ† [ω] = −ig(0)āχc[ω + ∆]ĉ†[ω]. (2.95)

The first (“blue”, or Stokes) part is proportional to ĉ, so it is centered around ω = +ωm,eff . The second (“red”,
or anti-Stokes) part involves ĉ†, so it is located at ω = −ωm,eff . Both of these parts have relatively narrow
width γm,eff and, therefore, can be seen as sharp sidebands around the main drive tone. Figure 2.3 is a rough
schematic showing the drive tone and the sidebands.

The nature of these sidebands can be understood starting from the 3-wave mixing representation of the

optomechanical Hamiltonian Ĥom = ~g(0)
(
b̂â†â+ b̂†â†â

)
. If we perform the same linearization as for the
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Figure 2.3: Schematic of optical tones and the mechanical sidebands experiencing cavity filtering in the sideband
cooling experiment.

equations of motion before and focus on the leading-order (i.e., quadratic) terms, this Hamiltonian becomes

Ĥom = ~g(0)
(
ād̂†ĉ+ ād̂†ĉ† + h.c.

)
. (2.96)

The first term leads to the part −ig(0)āĉ in the equation of motion (2.68) and ultimately results in the blue
sideband d̂ĉ. At the same time, it can be seen as describing a process in which a photon scatters from the strong
classical drive into the blue sideband and removes one phonon along the way. Similarly, the second term gives
rise to the the red sideband d̂ĉ† , and simultaneously it describes the process of scattering the photon into the
red sideband and producing a phonon.

It is natural to assume that if one process creates phonons and the other annihilates them, then by altering
their relative rates it is possible to cause net production or destruction of phonons, effectively altering the
damping of the mechanical resonator.

To calculate the rates of these processes, consider the equations governing their amplitudes:

˙̂
dÂ = −

(κ
2
− i∆

)
d̂Â − ig

(0)āÂ, (2.97)

where Â is either ĉ or ĉ†.
The first term describes the cavity dynamics (including damping), while the second term corresponds to

the drive (i.e., photon production). In the steady state these processes balance each other out, so the net rate
of change of the sideband power is zero. However, we are only interested in the rate of the photon production

process which is described by the second term. If we denote this term as
˙̂
d

(p)

Â
, the photon production rate can

be expressed as

˙̂n
(p)

Â
= d̂†

Â

˙̂
d

(p)

Â
+ h.c. = d̂†

Â

(
−ig(0)āÂ

)
+ h.c. (2.98)

To simplify this expression, we make the broad cavity approximation (κ � γm,eff) in equations (2.94), (2.95),
which allows us to rewrite them as

d̂ĉ[ω] ≈ −ig(0)āχc[ωm,eff + ∆]ĉ[ω] (2.99)

d̂ĉ† [ω] ≈ −ig(0)āχc[−ωm,eff + ∆]ĉ†[ω]. (2.100)
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With these the rates become

˙̂n
(p)
ĉ =

(
ig(0)ā∗ (χc[ωm,eff + ∆])∗ ĉ†

)(
−ig(0)āˆ̂c

)
+ h.c. = rĉĉ

†ĉ (2.101)

rĉ = 2
∣∣∣g(0)ā

∣∣∣2 Re {χc[ωm,eff + ∆]}

= κ
∣∣∣g(0)ā

∣∣∣2 |χc[ωm,eff + ∆]|2 (2.102)

˙̂n
(p)

ĉ†
=

(
ig(0)ā∗ (χc[−ωm,eff + ∆])∗ ĉ

)(
−ig(0)ā ˆ̂†c

)
+ h.c. = rĉ† ĉĉ

† (2.103)

rĉ† = 2
∣∣∣g(0)ā

∣∣∣2 Re {χc[−ωm,eff + ∆]}

= κ
∣∣∣g(0)ā

∣∣∣2 |χc[−ωm,eff + ∆]|2. (2.104)

Both process rates are proportional to the phonon number operator ĉ†ĉ, up to the commutator
[
ĉ, ĉ†

]
= 1 in the

second line (this additional term is related to such quantum optomechanical effects as radiation pressure shot
noise and mechanical sideband asymmetry, and is discussed in section 2.6). This makes sense for a damping

process, which is generally expressed as ˙̂n
(p)
m = −γn̂(p)

m . The additional damping rate can be obtained as the
difference between the two rate prefactors rĉ,ĉ† in front of the phonon number operator ĉ†ĉ:

δγm,eff = rĉ − rĉ† = 2
∣∣∣g(0)ā

∣∣∣2 Re {χc[ωm,eff −∆]− χc[ωm,eff + ∆]}

= −2Im {Σ[ωm,eff ]}. (2.105)

This result agrees with the earlier expression (2.92).

2.5.5 Optical spring in the unresolved sideband regime

As a final exercise, we consider a simple way to interpret the optical spring effect in the unresolved sideband
regime. As in subsection 2.4.2, we start by expressing the intracavity amplitude as a function of the instanta-
neous position δẑ:

â =

√
κextad

κ
2 − i

(
∆− g(0)δẑ

) . (2.106)

From this amplitude we can find the intracavity power, which also depends on δẑ

â†â =
κext|ad|2(

κ
2

)2
+
(
∆− g(0)δẑ

)2 . (2.107)

Finally, this power leads to a radiation pressure force

F̂RP = g(0)â†â = g(0) κext|ad|2(
κ
2

)2
+
(
∆− g(0)δẑ

)2 , (2.108)

which would enter the mechanical equation of motion (2.50) as

˙̂c = −
(γm

2
− iωm

)
ĉ− iF̂RP +

√
γmη̂. (2.109)

Since this force is position-dependent, it contributes an effective spring constant

keff =
∂F̂RP

∂(δẑ)

∣∣∣∣∣
δẑ=0

=
(
g(0)
)2 κext |ad|2(

κ
2

)2
+ ∆2

2∆(
κ
2

)2
+ ∆2

=
∣∣∣g(0)ā

∣∣∣2 2∆(
κ
2

)2
+ ∆2

, (2.110)
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which lets us rewrite equation (2.109) as

˙̂c = −
(γm

2
− iωm

)
ĉ− ikeff(ĉ+ ĉ†) +

√
γmη̂

≈ −
(γm

2
− i(ωm + keff)

)
ĉ+
√
γmη̂, (2.111)

where we neglected the static radiation pressure force and made the same rotating wave approximation ĉ† ≈ 0
as discussed in subsection 2.5.2. This equation can be compared to the expression (2.91) in the unresolved
sideband limit:

δωm,eff ≈ Re {Σ[0]} =
∣∣∣g(0)ā

∣∣∣2 Im {χc[∆]− χc[−∆]}

=
∣∣∣g(0)ā

∣∣∣2 2∆(
κ
2

)2
+ ∆2

. (2.112)

As we can see, it yields the same result: keff = δωm,eff .

2.6 Undriven mechanical motion and RPSN

In this section we consider the mechanical motion PSD excited by the mechanical thermal bath noise η̂, and
determine its signatures in the reflected light. We also briefly discuss interpretation of the asymmetry in the
force noise spectrum and the mechanical displacement spectrum.

2.6.1 Mechanical motion PSD

We start by figuring out the PSD of the mechanical motion:

Sẑ,ẑ[ω] = 〈ẑ[ω]ẑ[−ω]〉 =
〈

(ĉ[ω] + ĉ†[ω])(ĉ[−ω] + ĉ†[−ω])
〉

= Sĉ†,ĉ[ω] + Sĉ,ĉ† [ω] + Sĉ,ĉ[ω] + Sĉ†,ĉ† [ω]. (2.113)

As mentioned in subsection 2.5.2, ĉ[ω] is centered around +ωm,eff and has width γm,eff � ωm,eff (i.e., we
work in the assumption of high-Q mechanical resonator). This means that the term Sĉ,ĉ[ω] = 〈c[ω]c[−ω]〉 ∝
χm,eff [ω]χm,eff [−ω] will always be small, as for any frequency ω at least one mechanical susceptibility term is
far off-resonance. The same goes for Sĉ†,ĉ† [ω] = (Sĉ,ĉ[ω])∗. Thus, we can simplify equation (2.113) as

Sẑ,ẑ[ω] ≈ Sĉ†,ĉ[ω] + Sĉ,ĉ† [ω]. (2.114)

Similar to equations (2.79) and (2.80) in subsection 2.5.1, we can use equation (2.88) to derive:

Sĉ†,ĉ[ω] = |χm,eff [−ω]|2(SRPSN
F̂ ,F̂

[ω] + Sth
F̂ †,F̂

[ω]) (2.115)

Sĉ,ĉ† [ω] = |χm,eff [+ω]|2(SRPSN
F̂ ,F̂

[ω] + Sth
F̂ ,F̂ † [ω]). (2.116)

Note that, unlike in Sĉ,ĉ[ω], these terms involve χm,eff only at one frequency.
The PSD of the thermal force is:

Sth
F̂ †,F̂

[ω] ≡
〈

(
√
γmη̂

†[ω])(
√
γmη̂[−ω])

〉
= γmnth,m (2.117)

Sth
F̂ ,F̂ † [ω] ≡

〈
(
√
γmη̂[ω])(

√
γmη̂

†[−ω])
〉

= γm(nth,m + 1), (2.118)

and the PSD of the radiation pressure is

SRPSN
F̂ ,F̂

[ω] ≡
〈
F̂RPSN[ω]F̂RPSN[−ω]

〉
=

(
g(0)
)2
|ā|2
〈
d̂ξ̂[ω]d̂†

ξ̂
[−ω]

〉
=

(
g(0)
)2
|ā|2κ|χc[ω + ∆]|2, (2.119)
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where we have used〈
d̂ξ̂[ω]d̂†

ξ̂
[−ω]

〉
= |χc[ω + ∆]|2

(
κint

〈
ξ̂int[ω]ξ̂†int[−ω]

〉
+ κext

〈
ξ̂ext[ω]ξ̂†ext[−ω]

〉)
= κ|χc[ω + ∆]|2. (2.120)

Since F̂RPSN is Hermitian, this is the only correlator that we need.
For the following discussion we note that

Sth
F̂ ,F̂ † [ωm,eff ]− Sth

F̂ †,F̂
[−ωm,eff ] = γm (2.121)

SRPSN
F̂ ,F̂

[ωm,eff ]− SRPSN
F̂ ,F̂

[−ωm,eff ] = (g(0))2|ā|2κ
(
(|χc[ωm,eff + ∆]|2 − |χc[ωm,eff −∆]|2)

)
= −2ImΣ[ωm,eff ] ≡ δγm,eff , (2.122)

where δγm,eff ≡ γm,eff − γm is the damping rate induced by the dynamical backaction. This shows that the
antisymmetric part of the force noise spectrum (with appropriate ordering for a non-Hermitian noise operator)
is equal to the dissipation rate associated with this force: either the intrinsic loss γm for the environment
mechanical noise η̂, or the optomechanically induced damping δγm,eff for the radiation pressure shot noise. This
is a well-known result from quantum noise theory[10], where the positive and the negative parts of the force
spectrum are associated with the tendency of this force to respectively extract energy from or give energy to
the system that it is acting on, so the difference between the two provides the net damping.

Another way to interpret equation (2.122) is to note that the positive and the negative frequency parts of
the RPSN spectrum directly correspond to the Stokes and anti-Stokes photon production rate (per phonon)
given by equations (2.102) and (2.104):

SRPSN
F̂ ,F̂

[ωm,eff ] = κ
∣∣∣g(0)ā

∣∣∣2 |χc[ωm,eff + ∆]|2 = rĉ (2.123)

SRPSN
F̂ ,F̂

[−ωm,eff ] = κ
∣∣∣g(0)ā

∣∣∣2 |χc[−ωm,eff + ∆]|2 = rĉ† . (2.124)

Hence, the antisymmetric part of the RPSN spectrum corresponds to the difference in the two rates, i.e., net
damping rate (as shown by equation (2.105)).

When substituting force spectra into the equations for Sĉ†,ĉ and Sĉ,ĉ† , we can simplify them by assuming
that γm,eff � κ, so the radiation pressure noise spectrum is approximately flat over the mechanical resonance.
This lets us write

Sĉ†,ĉ[ω] ≈ |χm,eff [−ω]|2(SRPSN
F̂ ,F̂

[−ωm,eff ] + Sth
F̂ †,F̂

[−ωm,eff ])

= |χm,eff [−ω]|2(nRPSNδγm,eff + nth,mγm) (2.125)

Sĉ,ĉ† [ω] ≈ |χm,eff [ω]|2(SRPSN
F̂ ,F̂

[ωm,eff ] + Sth
F̂ ,F̂ † [ωm,eff ])

= |χm,eff [ω]|2((nRPSN + 1)δγm,eff + (nth,m + 1)γm), (2.126)

where we have defined the effective phonon occupation of the RPSN bath

nRPSN =
SRPSN
F̂ ,F̂

[−ωm,eff ]

δγm,eff
=

SRPSN
F̂ ,F̂

[−ωm,eff ]

SRPSN
F̂ ,F̂

[ωm,eff ]− SRPSN
F̂ ,F̂

[−ωm,eff ]
(2.127)

analogously to the thermal bath occupation nth,m. To determine the final mean energy of the mechanical mode,
we can find the expectation value of the phonon number operator by integrating its PSD:

nm =
〈
ĉ†(t)ĉ(t)

〉
=

∫ +∞

−∞
Sĉ†ĉ[ω]

dω

2π

=

∫ +∞

−∞

nRPSNδγm,eff + nth,mγm

γ2
m,eff/4 + (ω + ωm,eff)2

dω

2π
=
nRPSNδγm,eff + nth,mγm

γm,eff
. (2.128)
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This expression can be intuitively understood if we consider that the mechanical oscillator is coupled to two
different baths (environment and radiation pressure force) at two different rates (γm and δγm,eff respectively).
This implies that the final phonon occupation of the oscillator is a weighted average of the occupations of the
two baths, with the weights being proportional to the coupling rates.

With this expression for nm the mechanical PSDs simplify to

Sĉ†,ĉ[ω] =
nmγm,eff

γ2
m,eff/4 + (ω + ωm,eff)2

(2.129)

Sĉ,ĉ† [ω] =
(nm + 1)γm,eff

γ2
m,eff/4 + (ω − ωm,eff)2

. (2.130)

Note that the difference in the magnitude between the two PSDs (which can be traced to the asymmetry of the
force noise spectra) is directly related to the equal-time commutator of the mechanical creation and annihilation
operators:

[ĉ(t), ĉ†(t)] =
〈

[ĉ(t), ĉ†(t)]
〉

=
〈
ĉ(t)ĉ†(t)

〉
−
〈
ĉ†(t)ĉ(t)

〉
= (nm + 1)− nm = 1. (2.131)

2.6.2 Reflected light PSD

Now we can use relation (2.74) from section 2.4 to derive the PSD of the light leaving the cavity through the
external port:

S
d̂†out,d̂out

[ω] ≡
〈
d̂†out[ω]d̂out[−ω]

〉
= κext

(
g(0)
)2
|ā|2|χc[−ω + ∆]|2

(
Sĉ†,ĉ[ω] + Sĉ,ĉ† [ω]

)
= κext

(
g(0)
)2
|ā|2|χc[−ω + ∆]|2 ×

×

(
nmγm,eff

γ2
m,eff/4 + (ω + ωm,eff)2

+
(nm + 1)γm,eff

γ2
m,eff/4 + (ω − ωm,eff)2

)
. (2.132)

We should keep in mind that the optical frame is rotating at the optical drive frequency ωd (subsection 2.3.2),
which means that the frequency ω above is also defined relative to the drive frequency. Because of the mechanical
susceptibility terms, the PSD expression (2.132) has two sharp peaks at ω = ±ωm,eff and is zero everywhere
else. This implies that in the stationary frame these peaks manifest as sidebands on the control beam, which
are located at ω = ωd ± ωm,eff . These sidebands are precisely the Stokes and anti-Stokes sidebands discussed
in subsection 2.5.4, and the perceived difference of one phonon in their magnitude is oftentimes referred to as
“sideband asymmetry”.

In the presented derivation the origin of the sideband asymmetry can be tracked to the difference between
the positive and the negative parts of the mechanical spectrum (equations (2.129) and (2.130)), which describes
the fundamental asymmetry between the rate of absorption (Stokes process) or emission (anti-Stokes process)
of energy by the mechanical oscillator. It is worth noting that an alternative interpretation exists [11, 12, 13],
in which this asymmetry can be attributed to the correlations between the mechanical motion and the vacuum
noise background arising from the RPSN acting on the mechanical oscillator.

2.7 Driven response measurements (OMIT/A)

The last effect to consider in this section is the driven measurement of the mechanical response. In this kind
of measurement the optical mode is used both to coherently drive the mechanical oscillator and to interrogate
its motion. I will first present a general treatment, and then examine the results in the resolved sideband limit
ωm,eff � κ.
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2.7.1 General treatment

The technique we are going to consider is called optomechanically induced transparency or amplification
(OMIT/A)[14, 15] and it relies on sending two optical tones into the cavity. The stronger tone, called the
“control” is analogous to the drive tone that we have been considering so far. The other, weaker, tone is
called the “probe”, and it is added to drive the mechanical oscillator (in combination with the control tone).
When both tones excite the optical cavity, they produce intensity oscillations at a frequency equal to their
frequency difference, which in turn results in an oscillating radiation pressure force. If the frequency of this
force is close enough to the mechanical resonance, it can efficiently drive the mechanical oscillator. This driven
motion imprints sidebands on the beams, and because it is induced by the beating between the beams, one of
the control beam sidebands ends up being at the same frequency as the probe beam. This modifies the probe
beam’s amplitude, which can be detected after it leaves the cavity.

To describe this measurement, we first need to modify the equations of motion (2.68), (2.69). Since the
measurement scheme is coherent, we are going to ignore the noise terms proportional to ξ̂ or η̂. Instead, we
include the additional probe tone ap,in(t) = ape

−iΩpt, where ap � ad is the probe amplitude and Ωp is its
detuning from the control beam (i.e., its frequency in the control beam frame). We will treat the probe as a
perturbation, so it will be included into the equation for d̂ and not into the steady state amplitude ā. All of
these changes transform equations of motion (2.68), (2.69) into

˙̂
d = −

(κ
2
− i∆

)
d̂− ig(0)ā

(
ĉ+ ĉ†

)
+
√
κextape

−iΩpt (2.133)

˙̂c = −
(γm

2
+ iωm

)
ĉ− ig(0)

(
ād̂† + ā∗d̂

)
. (2.134)

At this point the equations are purely classical; nevertheless, we will keep the operator notation for consistency.
As before, we want to Fourier transform these equations. Since we are dealing with coherent signals, we will

use a “coherent” Fourier transform (see appendix A.2):(κ
2
− i(ω + ∆)

)
d̂[ω] = −ig(0)ā

(
ĉ[ω] + ĉ†[ω]

)
+
√
κextapδ(ω − Ωp) (2.135)(γm

2
− i(ω − ωm)

)
ĉ[ω] = −ig(0)

(
ād̂†[ω] + ā∗d̂[ω]

)
. (2.136)

The next step is to again substitute the expression for d̂[ω] into the equation for ĉ[ω]. The terms involving ĉ[ω]
and ĉ†[ω] will result in exactly the same modification of the mechanical susceptibility as before in section 2.5,
which leaves us with

(χm,eff [ω])−1 ĉ[ω] = −ig(0)√κext

(
āχc[ω −∆]a∗pδ(ω + Ωp)

+ā∗χc[ω + ∆]apδ(ω − Ωp)) . (2.137)

The solution can be written as a sum of two δ-functions corresponding to the frequencies ±Ωp:

ĉ[ω] = c+
√
κextapδ(ω − Ωp) + c−

√
κexta

∗
pδ(ω + Ωp) (2.138)

c+ = −iχm,eff [Ωp]g(0)ā∗χc[∆ + Ωp] (2.139)

c− = −iχm,eff [−Ωp]g(0)ā (χc[∆ + Ωp])∗ . (2.140)

Usually only one of these terms will be close to the mechanical resonance frequency, depending on the sign of
Ωp. However, to keep the discussion general we need to preserve both terms. Substituting them back into the
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equation for d̂, we obtain

d̂[ω] = χc[ω + ∆]
√
κext

((
1− ig(0)ā(c+ + c∗−)

)
apδ(ω − Ωp)− ig(0)ā(c∗+ + c−)a∗pδ(ω + Ωp)

)
= χc[ω + ∆]

√
κext

(
a+apδ(ω − Ωp) + a−a

∗
pδ(ω + Ωp)

)
(2.141)

a+ = 1− ig(0)ā(c+ + c∗−)

= 1−
∣∣∣g(0)ā

∣∣∣2 χc[∆ + Ωp] (χm,eff [Ωp]− (χm,eff [−Ωp])∗) (2.142)

a− = −ig(0)ā(c∗+ + c−)

= −
(
g(0)ā

)2
(χc[∆ + Ωp])∗ (χm,eff [−Ωp]− (χm,eff [Ωp])∗) . (2.143)

The amplitude of the probe tone inside the cavity is now modified by the factor a+, which can be treated
as a change in the effective cavity susceptibility for the probe beam:

χc,eff [Ωp] = χc[∆ + Ωp]

(
1−

∣∣∣g(0)ā
∣∣∣2 χc[∆ + Ωp] (χm,eff [Ωp]− (χm,eff [−Ωp])∗)

)
. (2.144)

This change manifests as a sharp feature which is proportional to the effective mechanical susceptibility. Hence,
it can be used to extract the effective mechanical frequency and linewidth. The magnitude of the feature can
be described in terms of its amplitude relative to the background arel:

χc,eff [Ωp] = χc[∆ + Ωp]

(
1 + arel,+

γm,eff/2

γm,eff/2− i(Ωp − ωm,eff)

+arel,−
γm,eff/2

γm,eff/2 + i(Ωp + ωm,eff)

)
(2.145)

arel,+ = −
2
∣∣g(0)ā|

∣∣2
γm,eff

χc[∆ + ωm,eff ] (2.146)

arel,− =
2
∣∣g(0)ā|

∣∣2
γm,eff

χc[∆− ωm,eff ] (2.147)

Finally, from this effective susceptibility we can also find the amplitude of the probe beam reflection:

ap,out = ap − κextχc,eff [Ωp]. (2.148)

2.7.2 Resolved sideband limit

The results of the OMIT/A experiment are easier to understand in the resolved sideband limit ωm,eff � κ. First,
we will consider the situation in which the control beam is detuned to the red side of the cavity ∆ = −ωm,eff ,
and the probe beam detuning is close to the mechanical resonance: Ωp = ωm,eff + δω with δω ∼ γm,eff . In this
regime the optomechanical damping becomes

δγm,eff = −2Im {Σ[ωm,eff ]} ≈
4
∣∣āg(0)

∣∣2
κ

, (2.149)

where we have neglected the off-resonant term χc[∆− ωm,eff ] = χc[−2ωm,eff ] in Σ[ωm,eff ]. In the same approxi-
mation the mechanical frequency stays unchanged ωm,eff ≈ ωm.

In calculating the effective probe beam susceptibility we can neglect the term χm,eff [−Ωp] ≈ χm,eff [−2ωm],
as it is very far off resonance. This leaves us with

χc,eff [ωm + δω] ≈ χc[δω]

(
1−

2
∣∣g(0)ā

∣∣2
κ

χm,eff [ωm + δω]

)

= χc[δω]

(
1−

δγm,eff/2

γm,eff/2− iδω

)
(2.150)
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(inside the parentheses we have approximated χc[∆+Ωp] = χc[δω] ≈ χc[0] = 2/κ, as it multiplies χm,eff [ωm+δω]
which is only significant for δω . γm,eff � κ). Right at the mechanical resonance this turns into

χc,eff [ωm] = χc[0]
1

1 + δγm,eff/γm
= χc[0]

1

1 + C
, (2.151)

where C is the optomechanical cooperativity defined as

C =
4
∣∣āg(0)

∣∣2
κγ

=
δγm,eff

γm
(2.152)

(the second equality holds only in the case of the resolved sideband limit and red-detuned control beam ∆ =
−ωm). The peak susceptibility goes down by a factor of 1 + C, which in many systems can be much larger than
one. Thus, even if the optomechanical coupling is much smaller than the cavity linewidth (|āg(0)| � κ), it can
still significantly modify the effective cavity susceptibility.

Figure 2.4: Examples of an OMIT/A response. The figure plots the magnitude of the effective probe beam
response |χc,eff [Ωp]| as a function of its cavity detuning δω for different control beam detunings ∆ and
values of the cooperativity C. Red lines denote the OMIT configuration when the control beam detuning
is negative (∆ = −ωm), while blues lines correspond to the OMIA configuration (∆ = +ωm). The black
line is the unperturbed cavity response χc[Ωp], which corresponds to C = 0.

The OMIA experiment is fairly similar, except the signs on the probe and control beams detunings are
flipped: ∆ = +ωm and Ωp = −ωm,eff − δω. This leads to optomechanical anti-damping (reduced linewidth)

δγm,eff ≈ −
4
∣∣āg(0)

∣∣2
κ

, (2.153)

and the effective susceptibility

χc,eff [−ωm − δω] ≈ χc[−δω]

(
1 +

2
∣∣g(0)ā

∣∣2
κ

(χm,eff [ωm + δω])∗
)

= χc[δω]

(
1−

δγm,eff/2

γm,eff/2 + iδω

)
. (2.154)

On resonance it is equal to

χc,eff [−ωm] = χc[0]
1

1 + δγm,eff/γm
= χc[0]

1

1− C
. (2.155)
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The response is now larger by a factor of 1/(1 − C), which means that the probe beam is amplified[16, 15] in
a narrow frequency band corresponding to the mechanical linewidth γm,eff ; hence the term “optomechanically
induced amplification”.

Note that this treatment of OMIA is only valid for C < 1. For C > 1 the effective linewidth becomes negative,
which means that the optomechanical anti-damping overcomes the intrinsic mechanical damping. This leads to
large mechanical oscillations (which can be thought of as a runaway process in a system with a positive feedback
loop), whose amplitude is limited by higher-order non-linearities of the optomechanical interaction[7, 8], which
are not included in the above treatment.

Figure 2.4 illustrates results (2.150) and (2.154) for several different values of the cooperativity C. Note how
the OMIT/A feature becomes broader for the OMIT configuration and narrower for the OMIA configuration;
this reflects the impact of optical damping or anti-damping caused by the optomechanical interaction.
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Chapter 3

Overview and current progress

3.1 Common implementations

Over the years there have been many realizations of optomechanical systems[1], covering the electromagnetic
frequency range from microwave (∼ 5 GHz) to optical (∼ 500 THz), mechanical frequencies from Hz to GHz,
masses from kg-scale mirrors to just ∼ 100 levitated atoms, and length-scales from meter- and even kilometer-
long interferometers to µm-size optomechanical crystals or ∼ 50 nm-gap capacitors. In this section I will cover
the most common implementations of optomechanical systems.

One of the first cavity optomechanics realizations was explored theoretically[17] and then implemented
experimentally[18] by Braginsky et al., where they considered the effects of optomechanical damping (section
2.5). The system was a microwave cavity with a movable wall suspended on a thin quartz fiber, which turned
it into a high-Q pendulum. In the optical domain the first optomechanics experiment was reported in Ref. [9],
where the radiation pressure induced static bistability (see section 2.3) was observed. There the optical system
was a Fabry-Perot cavity, and the mechanical oscillator was one of its mirrors, which was likewise suspended
by a string to form a pendulum. Shortly after, the static bistability was also observed in a microwave (MW)
setting[19].

Since then many conceptually different realizations have arisen. Still, many modern systems continue
implementing this general concept of a movable end-mirror. The sizes of these mirror range from several
kilogram LIGO mirrors[20, 21] to gram-scale suspended mirrors[22, 23] to sub-nanogram mirrors placed on
the end of a cantilever[24, 25] or on a trampoline[26]. In addition, some experiments focus on the internal
vibrational modes of the mirrors[27, 28], rather than their center-of-mass motion.

Similar to the vibrational mirror modes, other experiments also focus on internal mechanical degrees of
freedom of a rigid optical resonator, which are often ignored due to their high frequency and stiffness. Some of
the most notable systems of this kind are microtoroid resonators[29], where the optical mode is a whispering
gallery mode (WGM) confined inside a microtoroid (with a diameter of ∼ 100 µm), and the mechanical modes
are vibrational modes of this toroid. These systems were the first to demonstrate dynamical bistability[30, 7] and
OMIT[14], and among the first to employ optomechanical cooling[31]. Conceptually similar are microsphere[32]
and microdisk[33] devices.

A different approach is to use a fixed Fabry-Perot cavity and embed a separate mechanical element inside
it, which lets one separate the optical and the mechanical subsystems and optimize them separately. One of
the most successful implementations of this idea, the so-called membrane-in-the-middle (MIM) setup, was first
demonstrated in the Harris Lab[34, 35]. There the mechanical element was a thin (50 nm) high-stress dielectric
Si3N4 membrane placed in the center of a high-finesse optical cavity. One of the advantages of such setup is the
tunability of the form of the optomechanical coupling [36, 37], which allows one to switch from the standard
linear coupling to the quadratic coupling, in which the cavity resonance frequency depends quadratically on
the mechanical displacement (unlike the canonical optomechanical system, in which this dependence is linear).
Another interesting feature of the MIM setup is the presence of multiple nearly-degenerate mechanical modes
coupled to the same optical mode. This shared optical mode can mediate interactions between the mechanical
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modes[38] and lead to non-trivial multimode behavior, e.g., topological energy transfer[39]. In addition, it has
been shown that these membranes perform well even when coated with supercondicng materials like Al[40, 41]
or Nb[42]; this makes them a great candidate for a common mechanical element shared between optical and MW
resonators, which can be used for information transfer between the two domains[42]. Finally, their relatively
large size leads to very low mechanical loss: Q-factors above 4 · 107[43] and as high as 108[44, 45] have been
reported.

The mechanical element inside the cavity does not have to be a membrane. Other possibilities include
nanorods[46], or levitated objects such as silica nanoparticles[47] or clouds of cold atoms [48]. The latter systems
offer very strong optomechanical coupling, as they have extremely small mass (they consist only of 102 . . . 105

atoms) and, consequently, large ZPF amplitude. It is no surprise that many of the quantum optomechanics
effects were first demonstrated in the cold atom systems (as discussed in the next section). Similarly, a Fabry-
Perot cavity can be replaced with a different optical resonator, for example, a WGM in a microtoroid with the
mechanical element being an evanescently coupled nanobeam[49].

Another class of systems use the advantages of modern micro- and nano-fabrication techniques and focus
on miniaturization to achieve large optomechanical coupling and scalability. Some of the most notable systems
of this kind are are optomechanical crystals[6], in which both optical and mechanical modes are confined inside
an artificial defect embedded into a combined photonic/phononic crystal. Due to the extremely small mode
volume (only several µm3), they demonstrate large optomechanical coupling and high mechanical frequencies.
As shown in section 3.2, this has allowed these systems to feature prominently in the quantum optomechanics
field.

Another common approach to creating an optomechanical system is to use a MW resonator for the optical
part, but instead of a cavity realize it as a lumped element LC-circuit. The optomechanical coupling in such a
system is usually realized by making the mechanical motion modulate the gap in a vacuum-gap capacitor, which
is embedded either directly in the LC-circuit[50, 51], or in a two-level system coupled to the LC-resonator[52].
Similarly to the optomechanical crystals, these systems concentrate EM energy in a very small volume, which
helps them demonstrate a large optomechanical coupling compared to, e.g., MW MIM cavities[41].

Another set of optomechanical systems is built on the concept of stimulated Brillouin scattering[53, 54]
(SBS), which is closely related to the work done in this thesis. SBS is a process of photon-phonon scattering
similar to the Stokes and anti-Stokes scattering discussed in subsection 2.5.4, but it happens in a continuous
medium (usually a 1D waveguide), so in addition to energy it also conserves momentum. Depending on the
direction of the scattered photon SBS is usually separated into “forward” and “backward”, with the latter
generating higher momentum and higher frequency phonons. Both of these processes have been demonstrated
in experiments[55, 56, 57, 58], which usually involve WGM mechanical and optical modes in a toroid, disk,
or sphere resonator. An interesting feature of these systems is the chirality of the optomechanical interaction,
which can lead to non-reciprocal OMIT[59] and phonon transport[60]. This type of system has also been
employed for demonstration of optomechanics with fluids[61].

3.2 Linear quantum cavity optomechanics

Now I want to present an overview of linear quantum cavity optomechanics. The name itself reflects that
these experiments deal with quantum optomechanics, i.e., optomechanical effects which depend on or reveal
the quantum nature of light or the mechanical oscillator. The typical sign of this is the ability to measure or
manipulate the mechanical object with a single-quantum resolution (e.g., energy resolution of ∼ ~ωm or position
resolution of ∼ xZPF). At the same time, these experiments are still described by the linearized EOMs (2.66),
(2.67), which means that the consideration is usually limited to Gaussian quantum states (coherent or squeezed
states).a) This is to be contrasted with non-linear quantum optomechanics, which arises, for example, in the
strong single-photon coupling regime g(0) & κ, or in the presence of a strong (single-phonon scale) intrinsic

a)It is still possible to generate non-Gaussian mechanical states in these systems using either non-Gaussian input optical states[62,
63], or non-linear detection mechanisms[64]. Nevertheless, the system dynamics in those cases is still linear, and non-Gaussianity
arises either from the external source, or from the measurement and post-selection process.
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mechanical non-linearity.

3.2.1 Overview

The quantum nature of the interaction of light with mechanical motion and RPSN was first explored by Einstein
in his 1909 paper [65]. There he discussed the existance of a radiation pressure force noise which is not explained
by classical radiation theory, but can be interpreted as the shot noise of momentum transfers from individual
photons. More recently, RPSN was examined in the context of precision interferometry for gravitaional wave
detection[66], where it was interpreted as a source of noise which ultimately imposes the Heisenberg uncer-
tainty relation on the position measurement precision[67, 68]. Its direct experimental observation in a cavity
optomechanics setting was first performed in an atomic cloud system[48, 69], followed by the MIM system[70].

Later it was recognized that RPSN can serve as a resource, because the mechanical fluctuations it induces are
correlated with the driving field intensity (these correlations were also used as a less direct signature of RPSN
in Ref. [70]). These correlations were theoretically shown to generate ponderomotive quadrature squeezing
of light inside the cavity[71, 72], improve the displacement sensitivity[73], or to provide a way for quantum
non-demolition (QND) measurement of the light intensity [74, 75]. The ponderomotive squeezing scheme has
since been realized in atomic clouds[76], optomechanical crystals[77], and MIM systems[78]. The latter system
has also demonstrated improved position measurement sensitivity due the non-classical correlations between
the mechanical motion and the vacuum noise background[79].

Another quantum optomechanics signature related to the RPSN[11, 12] is the sideband asymmetry, that
is, the difference in the magnitude between the Stokes and anti-Stokes mechanical sidebands (discussed in
section 2.6). Its first direct observation in a cavity optomechanics system was performed in the optomechanical
crystal defect setup[64, 80], which was followed by the atomic cloud systems[81], electromechanical systems
with Al membrane capacitors[12] and optical MIM setups[82, 83]. Because these experiments rely on measuring
the perceived energy difference of only one mechanical quantum, they benefit from starting at as low average
mechanical phonon occupation nm as possible. Since most of the systems start with a large thermal occupation of
the mechanical mode, even when cryogenically pre-cooled (e.g., in Ref. [82] the starting phonon bath occupation
is & 104 at the temperature of 0.4 K), additional sideband cooling (as described in subsection 2.5.4) is usually
performed.

Finally, the fact that the optomechanical interaction is unitary (i.e., information preserving) allows one to use
it for transferring quantum states between the optical and the mechanical objects, or for generating entanglement
between them. The transfer methods have been successfully used to store[84] and re-shape[85] microwave pulses,
as well as to perform continuous frequency conversion within the optical[86] or the microwave[87] domains, as
well as between the two domains[42], all with only a few quanta of added noise. As far as entanglement is consid-
ered, schemes have been proposed to generate both steady-state continuous variable entanglement[88, 89, 90, 91],
and an EPR-style entanglement using a pulsed technique[92]. The latter method has been implemented in mi-
crowave electromechanics[93] and in the optomechanical crystal defect[64] setting; in the latter experiment
single-photon counters were also used to generate non-classical correlations between the optical and the me-
chanical systems, and potentially create non-Gaussian mechanical states.

3.2.2 Thermal cooperativity

The majority of the measurements mentioned above crucially rely on one figure of merit: the thermal cooper-
ativity Cth, defined as the ratio of the regular optomechanical cooperativity C (defined in equation (2.152)) to
the phonon occupation of the mechanical bath nth,m:

Cth =
C

nth,m
=

4
∣∣āg(0)

∣∣2
κγmnth,m

, (3.1)

Here ā is the intracavity amplitude of the control tone, g(0) is the single-photon optomechanical coupling, and
κ and γm are the decay rates of the optical and the mechanical modes respectively. There are several ways of
interpreting this quantity which are useful for different experiments. Here we will consider three interpretations:
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(1) First, let us examine the sideband cooling experiments. As equation (2.152) shows, in the resolved
sideband limit and for the optimal control beam detuning ∆ = −ωm the magnitude of optomechanical
damping is

δγm,eff =
4
∣∣āg(0)

∣∣2
κ

= Cγm. (3.2)

This means that the optical mode is cooled by a factor of γm,eff/γm ≈ C, where for simplicity we assume
C � 1. Hence, the mechanical phonon occupation is (equation (2.128))

nm =
nRPSNδγm,eff + nth,mγm

γm,eff
=
CnRPSN + nth,m

C + 1

≈ nRPSN +
nth,m

C
= nRPSN +

1

Cth
. (3.3)

As can be shown from equation (2.127), in the situation that we consider here (∆ = −ωm, ωm � κ) the
heating due to RPSN is negligible: nRPSN ≈ (κ/4ωm)2 � 1, so the final phonon occupation can be written
as

nm ≈
1

Cth
. (3.4)

Thus, Cth directly determines whether it is possible to cool the mechanical mode close to its vibrational
ground state (i.e., achieve nm < 1).

(2) Now consider a different kind of experiment, the detection of the RPSN. For simplicity, we assume an
unresolved sideband limit κ � ωm and a resonant control beam ∆ = 0. In this regime the PSD of the
RPSN (2.119) can be approximated as

SRPSN
F̂ ,F̂

[ωm] =
∣∣∣āg(0)

∣∣∣2 κ |χc[ωm]|2 ≈
∣∣∣āg(0)

∣∣∣2 κ |χc[0]|2 =
4
∣∣āg(0)

∣∣2
κ

. (3.5)

To estimate the quality of this measurement, we need to compare this spectrum to the only other me-
chanical force in the system, the thermal noise. Their ratio can be determined as

SRPSN
F̂ ,F̂

[ωm]

Sth
F̂ †,F̂

[ωm]
=

4
∣∣āg(0)

∣∣2 /κ
γmnth,m

= Cth. (3.6)

Therefore, the thermal cooperativity can be thought of as the ratio of the optomechanical interaction
effects (in this case, RPSN) to the thermal bath effects (thermal drive force). This means that if we want
to manipulate the mechanical state with quantum precision (which requires the optomechanical effects to
be stronger than the thermal decoherence effects) we need Cth & 1.

(3) Finally, let us discuss experiments which rely on information transfer between the optical and the me-
chanical mode, for example, quantum state transfer, wavelength conversion, entanglement, or precision
position measurement. To characterize the measurement efficiency, we can examine a simple measurement
of the mechanical position. Let us again assume a single resonant measurement beam in the unresolved
sideband regime. As shown in equation (2.76), the intracavity amplitude can be written as

â = ā

(
1− i2g

(0)

κ
δẑ

)
, (3.7)

The modification due to the mechanical displacement δẑ is imaginary (i.e., out of phase with the mea-
surement drive), so we can interpret it as a small phase shift δφ̂ = (2g(0)/κ)δẑ.
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Now let us imagine that we want to detect this phase shift in the reflected light. Due to the discrete
nature of light and the random photon arrival times, this measurement will have a statistical error[10]
δφe = 1/

√
N , where N is the total number of detected photons. This error would correspond to an

uncertainty in the position measurement δze = (δẑ/δφ̂)δφe = κ/(2g(0)
√
N). Given the measurement time

τ , the total number of photons leaking out of the cavity is (using equation (2.31))

N = |āout|2 τ = |ā
√
κext|2 τ = |ā|2 κextτ. (3.8)

Note that we only consider photons which interacted with the cavity, since these are the only ones bearing
the phase shift δφ̂ (we neglect the promptly reflected light, which can be in principle filtered out). Thus,
the total uncertainty in the position measurement is

(δze)
2 =

κ2

4(g(0))2N
=

κ

κext

κ

4
∣∣āg(0)

∣∣2 τ =
1

ηκΓmeasτ
, (3.9)

where we have introduced the measurement rate

Γmeas =
4
∣∣āg(0)

∣∣2
κ

(3.10)

and the input coupling quantum efficiency

ηκ =
κext

κ
≤ 1. (3.11)

Equation (3.9) states that in order to measure ẑ with ZPF precision (which is roughly the precision required
to distinguish two different quantum states), one needs to be measuring for a time τ0 = 1/(Γmeasηκ); for
a perfect quantum efficiency ηκ = 1 this simply turns into τ0 = 1/Γmeas. Thus, we can interpret Γmeas as
the measurement rate, i.e., the rate with which we acquire the information about the quantum state of the
mechanical oscillator. A more rigorous definition of the measurement rate and the derivation of equation
(3.10) is given in Ref. [10]. In different experiments this rate can be interpreted as the entanglement
rate[92, 93] or the information transfer rate[42, 92].

In order to assess the final measurement efficiency, we compare this rate to the thermal decoherence rate of
the mechanical mode, which is the rate at which the information about the mechanical state gets corrupted
by the environment. We can estimate it as the rate at which the mechanical system, initially in the ground
state, acquires one phonon of energy, thus changing its quantum state. The total thermalization rate of
the mechanical oscillator is γm, so it acquires ∼ nth,m phonons in a time 1/γm; thus, to acquire one phonon
it takes time (1/γm)/nth,m ≡ 1/Γth, where Γth ≡ γmnth,m is the desired thermal decoherence rate.

If we take the ratio of the two rates, we once again obtain

Γmeas

Γth
=

4
∣∣āg(0)

∣∣2 /κ
γmnth,m

= Cth. (3.12)

This provides another interpretation of the thermal cooperativity, as the ratio of the measurement and
decoherence rates. To measure the mechanical state with quantum precision, we need the measurement
rate to be higher (ideally, much higher) than the decoherence rate, which requires Cth > 1. This require-
ment is a close analogue of the one derived from equation (3.6), where we were considering the state
manipulation rates, not the measurement/decoherence rates.

3.2.3 Cooperativity improvement possibilities

All of this goes to show that the optomechanical cooperativity is, probably, the most important figure of merit
in linear quantum optomechanics applications. To see what is required to improve it, we can examine equation
(3.1):
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• First, we need large optomechanical coupling g(0). Since it can be thought of as an optical resonant
frequency shift due to a mechanical displacement of one ZPF, it can be improved by having large ZPF
amplitude or large frequency shift per mechanical displacement. Thus, it benefits from having small
and light mechanical object (which results in larger ZPF amplitude), small optical mode volume (which
leads to better concentration of the optical power, and to larger fractional effects of the mechanical
displacement), large mode overlap between the optical and the mechanical subsystems (so that most of
the mechanical displacement works towards changing the optical mode frequency), and large interaction
of the mechanical system material with light (e.g., large dielectric index of refraction). This is one of the
most difficult conditions to satisfy, since sometimes these requirements are contradictory: for example,
large mode overlap and large interaction effects usually require a larger mechanical object, while to have
large ZPF amplitude we want it to be as small as possible.

• Second, we benefit from low optical loss κ. This means that in addition to having a low-loss empty
optical cavity (which, for example, for Fabry-Perot cavities implies high-reflectivity mirrors with low
surface roughness) the mechanical object itself should not introduce additional optical loss, e.g., due to
absorption or scattering.

• Similarly, we need low mechanical loss γm, which requires both low intrinsic loss inside the material, and
low clamping/radiation loss due to the confinement of the mechanical mode.

• In addition to low loss, the mechanical object also should have low bath phonon occupation nth,m. Typi-
cally it requires cryogenic cooling of a system, and the majority of the experiments discussed in subsection
3.2.1 use it to lower the mechanical bath temperatures to values ranging from ∼ 10 K down to ∼ 10 mK.

• Finally, the thermal cooperativity benefits from having large circulating photon number |ā|2. Oftentimes
this value has technical limitations, for example, the maximum output laser power or the amount of
classical optical noise. However, in cryogenic experiments it is usually restricted by the optical heating of
the mechanical object, which acts against the previous requirement of low mechanical bath occupation.
Thus, to support large circulating optical power, the optomechanical system should have low optical
absorption and heating, and it should be well-thermalized to the cold environment.

Optomechanical systems based on superfluid helium seem to be well-suited to satisfy many of these criteria.
The discussion of superfluid helium properties and their contribution to the requirements above is presented in
the next Chapter.
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Chapter 4

Superfluid helium and acoustic modes

In this Chapter I discuss superfluid helium properties, previous research on its interactions with light, and the
general description of our optomechanical device.

I start by reviewing properties of the superfluid helium and how they affect its applications in optomechanics
(section 4.1). Then I briefly describe the principles behind our optomechanical device (section 4.2) and review
other experiments investigating the interaction of superfluid helium with EM radiation (section 4.3). After that
I go into more details about the device and discuss the equations describing the acoustic modes (section 4.4),
deduce limits on the mechanical quality factor (section 4.5), and derive the optomechanical coupling (section
4.7).

4.1 General superfluid helium properties

Compared to usual liquids, superfluid 4He has many extreme and unique properties. Among all liquids, it has
one of the lowest densities ρHe = 145 kg/m3 (second only to liquid hydrogen with the density of 71 kg/m3 and
liquid 3He with the density of 82 kg/m3) and the lowest speed of sound cHe = 238 m/s[94]. It is a superfluid,
which means that it has zero viscosity. Being a quantum fluid with non-trivial thermodynamic properties, it
also offers unique kinds of excitations, such as quantized vortices[95, 96, 97], and second and third sound[96, 98].
Together with liquid 3He it is the only cryogenic fluid, in that it does not solidify under its own vapor pressure
at arbitrarily low temperatures. This is of great importance for observing quantum behavior of helium itself, or
of other systems embedded in it. These unique characteristics have already been exploited by using superfluid
helium as a host for a variety of systems, such as individual electrons on the helium surface[99, 100, 101] or in
bulk[102, 103]; helium excimers[104, 105]; ions, molecules, and atomic clusters[106, 107, 108].

Helium has additional advantages in optomechanics applications. Since we are aiming to perform quantum
optomechanics experiments, let us consider superfluid helium (specifically, the acoustic waves in helium) in the
context of optimizing the thermal cooperativity (subsection 3.2.3):

• Helium has low density and low effective mas, which contributes to having high ZPF amplitude and hence
large optomechanical coupling. Furthermore, as a liquid it can fill an optical resonator and form acoustic
modes which have the same shape as the optical modes. This creates a near-perfect overlap between the
optical and the acoustic modes.

The downside of superfluid helium is its very low polarizability: its refractive index n
(r)
He ≈ 1.028[94] is

only slightly higher than vacuum. This means that the optical frequency shift for a given relative helium
density change is fairly small (a quantitative discussion of the coupling mechanism is given in section 4.7).

• Since helium stays liquid at arbitrary low temperatures, eventually all of its impurities except for 3He solid-
ify and stick to container wall (“freeze out”). Hence, isotopically pure 4He (experiments have demonstrated
3He/4He ratio of < 2 · 10−10, and possibly < 10−12[109]) can be an extremely clean and homogeneous
material. Combined with the lack of defects and a large electronic bandgap of > 18 eV[110, 111], it results
in helium having very low absorption or scattering of light, which leads to low optical loss.
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• The absence of viscosity results in a very low sound attenuation, which contributes to high mechanical
quality factor. Intrinsic Q-factors of 108 have been observed in Ref. [112], which is comparable to the
state-of-the-art in solid state systems.

• As helium is a cryogenic liquid, it has intrinsically low bath temperature. It also has large thermal
conductivity[113] (for an insulator) thanks to its low speed of sound, which makes it easier to thermalize
to the cold environment.

• Finally the combination of the low intrinsic absorption and the large thermal conductivity of the superfluid
helium contributes to better optical power handling.

This list shows that the density waves in helium should be well suited for optomechanics applications. Look-
ing further, the ability of helium to host a variety of subsystems might make it useful for hybrid optomechanical
devices, where a hosted subsystem interacts with acoustic waves, which are subsequently interfaced with light
through the optomechanical interaction.

Nevertheless, superfluid helium still has some disadvantages. The most important one is its low index of
refraction, which significantly affects the optomechanical coupling. A more technical problem is that it wets
almost any material (the only relatively common exception is cesium), leading to the formation of a thin (several
tens of nm) superfluid film, called the Rollin film[113, 114], which covers every surface. Since it has no viscosity,
this film can support large flow, which makes superfluid helium notoriously hard to contain. Finally, since
helium only becomes superfluid below the transition temperature of Tλ = 2.2 K and its internal mechanical loss
is strongly temperature-dependent (as described in subsection 4.5.1), it naturally requires cryogenic technology.

4.2 Device principle

Figure 4.1: Schematic of the superfluid helium filled device. Blue color variations denote the standing acoustic
wave, with darker regions corresponding to higher helium density; red line shows the intensity profile of
the standing optical wave inside the cavity.

The basis of our device is a Fabry-Perot cavity filled with superfluid helium, as shown in Figure 4.1. This
cavity supports optical modes as well as sound modes co-existing in the volume between the mirrors. Both types
of modes obey the wave equation (albeit with different propagation velocities) and have the same boundaries,
so they have similar mode structures.

The mode type that we are interested in are the Gaussian modes (described in appendix B.2), which closely
correspond to the typical picture of standing 1D plane waves, with the mirror curvature providing transverse
confinement. The optical modes are confined in the longitudinal direction by the high reflectivity dielectric
coating at the mirror surfaces (section B.4), and typically have high finesse (i.e., the average number of photon
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round-trips inside the cavity before decaying) of & 104. The sound modes are confined by the acoustic impedance
mismatch at the hard glass boundaries, which provides a finesse of ∼ 100, as described in subsection 4.5.2. The
optomechanical coupling arises due to the density-dependent dielectric constant of superfluid helium, and it is
derived in section 4.7.

A more detailed device description is given in section 5.1 and in Ref. [115]. In addition, Ref. [116]
gives the description of other kinds of acoustic modes in helium which are coupled to the optical modes in
our device. Compared to the Gaussian modes described above, these modes have several disadvantages for
our applications: their optomechanical coupling has a considerable photothermal component, they have lower
frequencies (10 kHz ÷ 10 MHz), they are less localized, and their frequencies are highly geometry-dependent.
This is why I do not consider these modes in the thesis.

4.3 Previous helium optomechanics work

4.3.1 Spontaneous Brillouin scattering

Laser light has been used for a long time as an instrument to study acoustic waves[117, 118, 119, 120] and other
mechanical excitations in superfluid helium, including rotons[121, 122], second sound[120, 123, 124], isotopic
concentration variations[118], surface waves[125], and entropy fluctuations[119]. These studies were performed
in the context of spontaneous light scattering: a strong laser beam was incident on the experimental helium
cell, and then the scattered light (usually around 90◦ scattering angle) was collected to measure its intensity
and spectrum. For acoustic wave studies, which are most relevant to the work in this thesis, the scattering
process is spontaneous Brillouin scattering.

While this method utilizes the same kind of Brillouin interaction as does our work, it is different in several
aspects. First, and most important, it is performed in free space without any kind of optical or acoustic
resonators. This does not allow one to control the modes of the scattered light and acoustic waves (i.e.,
scattering happens equally into many different spatial modes), meaning that it is harder to make the interaction
coherent and achieve good control and readout efficiency. Second (although related), the scattered light modes
are different from the incident light mode; this is in contrast with the canonical optomechanical system, where
there is only one optical mode containing both the drive and the scattered (Stokes and anti-Stokes) sidebands.
Finally, the scattering experiments were done at a relatively high temperature (> 1 K), where the internal loss
of acoustic waves is fairly high: for 320 MHz sound used in out experiment the quality factor at 1 K is only
∼ 100 (see subsection 4.5.1). Our experiment is performed in a dilution refrigerator at much lower temperatures,
so the mechanical quality factor is much higher (up to 100,000 at low optical powers).

4.3.2 Superfluid helium optomechanics

Recently several other cavity optomechanics experiments with superfluid helium have emerged. While they are
qualitatively different from the schematic described in section 4.2, all of them use some kind of excitations in
the superfluid helium as a mechanical resonator coupled to an EM mode via an optomechanical interaction.

The first reported experiment (and conceptually the closest to ours), is described in Ref. [126]. There the
optical mode is a MW mode confined inside a superconducting cavity, and the mechanical mode is an acoustic
density wave of helium filling this cavity. The optomechanical interaction arises for the same reasons as in
our system (section 4.7), although it is harder to describe in terms of Brillouin scattering, since the optical
and acoustic modes do not have a clear plane wave-like structure. This experiment demonstrated very high
acoustic quality factors (its upgraded version[112] showed Q > 108), but due to the very large mode volume,
the optomechanical interaction was very small. While it was large enough to measure mechanical motion driven
by a piezoelectric element, it was not sufficient to induce any radiation pressure effects.

The second experiment[127] employed a WGM microtoroid resonator to contain the optical mode, while the
mechanical mode was third sound[96, 98, 128] (surface acoustic waves on a thin superfluid Rollin film) confined
on the top of the toroid. The optomechanical coupling was predominantly photothermal, mediated by a fountain
effect[96, 129, 130]. This experiment demonstrated optomechanical coupling strong enough to observe radiation
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pressure effects such as optical spring and optomechanical damping. However, due to its photothermal nature
it is not well-suited for observation of quantum optomechanics effects.

In the last experiment[131, 132] the mechanical oscillator is a fourth-sound Helmholtz resonator[133]. Its
motion was detected via a parallel-plate capacitor, which is sensitive to changes in helium density due to the
change in its dielectric constant (similar to Ref. [126] and our work). At the same time, electrostatic forces
inside the capacitor were used to drive the acoustic mode by applying an oscillating voltage to the capacitor
plates at the mechanical mode frequency. A major difference of this experiment from Ref. [126], apart from a
different kind of mechanical mode, is that there is no electromagnetic mode present, and both drive and readout
were performed using external devices (an arbitrary waveform generator and a lock-in amplifier). Nevertheless,
one could imagine placing such device in a resonant LC-circuit to produce a more standard optomechanical
device, similar to Ref. [50].

4.4 Wave equation and modes

In this section I consider the acoustic modes of superfluid helium. Most of the derivation in this section and
section 4.7 is described more generally in Ref. [134].

4.4.1 Wave equation

First, we need to derive the equations obeyed by the superfluid helium. One of them is a standard continuity
equation following directly from the conservation of mass:

∂ρ

∂t
= −∇ · (ρv). (4.1)

Here ρ is the local helium density and v is the local velocity. The second equation describes the fluid dynamics,
and it corresponds to a local Newton equation. Under the ideal fluid (i.e., no friction) assumption it is written
as

ρ
dv

dt
= ρ

∂v

∂t
+ ρ(v · ∇)v = −∇p, (4.2)

where p is the local pressure. Note the difference between the partial time derivative ∂v/∂t, which corresponds
to a fixed coordinate system (i.e., it describes change of the fluid velocity at a given fixed point), and the full
time derivative dv/dt, which corresponds to a coordinate system moving with the fluid (i.e., this derivative
describes change in the velocity of a given fluid element). To simplify equation (4.2), we restrict ourselves to
the case of “slow” subsonic fluid flows v � cHe. We can estimate the first term in the LHS of equation (4.2)
as
∣∣∂v
∂t

∣∣ ∼ ωmv, while the second term is only |(v · ∇)v| ∼ ωmv(v/cHe) � ωmv. Thus, we can drop the second
term and obtain

ρ
∂v

∂t
= −∇p. (4.3)

Finally, we need an equation which determines the local pressure. We will treat helium as a simple compressible
fluid, for which this equation is

p = EHe
δρ

ρHe
, (4.4)

where δρ = ρ− ρHe are the density fluctuations and EHe = c2
HeρHe is the helium Young’s modulus.

Next, we can linearize the equations (4.1) and (4.3) under the assumption of small density variations. To
do that, we substitute ρ = ρHe + δρ with |δρ| � ρHe and only keep the first-order terms in δρ and v (since from
the continuity equation v/cHe ∼ δρ/ρHe):

∂(δρ)

∂t
= −ρHe∇ · v (4.5)

ρHe
∂v

∂t
= −∇p. (4.6)
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Finally, since we are looking for oscillating wave-like excitations, we can assume that the velocity field is
irrotational ∇ × v = 0, that is, there are no vortices in the liquid. This implies that we can define a velocity
potential φv such that v = ∇φv. In terms of this potential equations (4.5) and (4.6) become

∂(δρ)

∂t
= −ρHe∇2φv (4.7)

ρHe
∂φv
∂t

= −p = −EHe
δρ

ρHe
. (4.8)

Combining the two equations, we obtain the wave equation for the velocity potential

∇2φv −
1

c2
He

∂2φv
∂t2

= 0. (4.9)

Since we are looking for an oscillating solution, we assume φv(r, t) = φv(r)e−iωmt for some frequency ωm

(keeping in mind that the actual velocity potential is the real part of this expression). This results in

∇2φv + k2
mφv = 0, (4.10)

where km = ωm/cHe is the mode wave-vector. The corresponding density profile can be obtained from equation
(4.8):

δρ

ρHe
= i

ωm

c2
He

φv. (4.11)

The density is quarter of a period out of phase compared to the velocity, but its spatial profile is the same as
φv.

4.4.2 Boundary conditions

The sound modes that we consider obey hard wall boundary conditions, which correspond to zero normal
velocity. In terms of the velocity potential they are expressed as

∂φv
∂n

= 0, (4.12)

where ∂φv
∂n = (∇φv) · n̂ is the normal derivative of the velocity potential.

4.4.3 Stored energy

Similar to appendix B.5.2, the energy consists of the kinetic and the potential part. The kinetic energy density
is

us,K =
ρHe

2
v2 =

ρHe

2
(∇φv)2, (4.13)

while the potential energy density is

us,P =
p2

2EHe
=

1

2EHe

(
ρHe

∂φv
∂t

)2

=
ρHe

2c2
He

(
∂φv
∂t

)2

. (4.14)

For a mode with a frequency ωm and a spatial profile φv(r) the total energy is

Us =

∫
(us,K + us,P)dV =

ρHe

2

∫
(∇φv)2dV +

ρHe

2c2
He

∫ (
∂φv
∂t

)2

dV. (4.15)
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The first integral can be done by parts using the boundary condition (4.12):∫
(∇φv)2dV =

∮
∂V
φv
∂φv
∂n

dS −
∫
φv∇2φvdV =

ω2
m

c2
He

∫
φ2
vdV. (4.16)

The total energy then becomes

Us =
ρHeω

2
m

2c2
He

∫ (
φ2
v +

1

ω2
m

(
∂φv
∂t

)2
)
dV

=
ρHeω

2
m

2c2
He

∫ ((
Re
{
φv(r)eiωmt

})2
+
(
Im
{
φv(r)eiωmt

})2)
dV

=
ρHeω

2
m

2c2
He

∫
|φv(r)|2dV. (4.17)

The energy can also be rewritten in terms of the relative density change δρ/ρHe as

Us =
EHe

2

∫ ∣∣∣∣δρ(r)

ρHe

∣∣∣∣2 dV. (4.18)

4.5 Loss mechanisms

4.5.1 Intrinsic loss

For T < 600 mK the main internal loss mechanism for acoustic waves in superfluid helium is the three-phonon
process[135, 136, 137]. It can be described by an amplitude attenuation coefficient α3pp

α3pp(ωm) =
π2k4

B(u+ 1)2

30~3ρHec6
He

ωmT
4

(
arctan(ωmτ)− arctan

(
3

2
γp̄2ωmτ

))
. (4.19)

Here ωm is the acoustic wave frequency, T is the temperature, u = 2.84 is the Grüneisen constant[138], τ = ξT−5

is the thermal phonon lifetime, where ξ = 1.11 × 10−7 s ·K5[139] and p̄ = 3kBT/cHe is the average thermal
phonon momentum. Finally, γ is the coefficient for the cubic term in the phonon dispersion, which is expressed
as γ = − 1

6cHe

d3ε
dp3 , where ε and p are phonon energy and momentum respectively. It has been measured to be

γ = −8× 1047 kg−2m−2s2[138].
The internal quality factor of an acoustic mode can be calculated from the attenuation length as

Qm,int =
ωm

2cHeα3pp
. (4.20)

For the relevant acoustic mode frequency ωm ≈ 2π×300 MHz and temperature T < 0.5 K both arctan arguments
in equation (4.19) are � 1, leading to the simple relationship

Qm,int =
χ

T 4
, (4.21)

where

χ =
15~3ρHec

5
He

π3k4
B(u+ 1)2

≈ 118 K4. (4.22)
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4.5.2 Acoustic radiation loss

Another source of loss is the acoustic radiation of the standing sound wave into the confining mirrors. Like
in the optical cavity, this loss can be calculated from the reflection coefficient of the mirrors, and described
in terms of the acoustic cavity finesse. The reflection coefficient can be obtained from the acoustic impedance
mismatch Z(rel) using equation (B.115):

R(b) = |r(b)|2 =

∣∣∣∣∣Z(rel) − 1

Z(rel) + 1

∣∣∣∣∣
2

. (4.23)

If we assume that the mirrors are made of silica with density ρSiO2 = 2.2 · 103 kg/m3 and speed of sound
cSiO2 = 6 · 103 m/s[140], the impedance mismatch becomes Z(rel) = (ρSiO2cSiO2)/(ρHecHe) ≈ 380, and the
reflection coefficient is R(b) ≈ 99.0%. This results in the acoustic finesse of (using equation (B.65))

Fac =
π

1−R(b)
≈ 300. (4.24)

For a typical acoustic frequency of ωm = 300 MHz and cavity length of L = 80 µm this leads to the quality
factor

Qm,rad = nFac =
ωm

2πF
Fac =

2ωmL

2πcHe
Fac ≈ 6 · 104. (4.25)

This simple calculation can be extended in two aspects. First, we should take into account the optical DBR
layer structure by employing the full transfer matrix formalism described in the subsection B.5.4. Second, due
to the difference in the sound velocities the acoustic wavelength in glass is about 30 times larger than in helium,
so the sound in glass no longer obeys the paraxial approximation (the transverse mode size is no longer much
larger than the wavelength). This means that the 1D plane-wave approximation is no longer applicable, and a
full numerical simulation should be performed. Both of these complications are discussed in Ref. [141].

4.6 Other excitations and non-ideality considerations

It is evident from the discussion above, that the model of superfluid helium that we assume in our work is fairly
simple: an ideal liquid with irrotational flow and simple linear loss due to a three-phonon process. However,
superfluid helium is known to have complicated behavior with many different kinds of excitations, as described
in section 4.1. In this section I want to try and justify our approximations.

It is well known[135, 136, 142] that below about 0.5 K the only excitations in helium are elementary phonons,
as other elementary excitations have higher characteristic energies (roton energies are about 9 K), and therefore
are rare enough to not affect phonon behavior. It can also be understood in terms of the two-fluid model[142,
143, 144] as rapid disappearance of the normal component: the relative normal density is ρn/ρ ≈ 10−5 at
0.5 K[94], and it decreases as T 5 at lower temperatures. Similarly, when considering sound attenuation, only
three-phonon processes are taken into account, while phonon-roton interactions and higher-order (5-phonon)
processes can be are ignored [136].

On the other hand, light absorption in the mirror coating can generate substantial heat flux in helium directly
next to the mirror surface, which can raise its temperature up to 1 − 2 K. As mentioned in section 8.4 and
discussed in Ref. [141], this can drastically affect the mechanical mode dissipation and effective temperature.
However, in that scenario the heated helium layer extends only by < 1 µm from the mirror surface, and bulk
of the helium inside the cavity is still at a temperature lower than 0.5 K.

Another important assumption that we made about helium is zero circulation, i.e., absence of vortices or
turbulence. We mainly justify this by noting that in our experimental device there are no moving components
which would normally generate vortices or turbulent flow. Furthermore, filling of the cavity (see section 5.1) is
performed very slowly and at low (< 1 K, and typically < 200 mK) temperature via superfluid Rollin film[114].
Hence, the cavity never contains bulk helium at a temperature above λ-point, or even any noticeable normal
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fluid fraction in the superfluid state. It seems reasonable to assume that the residual vortices density for this
case is at most as large as for helium samples which were carefully pumped through the λ-point. Estimates
given in Ref. [145] suggest that in our geometry the surface vortex density is on the order of 2 · 103 mm−2,
which results in ∼ 500 vortices inside the cavity (i.e., between the fiber mirrors, as described in section 5.1),
leading to at most a couple of vortices penetrating acoustic or optical modes.

As far as impurity-type excitations are concerned, most of those are either specifically added impurities
(such as molecules or ions[107], or electrons[100]), or require excitation or ionization of helium atoms (electron
bubbles, and helium excimers). Such processes require high-energy (deep UV) photons, high power ultra-short
laser pulses[105], electrical discharge[103, 146], or charged particles bombardment[147]; none of these sources
are explicitly present in our system.

Finally, we need to consider the possibility of light-induced excitations on top the thermal distribution. As
mentioned above, we do consider light absorption in cavity mirrors and associated heating effects. However,
light scattering in helium itself is fairly small (as discussed in section 6.1.3, our experimental lower bound on
the light attenuation length in helium is 15 m). This is in part due to low photon momentum, which means
that the resulting excitations are either long-wavelength phonons (indeed, as discussed in the following section,
this is one way to interpret the optomechanical coupling in our system), or at least pairs or higher-momentum
excitations, such as rotons. The first kind of scattering is expected to be negligible, as even for our experimental
phonon mode (which is optimized to have the maximum scattering efficiency) the light interaction effects are
relatively small compared to the thermal population. The second kind of process, being higher-order, should
be even less important (Ref. [121] suggest that for 488 nm light at ∼ 1 K this process is 103 times weaker,
and the total light attenuation length is on the order of 105 . . . 106 m). Finally, non-elementary excitations
(e.g., second sound), are, again, suppressed due to low helium temperature, which ensures that the phonons are
almost non-interacting: the phonon mean-free path at 0.5 K is ≈ 1 mm[148] and goes down as T−4.3, compared
to the characteristic size of the device a ≈ 100 µm.

This concludes my theoretical justification for treating low-temperature superfluid helium as a fairly ideal
liquid. Ultimately, the most convincing argument is, probably, the fact we were not able to clearly observe
any signatures (such as Stokes scattering peaks) of non-acoustic excitations in our experiments, nor did we
need to employ them to explain our experimental results (light and sound attenuation, heat conductivity, or
optomechanical coupling).

4.7 Coupling mechanism

4.7.1 Overlap integral

The origin of the optomechanical coupling is in the fact that the helium index of refraction depends on its
change in density, so that it is affected by the acoustic mode. To derive this dependence, we start with the
Clausius-Mossotti relation for the dielectric constant[149]

ε(r) − 1

ε(r) + 2
=
αN

3ε0
. (4.26)

Here ε(r) is the relative dielectric constant, α is the atomic polarizability and N is the atomic number density.
By considering small perturbations of ε(r) and N , we arrive at

δε(r)

ε(r) − 1
− δε(r)

ε(r) + 2
=
δN

N
=
δρ

ρ0
, (4.27)

where δε(r) and δN are the perturbations of ε(r) and N respectively, and ρ0 is the equilibrium material density.

For superfluid helium ε(r) = ε
(r)
He = 1.057[94],a) so the term with ε(r) − 1 in the denominator dominates, and

a)Strictly speaking, this value for ε
(r)
He is obtained in the low frequency (MW and RF) regime. However, the electronic bandgap of

helium ωbg,He ≈ 2π · 4 PHz is much larger than the NIR laser frequency used in this experiment ωL ≈ 2π · 200 THz, which ensures
that the optical polarizability α is still within (ωL/ωbg,He)2 ≈ 0.2% of its low frequency value[150].
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we can neglect the other term. This leads to

δε(r) ≈ (ε
(r)
He − 1)

δρ

ρHe
. (4.28)

As described in appendix B.1, perturbations in the dielectric constant can lead to changes in the resonant
frequency of an optical mode. Let us assume the density change profile δρ(r) and the optical intensity profile
I(r) ≡ |E0(r)|2, where E0(r) is the electric field of the optical mode. Then equations (4.28) and (B.15) yield
the relative change in the optical resonant frequency

δωc = −ωc

∫
V (δε(r)(r)/2ε

(r)
He)I(r)dV∫

V I(r)dV
= −ωc

(ε
(r)
He − 1)

2ε
(r)
He

∫
V (δρ(r)/ρHe)I(r)dV∫

V I(r)dV
. (4.29)

4.7.2 Mode normalization

In order to derive the value of the single-photon optomechanical coupling g(0) from equation (4.29), we need to
correctly normalize the density fluctuations δρ. To to this, we are going to use the value of the stored mechanical
energy.

Let us recall the derivation of the single-photon optomechanical coupling presented in section 2.2. First, we
considered only the mechanical system, which has frequency ωm and is described by the Haliltonian (equation
(2.37)) Ĥm = ~ωm(b̂†b̂ + 1/2), where b̂ is the mechanical annihilation operator. Then, we normalized the
mechanical displacement x̂ in terms of its creation and annihilation operators b̂† and b̂ (equation (2.38)):
x̂ = xZPF(b̂+ b̂†), where xZPF is the proportionality coefficient. Finally, we calculated the detuning of the optical
cavity due to the mechanical displacement of xZPF and thus obtained g(0) as the proportionality coefficient
between the cavity detuning and the normalized displacement ẑ = b̂+ b̂† (equation (2.43)): δωc = g(0)ẑ.

Now let us consider a large coherent state of the oscillator with some amplitude b0 � 1, which we can
assume WLOG to be real and positive. This lets us approximate the time-dependent annihilation operator
b̂(t) by a classical value b(t) = b0e

−iωmt, where the time dependence comes from the Hamiltonian above. This
results in the mechanical energy

Um ≈ ~ωm|b(t)|2 = ~ωmb
2
0, (4.30)

and the normalized mechanical displacement

z(t) = b(t) + b∗(t) = 2b0 cos(ωmt). (4.31)

The amplitude of the mechanical motion is therefore z0 = 2b0, and the corresponding cavity detuning is

δωc = g(0)z0 = 2g(0)b0. (4.32)

Now we can find the optomechanical coupling g(0) for the helium acoustic mode by reversing this procedure.
Let us assume that the acoustic mode has a density profile δρ with an arbitrary non-normalized amplitude.
From equation (4.18) we can calculate the acoustic energy Um stored in this mode, from which we can extract
the corresponding amplitude of the coherent state b0 using equation (4.30):

b0 =

√
Um

~ωm
. (4.33)

At the same time, we can calculate the cavity detuning δωc from equation (4.29). Finally, we can combine these
two expressions and equation (4.32) to extract the optomechanical coupling:

g(0) =
δωc

2b0
= δωc

√
~ω

4Um
. (4.34)
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If we explicitly substitute expressions (4.18) and (4.29) into (4.34), we will end up with the generic expression
for the optomechanical coupling

g(0) = ωc
(ε

(r)
He − 1)

2ε
(r)
He

√
~ωm

2EHe

∣∣∫
V δρ · IdV

∣∣(∫
V IdV

)√∫
(δρ)2dV

. (4.35)

The normalization integrals in the denominator ensure that the value of g(0) does not depend on the magnitudes
of the intensity profile I and the density profile δρ.

To estimate the magnitude of g(0), we can rewrite it as

g(0) = ωc
(ε

(r)
He − 1)

2ε
(r)
He

√
~ωm

2VmodeEHe
aovl, (4.36)

where

Vmode =

(∫
IdV

)2∫
I2dV

(4.37)

aovl =

∣∣∫
V δρ · IdV

∣∣√(∫
V I

2dV
)√∫

(δρ)2dV
. (4.38)

We can associate Vmode with the effective volume of the optical mode, and recognize 0 ≤ aovl ≤ 1 as the effective
mode overlap (the limits come from the Cauchy-Schwartz inequality). If we assume the typical frequencies in
our experiment ωc = 2π ·200 THz, ωm = 2π ·300 MHz, the mode volume of Vmode = 100 µm×10 µm×10 µm =
10−14 m3 and the perfect mode overlap (aovl = 1), we get g(0) ≈ 2π · 6 kHz.

4.7.3 Wavelength matching condition

The fact that the optomechanical coupling is proportional to the overlap integral
∫
δρ(r)I(r)dV places a strong

restriction on which mechanical modes couple to a given optical mode. To understand this, let us start with
a simplified 1D case, where the wave equation solutions are sine waves. For simplicity, we can assume perfect
boundary conditions: for the optical mode this means a node of the amplitude at the boundary, while for the
mechanical mode it implies a density maximum (as mentioned in subsection 4.4.2). Then the mode profiles can
be expressed as

E(x) ∝ sin
(
πn

(opt)
λ/2 x

)
(4.39)

I(x) ∝ |E(x)|2 = sin2
(
πn

(opt)
λ/2 x

)
(4.40)

δρ(x) ∝ cos
(
πn

(ac)
λ/2x

)
, (4.41)

where 0 ≤ x ≤ 1 is the normalized position along the cavity, and n
(opt)
λ/2 , n

(ac)
λ/2 are the numbers of half-wavelengths

inside the cavity for the optical and the acoustic mode respectively. An example of an optical mode with

n
(opt)
λ/2 = 3 and two acoustic modes with n

(ac)
λ/2 = 6, 8 is shown in Figure 4.2.

The overlap integral can be calculated as∫ 1

0
δρ(x)I(x)dx ∝

∫ 1
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Figure 4.2: Amplitude and intensity for optical and acoustic modes as a function of position along the cavity.
Red color corresponds to the optical mode, blue color correspond to acoustic modes. nλ/2 denotes the
number of half-wavelengths inside the cavity for a given mode.

Since both n
(ac)
λ/2 and n

(opt)
λ/2 are positive integers, the first two terms cancel, and the overlap integral is non-zero

only for n
(ac)
λ/2 = 2n

(opt)
λ/2 , or, in other words, when the acoustic wavelength is half of the optical wavelength.

This can also be seen from Figure 4.2. The mode described by the solid blue line has a maximally negative
displacement for every optical intensity maximum, so their overlap is non-zero. On the other hand, the dashed
blue line mode is mismatched, and the overlap in the right half of the cavity cancels the overlap in the left half.

The matching condition can also be interpreted in terms of the backward Brillouin scattering (BBS) process.
Consider a 1D waveguide (e.g., an optical fiber) which can support both mechanical and acoustic modes. The
Brillouin scattering in this medium is a three-wave process in which a photon absorbs or produces a phonon
and scatters in a different direction; for simplicity, let us focus on a production process. Since the medium
is translationally invariant, this scattering process should obey momentum conservation: pin = pout + qphon,
where pin and pout are correspondingly the momenta of the incident and scattered photons, and qphon is the
momentum of the produced phonon. At the same time, the energy is also conserved, which can be expressed as
ωin = ωout + ωphon, where ωin, ωout and ωphon are the corresponding photon and phonon frequencies. Because
the phonon frequency is much smaller than the photon frequency, we can approximate it as ωin ≈ ωout, so
that |pin| ≈ |pout|. In the backwards scattering pin and pout have opposite direction (i.e., the scattered photon
is traveling backwards), which results in qphon = pin − pout ≈ 2pin and, consequently λphon = 2π/|qphon| =
π/|pin| = λin/2, where λin is the wavelength of the incident (and, consequently, scattered) light and λphon is
the sound wavelength.

Coming back to cavity systems, the confining mirrors turn forward-propagating photons into backward-
propagating photons and vice versa, meaning that the incident and the scattered photons belong to the same
optical mode. Otherwise, the reasoning outlined above still holds, so we can write the wavelength matching
condition as λac = λopt/2, where λopt and λac are wavelengths of the optical and the acoustic standing wave

respectively. As we can see, this condition exactly corresponds to n
(ac)
λ/2 = 2n

(opt)
λ/2 obtained earlier.

The precise requirement of the wavelength matching disappears if the acoustic and optical modes have
different boundary conditions. This can happen because the optical mode is confined by an extended DBR
structure (see appendix B.4) which can have complicated boundary conditions, while the acoustic confinement
happens right at the helium/glass interface. To describe this situation, we can introduce an arbitrary reflection
phase of the optical mode φ at the boundary (same concept is used in appendix B.2.2); as an example, a perfect
mirror corresponds to φ = π. This changes the shape of the optical mode to

E(x) ∝ cos
((
πn

(opt)
λ/2 − φ

)
x+ φ/2

)
, (4.43)

where n
(opt)
λ/2 is still an integer, even though it does not anymore correspond to the number of half-wavelengths

inside the cavity. To make this expression look more like equation (4.39), we can redefine φ→ π+φ (now φ = 0
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describes an ideal mirror) and n
(opt)
λ/2 → n

(opt)
λ/2 + 1 to get

E(x) ∝ sin
((
πn

(opt)
λ/2 − φ

)
x+ φ/2

)
. (4.44)

Figure 4.3: Normalized overlap integral as a function of the mirror reflection phase φ for different mode mismatch
values ∆nλ/2.

The overlap integral now becomes (after canceling the term which is exactly zero)∫ 1
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If the cavity is long, i.e., n
(ac)
λ/2 , n

(opt)
λ/2 � 1, we can neglect the first term and get∫ 1

0
δρ(x)I(x)dx ∝ sin(φ)

π∆nλ/2 + 2φ
, (4.46)

where ∆nλ/2 = n
(ac)
λ/2 − 2n

(opt)
λ/2 and we only consider even n

(ac)
λ/2 . It is evident that unless φ = 0, the overlap

integral is non-zero for ∆nλ/2 6= 0, that is, the matching condition is no longer perfect. This seemingly
contradicts the Brillouin picture of scattering, where the matching requirement was derived without taking
any kind of boundary conditions into account. However, since the cavity is finite, the translation symmetry
is broken, and the momentum conservation is satisfied only within some precision ∆p ≈ 2π/L, where L is
the cavity length. This precision corresponds to ∆nλ/2 = 1, which is the characteristic scale of the matching
condition (4.46).

Figure 4.3 demonstrates how the matching condition changes for φ 6= 0. Since the coupling to the mismatched
modes grows as φ deviates further from zero, the magnitude of their coupling (or inability to observe these modes
for a given signal-to-noise ratio) can place constraints on φ.

The results are qualitatively the same when 3D Gaussian modes are considered, though analytic calculations
quickly become intractable. Instead, the mode shapes are found from the known system parameters (cavity
length, mirror radii of curvature, optical and acoustic frequencies) using the approach described in appendix
B.2, and the integrals in equation (4.35) are carried out numerically. Numerical results for particular system
geometries are given in sections 6.2.5 and 8.2.
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Chapter 5

Experimental setup overview

5.1 Device description

Figure 5.1: Top: Overall schematic of the device cell. The black arrow on top shows the direction of gravity.
Bottom: Zoom-in of the cavity region denoted by the magenta rectangle in the top figure. Blue color
variations denote the standing acoustic wave, with darker regions corresponding to higher helium density;
red line shows the intensity profile of the standing optical wave inside the cavity.

A generic schematic of the main part of the device is shown in the top part of Figure 5.1. The schematic
shown here is of the first generation device, in which the cavity is formed inside a single alignment ferrule. The
differences of in second generation device are highlighted in section 8.1.

The cavity is formed in the space between the two fibers, whose ends are laser-machined[151] to form convex
surfaces with radius of curvature (ROC) between 200 µm and 500 µm. The ends are subsequently coated with
a high-reflectivity (0.9999 to 0.99999) dielectric DBR mirror coating (section B.4). The fibers are aligned inside
a glass ferrule whose inner diameter (ID) is only several µm larger than the fibers outer diameter (OD). This
creates a fairly precise and stable alignment, which can withstand thermal contractions. The ferrule is glued
inside the brass cell with a cryogenically-compatible epoxy (Stycast 2850). The fibers are inserted into the
cell though long narrow fiber feedthroughs, which are afterwards filled with the epoxy to ensure that they are
superfluid helium tight; these feedthroughs are the two points which fix the cavity length. After the ferrule and
the fibers are glued inside the cell, it is joined together with a top part using an indium seal, which is known
to be very reliable in cryogenic environments. The top part has a helium fill port with a VCR connector for
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controlled supplying of helium gas into the cell. After assembly, the device is mounted to the mixing chamber
(MC) plate of the dilution refrigerator, which can be cooled down to ∼ 10 mK.

The helium fill port is connected to the room-temperature experimental gas handling system (expGHS)
through a long stainless steel capillary with OD of 1.5 mm and ID of 0.5 mm. To minimize the heat load, the
capillary is heat-sunk at every stage of the dilution refrigerator: 4K plate (4.2 K), 1K plate (∼ 1.5 K), still
plate (∼ 500 mK), intermediate cold plate (∼ 150 mK) and MC (down to 10 mK). Heat-sinking at the MC is
done by an in-line sintered heat exchanger: a small (∼ 2 cm3) chamber filled with sintered silver, which has a
porous structure and, therefore, very large surface area (& 1 m2). This ensures good thermal contact between
helium inside the device and the mixing chamber. All other heat sinks are copper bobbins which have capillaries
wrapped around them and attached with silver solder.

The expGHS has several calibrated volumes, which allow us to send measured doses of helium gas into the
device after it is cooled down. The most commonly used dose has a volume of 13.4 cm3, which at a typical
pressure of 1.1 atm corresponds to about 0.02 cm3 of liquid helium condensed inside the device. On the way to
the device helium gas passes through a liquid nitrogen trap, which filters out most of the impurities. Additionally,
the expGHS has a pressure relief, which is an evacuated vacuum chamber with the volume of 2 liters; it is
continuously connected to the capillary going to the device. The relief is large enough to accommodate all of
the helium in the system (expGHS and the device combined) at room temperature and pressure below 1 atm.
This ensures that the device and the helium delivery lines will not get over-pressurized if the device temperature
goes above helium boiling point and all of the liquid helium inside the device evaporates.

As far as the optical part of the device is concerned, the light is sent into and collected from the cavity
using the same optical fibers which form the cavity. On the way from the device to the room temperature
components the fibers pass through a heat-sink mounted on the 4K plate, which is designed to reduce the
thermal load induced by the fibers. The heat-sink is a massive copper block with a channel in the middle,
inside which the fibers are epoxied. Since the fibers are thin, and the glass thermal conductivity is fairly small
at cryogenic temperatures[113], a single stage of heat-sinking is enough to avoid excessive device heating. After
the heat-sink, the fibers travel along a clear-shot tube and through the room temperature vacuum feedthroughs
towards the rest of the optical setup.

The bottom part of Figure 5.1b shows a zoomed-in view of the device cavity region. It demonstrates the
optical mode intensity (red line) and acoustic mode density modulation (shades of blue) inside the cavity volume
in between the two fiber faces. The modes shown satisfy the wavelength matching condition (subsection 4.7.3).
However, their wavelengths are intentionally exaggerated for clarity: in the actual device the cavity is about
100 mechanical wavelengths long.

5.2 Measurement setup

The measurement setup schematic is shown in Figure 5.2. It can be generally divided into several regions,
which are denoted by different color backgrounds in the schematic: light generation and preparation (green),
tone generation (blue), detection (brown), cavity lock (purple), and auxiliary measurements and calibration
(yellow). Every part is described in more detail below.

5.2.1 Light preparation

The light is generated by a tunable fiber-coupled diode laser (TL), whose wavelength (in vacuum) can be
tuned between 1440 nm and 1590 nm (in most experiments it is tuned close to 1550 nm, as this is the design
wavelength of the mirror coating). The output power is typically kept constant at about 20 mW to improve
stability of the laser and the following components (TF, IQM and φM). The the experimental laser power is
adjusted using the variable optical attenuator (VOA).

After that, the laser passes through the tunable filter cavity setup (TFCS) to filter out the classical noise.
This setup involves several optical and electrical components which are not shown here for simplicity; its detailed
description is given in appendix D.1. Due to the presence of the optical circulator at the input of this setup, it
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Figure 5.2: Schematic of the measurement setup. Red symbols denote optical components, with red lines corresponding to the interconnecting
optical fibers; double lines denote polarization-maintaining fibers, while single lines denote regular fibers. Green symbols denote electrical
components, with green lines showing either microwave or low frequency connections.
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also effectively serves as an optical isolator. This eliminates light reflection back into the laser output, which
improves the laser stability and noise characteristics.

Next, the lasers passes through the optical IQ modulator (IQM) and phase modulator (φM), which are
described in the corresponding subsections. After that, the light goes through the polarization controller
(PCnt) and the VOA, both of which are computer-controlled. The PCnt is used to adjust the polarization to
one of the cavity polarization eigenmodes, while the VOA is used to set the final laser power.

Finally, the light is sent into the experimental cavity through an optical circulator, and its reflection is sent
onto the detection part of the setup.

5.2.2 Tones generation

All of the necessary optical signals (controls, probe, locking, calibration) are generated in the φM from a single
laser tone (a detailed description of the phase modulator operation is presented in appendix C.3). Each optical
tone is created with a single microwave tone going into the φM, with the transmitted carrier serving as the
optical local oscillator (OLO) for the heterodyne detection. Thus, this kind of generation can be thought of
as a direct mapping of the microwave domain signal onto the optical domain, while the heterodyne detection
transforms the signal back onto the microwave domain; since the OLO is the φM carrier, the detected MW
beatnotes end up being coherent and phase-locked with the corresponding MW generation signals. This allows
for great setup flexibility (as adding another optical signal corresponds to simply sending an extra microwave
tone into the φM) and high degree of coherence between different optical signals, which is limited only by the
quality of external clock acquisition in the microwave generators.

In the electrical part of the setup, the main drive tones are generated by separate MW components and
are then combined together in the main 4 × 1 combiner. The combined drive gets amplified, and an optional
calibration low-frequency tone is added using a direction coupler (the purpose of this tone is explained in
appendix D.9). After that, the drive is sent through another directional coupler, where a small part of it is split
off into the spectrum analyzer (SA) for monitoring and calibration of the φM drive, while the main output is
sent into the φM. The procedure for calibrating the φM drive strength is described in appendix D.7.

Below is the list of the microwave drives:

(a) First control drive (“control 1”), which corresponds to the lower frequency control beam. It is created
using a single microwave generator (MWG 2), and its typical frequency is 1790 MHz. The tone is sent
through a low-pass filter to reduce the noise added into the φM at the frequencies corresponding to the
mechanical sideband (around 2110 MHz). This ensures that no classical laser noise is added in the φM.

(b) Probe drive (“probe”), which is used in the OMIT/A measurements, and to obtain optical cavity sweeps.
It is provided by the vector network analyzer (VNA) output, and typically lies between 1900 MHz and
2300 MHz. The VNA output is attenuated by about 20 dB (not shown) to reduce the classical microwave
noise.

(c) Second control tone (“control 2”), corresponding to the upper frequency control beam. It is generated by
combining the microwave local oscillator (MWLO), which is provided by a microwave generator (MWG 1),
with the output of the Zurich Instruments UHF Lock-In amplifier (ZILI) in the up-mixer circuit (described
in appendix D.3). Similarly to the first control tone, this tone is also filtered to reduce its noise. However,
since its frequency is higher the the mechanical sidebands, a high-pass filter is used. The typical frequency
of this tone is 2430 MHz.

(d) Lock tone (“lock”), which is used to determine the detuning of the OLO from the experimental cavity
resonance. Its frequency is usually 2100 MHz, which is close to the OLO-cavity detuning (so that the
optical locking beam lies near the cavity resonance). Like the “control 2” drive, it is generated by
combining the MWLO with a ZILI output in a second up-mixer circuit. Similar to the probe drive, this
tone is also attenuated to reduce the noise.
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(e) Phase calibration tone (“φcal”) used in the sideband correlation measurements. It adds a low frequency
(∼ 320 MHz) drive into the phase modulator, which is used to generate second-order sidebands on the
control beams for phase calibration; a more detailed description of the calibration procedure is given in
appendix D.9. This is the only microwave tone added not in the main combiner, due to its frequency
being very different from the rest of the tones.

5.2.3 Detection

The light reflected from the cavity passes through the optical circulator and into the erbium-doped fiber amplifier
(EDFA). The EDFA boosts the laser power by about a factor of 10 to 20, depending on its input power.
Without it, the noise in the system is heavily dominated by the microwave amplifier noise on the output of
the photodiode (PD), which significantly reduces the measurement SNR. The output of the EDFA contains the
amplified optical signal together with the amplified spontaneous emission (ASE), which acts as a very broadband
noise background with a bandwidth of about 20 nm. For low (. 10 µW) optical power at the EDFA input most
of its output power is contained in the ASE, which adds a lot of extra noise to the photocurrent. To reduce
the ASE, the laser passes through a tunable filter (TF) with a bandwidth of about 0.6 nm (80 GHz), which
is narrow enough to get rid of most of the ASE, but wide enough to not significantly affect the measurement
signal.a) The procedure for calibrating the noise figure for the EDFA+TF system is described in appendix D.5.

The amplified and filtered optical signal subsequently lands on the photodiode and gets converted into a
photocurrent, which goes through a high-pass filter (to get rid of the DC component) and a chain of MW
amplifiers. It then gets split in a 1× 3 splitter into three branches:

(a) One part goes to the input of the VNA, thus completing the driven optical measurement loop. As
mentioned in the previous section, the generation and detection processes happen coherently, meaning
that the VNA input is phase-coherent with its output. This allows one to obtain both amplitude and
phase information from the VNA sweeps. For the calibration procedure of the measurement loop gain,
see appendix D.6.

(b) Another part gets mixed down with the same MWLO as used in the up-mixing procedure, and the IF
signal is sent into the ZILI. This signal is used both for coherent detection of the locking beam beatnote
(described in subsection 5.2.4), and for obtaining the PSD of the optical signal around the cavity resonance
frequency. When measuring the undriven motion of the mechanical oscillator, this part of the optical
spectrum contains the mechanical sidebands. Hence, the data obtained with ZILI is used to measure the
PSD of the underiven mechanical motion (section 8.4).

Care needs to be taken to ensure that the measured signals are phase-coherent. The locking beatnote
signal is automatically coherent with the corresponding ZILI output, since the up-mixing and down-mixing
is performed with the same MWLO, and the MW⇒optical⇒MW process is already coherent. However,
the sideband correlation measurements require that the two control beams are also coherent. This is
achieved by synchronizing the MWG 1, MWG 2 and ZILI internal clocks to the same 10 MHZ clock signal
generated by a commercial Rb clock.

(c) Finally, part of the signal is directed towards the SA, where it is used to gain a broad-range coarse record
of the reflection spectrum, mainly for debugging purposes.

5.2.4 Laser locking

Generally, the locking can be separated into 3 stages: obtaining the error signal, generating the feedback signal,
and applying the feedback to correct for the error.

a)One should distinguish the photocurrent noise coming from the ASE beating with the OLO, and the noise coming from beating
of the ASE with itself (which is the noise which exists even if there is no OLO). The first kind of noise comes from the ASE right at
the signal frequency, and it directly corresponds to the SNR of the optical signal; thus, it cannot be reduced with simple filtering,
which affects the signal and the noise to the same extent. The second kind of noise, however, comes from the full ASE bandwidth,
and can be made smaller if the ASE bandwidth is reduced while its PSD is kept the same.
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(a) The error signal is obtained from the locking beam beatnote. First, both quadratures of the beatnote
are detected in the ZILI, converted into voltage signals, and sent into the FPGA. In the FPGA the 2D
beatnote signal is rotated, shifted and transformed into radial coordinates; the phase coordinate is then
interpreted as the error signal. For more detail on obtaining the error signal, see appendix D.2.1.

(b) The feedback signal is generated from the error signal using a proportional-integral (PI) controller with
low frequency gain limit (LFGL), which is implemented digitally in the FPGA. More specifically, the
feedback signal is a sum of the error signal plus the same signal passed through a single pole low-pass
filter. The bandwidth of the filter and the gains of both signals are adjusted to optimize the lock quality.

(c) Finally, to complete the loop, the feedback signal has to be converted into the laser frequency detuning.
To adjust the laser frequency, we use an optical IQ modulator (IQM) working in the single sideband
suppressed carrier (SSB-SC) regime. This means that the output of the modulator contains only one tone,
which is a sideband whose frequency is either sum or difference (depending on the modulator settings)
of the input optical frequency and microwave frequency. Hence, the modulator can be thought of as an
optical frequency shifter, where the laser frequency is shifted by the microwave signal frequency. A more
detailed description of the IQM is given in appendix D.2.2.

In the measurement setup the I and Q signals are created from a single microwave drive using a 90◦ hybrid.
The microwave drive is generated by a voltage controlled oscillator (VCO), whose frequency tuning port
is driven by the feedback signal. As a result, the optical frequency is controlled by the feedback voltage
generated by the FPGA, providing the way to complete the feedback loop.

Compared to other feedback approaches (e.g., in which the error signal is sent to the laser piezo, cavity
piezo, or acousto-optical modulators) this method has several advantages. First, unlike cavity or laser
piezos, it does not impose any additional requirements on the hardware (in our setup neither the laser
nor the cavity have piezo tuning). Second, it has a very large bandwidth (short reaction time), which
in practice is only limited by the VCO reaction time and can be on MHz scale. Lastly, compared to
acousto-optical modulators (AOMs) it has a fairly large range: it is limited by the combination of the
VCO tuning range, the 90◦ hybrid and the IQM bandwidth, but can still span about 1 GHz (compared
to ∼ 10 MHz for regular AOMs). The disadvantages of this approach are the relative complexity of the
setup, large insertion loss (the total insertion loss of the shifter, including the SSB-SC efficiency, is about
10 dB), the need for fine tuning of the IQM bias voltages to achieve complete suppression of the carrier
and the other sideband (see appendix D.2.3), and dependence of the laser power on the magnitude of the
shift, which requires an additional feedback loop to stabilize (also described in appendix D.2.3).

5.2.5 Auxiliary measurements

There are several auxiliary measurements performed during the main experiment:

(a) The “monitor” tap (Mtap), which is a 90:10 optical combiner after the VOA. Its 90% output is directed
into the device, and the 10% (tap) output is used for analysis. Depending on the configuration of the
optical switch (OSW), the tap output can either land directly on the photodetector (PD), or pass through
a tunable Fabry-Perot cavity (TFPC) first. The first mode is used to monitor the power incident on the
device during the experiment. In the second mode the TFPC length is modulated by a triangle wave,
and its transmission is recorded as a function of time (i.e., effectively as a function of TFPC resonant
frequency). This mode lets us analyze the light spectrum with the resolution of roughly the TFPC
linewidth, which is ∼ 200 MHz. We use this kind of measurement when calibrating the phase modulator
efficiency (appendix D.7) or adjusting the IQM control voltages (appendix D.2.3); examples of TFPC
sweeps for the latter measurement are shown in Figure D.4.

(b) The “reflection” tap (Rtap), which, like the Mtap, is a 90:10 combiner located right before the EDFA.
The tap output of this combiner is used to monitor the power reflected off the experimental cavity; since
the dependence of the EDFA output power on its input power is highly non-linear, this provides a much
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easier and more reliable way to measure the reflection. In addition, this tap is used during the calibration
of the EDFA noise figure (appendix D.5).

(c) The “calibration” tap (Ctap) between the circulator and the experimental device. This tap is used in
absolute calibration of the monitor and reflection taps as well as losses in the optical components. The
calibration procedure is described in the appendix section D.8.

(d) The SA used to monitor the coarse (∼ 1 MHz resolution) spectrum of MW signals in the setup. The MW
switch (MWSW) on its input allows it to measure either the spectrum of the φM drive, or the spectrum
of the photocurrent. The φM spectrum is used to calibrate and later monitor the relative powers of all
the tones generated by the φM (see appendix D.7.1). The photodiode spectrum is used for general setup
debugging to make sure that there are no unaccounted optical tones.
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Chapter 6

First generation device

In this Chapter I consider the experimental results obtained with our first generation optomechanical device. I
start by presenting the device parameters (subsection 6.1.1) and our initial optical measurements (subsections
6.1.2 and 6.1.3). Then I describe the way we characterized the mechanical modes (section 6.2.1) and the
information that it provides about the cavity (subsection 6.2.2) and about the coupling mechanism (subsections
6.2.3 to 6.2.5). After that I discuss in more detail the mechanical loss mechanism and the heating model which
determines its dependence on the optical power (section 6.3). Finally, I briefly evaluate the device performance
for quantum optomechanics applications (section 6.4).

Most of the results described here, as well as the device description given in section 5.1, are presented in
Ref. [115].

6.1 Initial optical characterization and filling

6.1.1 Device parameters

The schematic of the device is as described in section 5.1. The two fiber mirrors have radii of curvature (ROC)
r1 = 409 µm and r2 = 282 µm, and their respective designed transmissions are T1 = 103·10−6 and T2 = 10·10−6,
which means that the maximum expected finesse is F = 2π

T1+T2
≈ 55, 000. Both fibers’ OD is 125± 0.7 µm and

the alignment ferule ID is 133 ± 5 µm. The cavity length at room temperature is ∼ 130 µm, which contracts
to ∼ 70 µm when cooled down to the base temperature of 20 mK.

6.1.2 Empty cavity characterization

When the cavity is cold, we use the frequencies of its fundamental resonances to precisely determine its effective
length. To find these resonance frequencies, we use the optical frequency shifter (IQM) to repeatedly sweep the
laser frequency over a small range (∼ 0.5 GHz), while also increasing the frequency of the tunable laser (TL)
in ∼ 0.2 GHz steps. At the same time, we monitor the reflected power to determine when the laser frequency
gets close to the cavity resonance. When the laser frequency is swept around the cavity resonance frequency, we
expect to see a Lorentzian dip in reflection with the shape (relative to the background) given by (see equation
(C.46)):

Prefl[∆] ∝ |Kcav[∆]|2 =

∣∣∣∣1− 2ηκ
1− 2i∆/κ

∣∣∣∣2 = 1− 4ηκ(1− ηκ)

1− 4(∆/κ)2
, (6.1)

where κ is the cavity linewidth and ηκ = κext/κ is its relative input coupling. The magnitude of the cavity
response (i.e., the value of ηκ) helps us verify that we are observing a fundamental TEM00 cavity mode[152],
and not a higher-order transverse mode (for which the response is significantly reduced).

After finding several resonance frequencies ωn, we use the differences between the consecutive frequencies

∆ωn = ωn+1 − ωn to determine the cavity’s effective free spectral range (FSR) F
(opt)
eff = 〈∆ωn〉/(2π) (where
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a) b)

Figure 6.1: a) Frequency difference between consecutive resonances ∆ωn for different resonance indices measured
for empty cavity (red) and for the same cavity filled with superfluid helium (blue). The longitudinal index
n corresponds to the number of nodes of the standing optical wave inside the cavity, and is formally defined
in equation (B.32).
b) Optical cavity response for an empty cavity (red) and for a filled cavity (blue). Solid lines show fits to
the expected Lorentzian profile.

averaging is taken over several resonances), and from that extract the effective cavity length L
(opt)
eff = c/(2F

(opt)
eff )

(see appendix B.2.3). Red markers in Figure 6.1a show the measured frequency difference. From this data, the

cavity FSR is F
(opt)
eff = 2.169 ± 0.001 THz (the error is the statistical uncertainty), which corresponds to an

effective length of L
(opt)
eff = 69.12± 0.04 µm.

The optical linewidth is measured by locking the laser to the cavity resonance and performing a cavity
response sweep using the VNA, as described in appendix subsection C.3.2. The responses are then fit to
the expected Lorentzian lineshape, and the linewidth is extracted as a fit parameter. The red plot in Figure
6.1b shows one such response sweep along with the fit. The extracted optical linewidth is 46.1 ± 0.1 MHz,
corresponding to a finesse F ≈ 47, 000. Overall, the linewidth shows a significant variation between different
resonances, ranging from 46 MHz to 53 MHz. We attribute this variation to a combination of linewidth-
dependent DBR reflectivity and geometrical imperfections, e.g., slight cavity misalignment or deviations in
mirror surface profile. Such imperfections can cause the fundamental TEM00 mode to hybridize with higher-
order transverse modes [152] (which usually have higher loss), and through that can affect its linewidth.

6.1.3 Filled cavity characterization

The cavity is filled with helium by slowly adding measured doses of helium gas using the experimental gas
handling system (expGHS), as described in section 5.1 (for a detailed modeling of the filling process, see Ref.
[116]). Once enough helium is added, the cavity get rapidly filled (since the cavity length is smaller than the
typical helium level change for one dose, it goes from empty to filled almost immediately), and we observe
a jump in the cavity resonance frequencies. The jump happens because the refractive index of the medium

inside the cavity changes from 1 (vacuum) to n
(r)
He = 1.0282[94] (helium). We characterize this change by

repeating the measurement of the effective cavity length, and the results are shown with blue dots in Figure
6.1a. Note that red and the blue dots cover the same frequency range, but due to different effective FSRs they
correspond to different longitudinal numbers, hence the shift along the horizontal axis. The new extracted FSR

is F
(opt)
eff = 2.109± 0.002 µm, yielding the length of L

(opt)
eff = 71.07± 0.06 THz. This constitutes an increase in

L
(opt)
eff by a factor of 1.0282± 0.0011, which is consistent with the helium index of refraction.

At the same time, the optical linewidth does not demonstrate a consistent change. As an example, Figure
6.1b shows the response of the filled cavity (blue dots) plotted on top of the empty cavity response (red dots).
The linewidth of this mode of the filled cavity is 46.3 ± 0.1 MHz, which is well within its natural variability
between different resonances. If we make a conservative estimate that the linewidth change introduced by
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helium is less that κ = 2π · 3 MHz (half of the linewidth spread for the empty cavity), we obtain a lower bound
on the optical attenuation length inside helium of c/κ ≈ 15 m. This is consistent with the calculated helium
Rayleigh scattering length of 200 m for optical wavelength λopt = 78 nm at T = 0.1 K[153] (the same expression
yields ∼ 107 m scattering length for λopt = 1550 nm and T = 1K).

6.2 Driven response measurements

6.2.1 Experimental procedure

To characterize the mechanical mode, we perform driven mechanical response measurements. Specifically, we
employ the optomechanically induced transparency and amplification (OMIT/A) technique, described in section
2.7. To recap: the technique requires injecting two beams in the cavity: a strong control beam and a weak
probe beam. The beating between the two beams creates an oscillating force driving the mechanical mode,
which modifies the reflection of the probe beam. The mechanical response can be obtained by observing this
change in the reflection.

a) b)

Figure 6.2: a) Optical tone configuration for the OMIA measurement. The horizontal axis is scaled in units of
optical cavity linewidths. Tones detunings are not to scale (except for the locking beam).
b) Amplitude (top) and phase (bottom) of a single NA sweep ap,out[ω] as described in the text. The
horizontal axis is shifted to have zero at the mechanical resonance frequency, and the data is normalized
to have ap,out = 1 far from the mechanical resonance. Solid lines show the fit to the complex Lorentzian
function (6.2).

The optical beams configuration for the OMIA measurement (which has a positive control beam detuning)
is show in Figure 6.2a. As described in section 5.2 and Figure 5.2, both control and probe beams are created
in the phase modulator (φM) using two microwave tones, with the carrier serving as the OLO. The MW drive
corresponding to the control beam is created by a microwave generator MWG 2; the probe beam drive is
generated by the NA, which is also used to read its response by measuring the beating between the probe beam
and the OLO, as described in subsection 5.2.2 and appendix C.3.2. In addition, there is always a locking beam
present to lock the OLO detuning from the cavity (see subsection 5.2.4 for the description). The measurement
goes as follows:

(a) Lock the laser and the experimental cavity; in most measurements the cavity resonance is detuned by
νc = 2π · 2100 MHz from the OLO.

(b) Configure the MWG 2 to output a constant microwave tone at a frequency νcon and some fixed power.
The power Pcon in the corresponding optical control beam can be extracted knowing the total laser power,
the microwave tone power, and the φM calibration (section D.7).
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(c) Perform an NA sweep in a narrow band (usually, ±100 kHz) around νp = νcon ± ωm, where ωm is the
mechanical resonance frequency. Typically, the sign is chosen to have the probe beam closer to the cavity
resonance, which implies having νp close to the OLO-resonance detuning νc.

An example of one such sweep is shown in Figure 6.2b. It is fit to a complex Lorentzian on a complex
background:

ap,out[ω] = abg

(
1 + arel

(γm/2)

γm/2− i(ω − ωm)

)
, (6.2)

from which we extract the mechanical frequency ωm, linewidth γm and the relative mechanical resonance
amplitude arel.

6.2.2 Acoustic cavity length and optical penetration depth

First, we perform the OMIA measurements for different optical resonances (different optical longitudinal in-
dices). As discussed in subsection 4.7.3, the optomechanical coupling is dependent on the mode-matching

condition n
(ac)
λ/2 = 2n

(opt)
λ/2 , where nλ/2 is the number of half-wavelengths of a given mode (either acoustic or

optical) inside the cavity, i.e., the longitudinal mode index n mentioned above. Therefore, we expect different
optical modes to couple to different acoustic modes. This is indeed what we observe: for each optical mode
we can detect only a single mechanical mode, and these detectable mechanical modes vary for different optical
modes. Figure 6.3 demonstrates the optical mode frequencies and the corresponding coupled mechanical mode
frequencies for several different optical resonances.

Figure 6.3: Mechanical (blue) and optical (green) resonance frequencies as a function of optical longitudinal
mode index. Note that the plots have different vertical axes scale. The vertical axes are rescaled for the
data to have the same slope, and shifted for clarity.

From this data we extract the acoustic FSR F
(ac)
eff = (1/2)〈∆ωn〉/(2π) (where ∆ωn is the difference in

mechanical frequencies corresponding to neighboring optical modes), from which we obtain the effective acoustic

cavity length L
(ac)
eff = cHe/F

(ac)
eff . Note the extra factor of 2 in the expression for F

(ac)
eff : since the acoustic mode

number n
(ac)
λ/2 is twice the optical mode number n

(opt)
λ/2 , the mode index difference between the consecutive

acoustic modes is 2 (i.e., their frequencies are different by 2F
(ac)
eff ). The obtained acoustic FSR is F

(ac)
eff =

1.685±0.001 MHz, and the corresponding cavity length is L
(ac)
eff = 70.68±0.02 µm. Knowing this effective cavity

length and the ROCs of the mirrors we can use equation (B.32) to predict the acoustic resonant frequencies in
addition to the FSR. In doing that, we assume the geometric cavity length (which determines the Gouy phase
shift from equation (B.30)) to be equal to the effective acoustic cavity length, and we set the mirror reflection
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phases to be zero, which corresponds to the zero-velocity boundary condition (equation (4.12)). The predicted
acoustic frequencies match the observed ones remarkably well, with a discrepancy of about 1% of the acoustic
FSR (about 20 kHz).

At the same time, the optical modes yield a different effective cavity length: their FSR is F
(opt)
eff = 2.090±

0.002 THz which corresponds to L
(opt)
eff = 71.72 ± 0.08 µma). The difference between the two extracted cavity

lengths ∆Leff = L
(opt)
eff −L(ac)

eff = 1.04± 0.08 µm can be attributed to the finite penetration depth of the optical
mode, as described in subsection B.2.3. Since the optical mode is confined by a DBR structure, it has a non-
trivial reflection phase resulting in a non-zero penetration depth; on the other hand, the acoustic mode is almost
entirely confined by the helium/fiber interface, and its effective cavity length should be very nearly equal to
the geometric cavity length. To estimate the optical penetration depth, we can use the expression (B.93) from
section B.4. The DBR mirror coating of our fiber mirrors is composed of layers of Ta2O5 and SiO2 (with a

Ta2O5 outer layer), whose refractive indices are n
(r)
Ta2O5

= 2.05 and n
(r)
SiO2

= 1.47. Assuming the designed DBR
wavelength λ0 = 1.55 µm, we get the penetration depth of

δL =
λ0

4

n
(r)
He

n
(r)
Ta2O5

n
(r)
SiO2(

n
(r)
Ta2O5

− n(r)
SiO2

) = 0.49 µm. (6.3)

This is in a good agreement with the experimental result of δL = ∆Leff/2 = 0.52± 0.04 µm.
There is another way to obtain the optical penetration depth by comparing the optical resonance data for

the filled and the empty cavity. Recall the resonance condition for the nth mode of an empty cavity (equation
(B.32)):

ωn = 2πF

(
n+

∆ψG

π
− φ(ωn)

π

)
, (6.4)

where ∆ψG is Gouy phase shift for the Gaussian mode, φ(ω) is the frequency-dependent reflection phase of
the mirror and F = c/(2L) is the “geometric” cavity FSR, in the sense that it involves the geometric cavity
length L. The filled cavity condition looks almost the same, with the only differences being a rescaled FSR

F ′ = F/n
(r)
He and a potentially different reflection phase φ′(ωn):

ω′n = 2π
F

n
(r)
He

(
n+

∆ψG

π
− φ′(ωn)

π

)
. (6.5)

We can combine these two expressions to get

1

2F

(
n

(r)
Heω

′
n − ωn

)
= φ(ωn)− φ′(ω′n) =

(
φ(ωn)− φ(ω′n)

)
−
(
φ′(ω′n)− φ(ω′n)

)
≈ ∂φ

∂ω
(ωn − ω′n)−

(
φ′(ω′n)− φ(ω′n)

)
=

2δL

c
(ωn − ω′n)−

(
φ′(ω′n)− φ(ω′n)

)
, (6.6)

where in the last line we used the definition of the penetration depth (B.34). The first term can be estimated

using ωn ≈ n(r)
Heω

′
n, from which

2δL

c
(ωn − ω′n) ≈ 2δL

ω′n
c

(n
(r)
He − 1) ≈ 4π

δL

λ0
(n

(r)
He − 1) ∼ π(n

(r)
He − 1), (6.7)

where we used δL ∼ λ0/4. At the same time, we could expect the second term to be much smaller. If we assume
a perfect DBR, so that φ′(ω0) = φ(ω0) = π (where ω0 = 2πλ0/c is the designed DBR optical frequency), we

a)The data is different from the results in section 6.1, since it was taken during a different cooldown, resulting in a slightly different
cavity parameters.
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can estimate this terms as

φ′(ω′n)− φ(ω′n) ≈ ∂φ′

∂ω
(ω′n − ω0)− ∂φ

∂ω
(ω′n − ω0)

≈ 2
δL

c
n

(r)
He(ω

′
n − ω0)− 2

δL

c
(ω′n − ω0)

≈ 2δL
(ω′n − ω0)

c
(n

(r)
He − 1)� 2δL

ω′n
c

(n
(r)
He − 1), (6.8)

where in going from the first to the second line we used equation (B.93) for the penetration depth dependence
on the media outside the DBR. Thus, the second term is much smaller than the first one, and we can neglect
it. This allows us to turn (6.6) into

δL ≈ c

4F

(
n

(r)
Heω

′
n − ωn

)
(ω′n − ωn)

=
L

2

(
n

(r)
Heω

′
n − ωn

)
(ω′n − ωn)

. (6.9)

For the geometric cavity length L we can either use our previous estimate of δL ≈ 0.5 µm to calculate L =

L
(opt)
eff − 2δL, or simply set L ≈ L

(opt)
eff . Since δL � L

(opt)
eff , the latter introduces an error of only 1.5%, well

below the statistical uncertainty. Either way, equation (6.9) yields δL = 0.64 ± 0.01 µm for our data (the
statistical uncertainty is most likely underestimated, since it is calculated over only 2 data points). This is still
in a decent agreement with the other two estimates; the difference is most likely due to neglecting the second
term in equation (6.6).

6.2.3 Analysis of OMIT/A data

Now we can perform a more in-depth analysis of the OMIT/A signal by systematically varying the power and
the detuning of the control beam and measuring the relative amplitude arel of the OMIT/A response. The
measurements described here and in the following sections are performed at a slightly different cavity length

of 84.1 µm and for a particular optical mode n
(opt)
λ/2 = 112. This corresponds to the mechanical frequency

ωm = 2π · 317.44 kHz and the optical wavelength (in vacuum) λopt = 1538.30 nm. The optical linewidth of this
mode is measured to be κ = 2π · 69 MHz, and its external coupling is κext = 2π · 15 MHz.b)

The results of the analysis are shown in Figure 6.4 along with theoretical fits. The dashed lines show the
fit to the model described in section 2.7. Specifically, we use equation (2.147) and set arel = arel,−, because
in all measurements Ωp ≈ −ωm (control beam detuning is positive, so the probe beam has lower frequency to
be closer to the cavity resonance). While this model reproduces the magnitude behavior (top plot) very well,
it systematically overestimates the relative phase of the response. To explain this deviation, we introduce an
additional mechanism of the optomechanical coupling, which we generically call a “photothermal coupling”.

6.2.4 Photothermal coupling

In this section we consider the photothermal coupling effects only in the classical limit; a full quantum treatment
is presented in section 7.3. For consistency with the rest of the derivation, I will keep the operator notation
for the cavity field and the mechanical motion. However, one should keep in mind that the derivation in this
section should only be applied to the classical case.

The photothermal coupling arises usually arises due to some additional optical forces in the system, which
are associated with an optical loss. For example, one possible origin of this force in our system is the light
being absorbed in the mirror, which causes it to heat, thermally expand and, consequently, exert a force on the
acoustic mode. There are two main distinguishing factors between the photothermal force and the standard
radiation pressure. First: since this force is associated with loss, it is not described by a Hamiltonian; in other

b)As in subsection 6.2.2, the parameters do not precisely agree with the ones presented in the previous section, because the device
was thermally cycled, causing slight mechanical changes. This is especially apparent in the optical linewidth, which is larger than
the range given in subsection 6.1.2, most likely due to the cavity misalignment.
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Figure 6.4: Amplitude (top) and phase (bottom) of the relative mechanical response amplitude arel extracted
from the fits like the one shown on the right. The horizontal axis shows the detuning of the control
beam from the cavity resonance ∆con = νcon−νc. As this detuning is positive, the probe beam frequency is
always lower than the mechanical frequency: Ωp = νp−νcon = −ωm. Solid lines show a fit to the theoretical

model with only two fit parameters g(0) and g
(0)
pt . Dashed lines show the fit under the assumption of no

photothermal coupling, i.e., g
(0)
pt = 0; they almost coincide with the solid lines on the top plot. Different

colors correspond to different control beam powers.

words, it does not have an associated position-dependent resonance frequency shift, so its effects only appear
in the mechanical equation of motion. Second: this force often has some low-pass filtering or delay due to the
slow thermal response. This is in contrast with the radiation pressure force, which is always proportional to
the instantaneous intracavity power.

To account for the delayed nature of the photothermal force, we describe its behavior with a relaxation
differential equation

τpt
˙̂
Fpt = −F̂pt +Gptn̂, (6.10)

where F̂pt is the photothermal force, τpt is the thermal reaction time, n̂ = â†â is the intracavity photon number
(â is the annihilation operator for the intracavity field) and Gpt is the DC proportionality coefficient between
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the photon number and the photothermal force. In the Fourier domain this equation can be easily solved:

F̂pt[ω] =
Gpt

1− iωτpt
n̂[ω]. (6.11)

Since we are only interested in the force in a small frequency band around +ωm,eff (where it can efficiently drive
the mechanical motion), we can substitute ω ≈ ωm,eff in the denominator of the expression above and transform
back into time domain, obtaining

F̂pt(t) =
Gpt

1− iωm,effτpt
n̂(t) ≡ g(0)

pt n̂(t), (6.12)

with g
(0)
pt denoting the effective photothermal single-photon coupling, which in general can be complex (signifying

the delayed response). The acoustic frequency in our system is fairly large (∼ 300 MHz), so we expect the
thermal reaction τpt time to be much longer than the acoustic period. Hence, we can assume ωm,effτpt � 1 and

simplify g
(0)
pt ≈ iGpt/(ωm,effτpt). Since Gpt is real, we find that g

(0)
pt should be purely imaginary.

Now we can add the photothermal force into the mechanical equation of motion (2.50), which turns into

˙̂
b = −

(γm

2
+ iωm

)
b̂− ig(0)â†â− iF̂pt +

√
γmη̂

= −
(γm

2
+ iωm

)
b̂− i(g(0) + g

(0)
pt )â†â+

√
γmη̂. (6.13)

The optical equation of motion stays the same as before (c.f. (2.49)):

˙̂a = −κ
2
â− ig(0)â

(
b̂+ b̂†

)
+
√
κextaine

+iωc0t. (6.14)

We dropped the input vacuum noise terms ξ̂int, ξ̂ext to underline that the present treatment is not applicable

in the quantum domain. Note that g
(0)
pt enters the equation for b̂, but not for â.

Given this alteration, the OMIT/A derivation follows very closely the one presented in chapter 2. The
important differences are in the definition of the optomechanical self-energy (equation (2.87))

Σ[ω] = −i |ā|2 g(0)
(
g(0) + g

(0)
pt

)
(χc[ω + ∆]− χc[ω −∆]) (6.15)

(the expressions for γm,eff and ωm,eff in terms of Σ stay the same) and in the OMIT/A relative amplitudes
(equations (2.146) and (2.147)):

arel,+ = −
2 |ā|2 g(0)

(
g(0) + g

(0)
pt

)
γm,eff

χc[∆ + ωm,eff ] (6.16)

arel,− =
2 |ā|2 g(0)

(
g(0) +

(
g

(0)
pt

)∗)
γm,eff

χc[∆− ωm,eff ]. (6.17)

The only difference is the replacement of g(0) in one of the terms by the full optical single-photon coupling

g(0) + g
(0)
pt .

6.2.5 Optomechanical coupling results

The data presented in Figure 6.4 was fit to equation (6.17), and the solid lines show the resulting fit. This
fit describes well both the amplitude and the phase of the response. The only two free parameters in the fit

were the two coupling rates g(0) and g
(0)
pt ,c) and their resulting values are g(0) = 2π · (3.18 ± 0.2) kHz and

g
(0)
pt = i · 2π · (0.97± 0.05) kHz.

c)It is only possible to fit them independently, because g(0) is real and g
(0)
pt is imaginary. If both were real (or g

(0)
pt was a generic

complex number), the fit would be under-constrained
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Figure 6.5: Calculated values of g(0) as a function of reflection phase φ (where a perfect mirror corresponds
to φ = 0) for different values of the mode number mismatch ∆nλ/2. The vertical dashed line shows the
value φ = −0.24π estimated from the resonant optical wavelengths. The shaded gray area shows the range
−0.3π < φ < 0.3π estimated from the mismatched mechanical modes.

The radiation pressure coupling can be calculated theoretically using the approach outlined in section 4.7.
The mechanical and the optical mode profiles are obtained from the known cavity parameters (mirror ROCs and
cavity length) and corresponding wavelengths as described in section B.2. The main source of uncertainty in
these calculations is the boundary condition of the optical mode, specifically, its reflection phase φ(ω). While it
can be calculated theoretically from the mirror stack parameters, it does not appear to match the experimentally
obtained optical resonance frequencies, even though the DBR theory correctly reproduces the distance between
the consecutive resonances (i.e., difference in the reflection phase between nearby modes). We attribute this to
the fact that the reflection phase is much more sensitive to the exact DBR parameters, and small imperfections
in the manufacturing process (e.g., varying layer thickness or refractive index) can strongly affect it.

We can estimate this phase by matching the obtained optical resonance wavelengths to the generic resonance
formula (B.32), which yields φ = −0.24π. Using this value, we obtain g(0) = 2π · 3.32 kHz, which agrees
reasonably well with the experimentally obtained value of g(0) = 2π · (3.18 ± 0.2) kHz. We can also put a
conservative constraint on the reflection phase by using the coupling to the nominally mismatched acoustic
modes, which is the concept discussed in subsection 4.7.3. Figure 6.5 shows the coupling to the main mode, as
well as to the four neighboring mismatched modes, as a function of φ. We assume that we would be able to
observe these mismatched modes if their coupling strength is > 45% of the matched mode (i.e., their OMIT/A
feature size is > 20% that of the matched mode). Since we can not, in fact, detect them, we conclude that
the phase angle φ lies in the range −0.3π < φ < 0.3π, meaning that the coupling to the main mode should lie
between g(0) = 2π · 3.15 kHz and g(0) = 2π · 3.6 kHz.

6.3 Mechanical quality factor and heating

6.3.1 Mechanical quality factor measurements

As described in section 4.5, there are two main mechanisms for the acoustic loss: the intrinsic 3-phonon loss
and the acoustic radiation loss. The 3-phonon loss is discussed in subsection 4.5.1, where it is shown that it
leads to an intrinsic quality factor of Qm,int = χ/T 4, with χ ≈ 118 K4. The radiation loss (subsection 4.5.2)
is temperature-independent, and it can be described by a constant mechanical finesse. A simple helium-glass

interface corresponds to an acoustic finesse Fac ≈ 300, which limits the quality factor to Qm,rad = n
(ac)
λ/2Fac =

5.6·104. A more precise transfer matrix calculation (subsection B.5.4) based on the knowledge of the DBR stacks
yields a slightly higher expected quality factor Qm,rad = (7.7 ± 0.5) · 104 (the error comes from uncertainties
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in acoustic properties of the DBR materials); for details of this calculation, see Ref. [141]. Combining the two
loss mechanisms, we obtain the relation for the total quality factor:

1

Qm
=

1

Qm,int
+

1

Qm,rad
=
T 4

χ
+

1

Qm,rad
. (6.18)

Figure 6.6: a) Mechanical quality factor Qm as a function of mixing chamber temperature TMC for various
total incident laser powers Pinc. The black line shows the total expected quality factor (6.18) udner the
assumption T = TMC; the dashed blue line denotes the radiative loss Qm,rad, while the dashed red line
denotes the intrinsic loss Qm,int. The solid lines are fits to the heating model (6.50).
b) Mechanical quality factor Qm as a function of the circulating photon number n̄c for various total incident
laser power Pinc. The blue dashed line is the same as in (a). The solid lines are fits to the heating model
(6.50).

To systematically investigate the acoustic loss, we performed OMIT/A measurements while varying the
mixing chamber (MC) temperature TMC, the average intracavity photon number n̄c, and the total incident laser
power Pinc. The results are summarized in Figure 6.6. The first plot (Figure 6.6a) shows the measurements
done when Pinc and the control beam detuning ∆con were held constant (so that n̄c was constant as well),
while TMC was varied. While the general behavior qualitatively agrees with the theoretical predictions (black
line), the quality factor is consistently lower than expected. Furthermore, it seems to be generally lower for
larger laser power Pinc. All of this suggests that there is some additional heating inside the device, and that
the equilibrium helium temperature T is higher than TMC.

The second plot (Figure 6.6b) sheds some more light on the potential loss mechanism. Different datasets
shown in this plot are obtained for constant incident powers Pinc and for slightly varying (but low TMC <
100 mK) mixing chamber temperatures; changes in n̄c were achieved by altering the detuning of the control
beam ∆con. Since this beam’s contribution to the total circulating photon number scales as |χc[∆con]|2 ∼
1/((κ/2)2 + ∆2

con) (where κ is the optical linewidth), this allows us to change n̄c by a factor of ∼ (2ωm/κ) ≈ 80.
The quality factor shown in the plot demonstrates a clear decreasing trend for growing circulating photon
number, which suggests that the heating power scales with n̄c. In addition, it also goes down for higher
incident powers given the same n̄c, so the heating power must also have some contribution due to Pinc which is
independent of n̄c.

Combining the two heating sources, we can construct the expression for the total heat load:

Φ = µPinc + ν~ωLκintn̄c. (6.19)
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Here ωL is the laser frequency and κint is the internal loss rate of the optical mode, so that ~ωLκintn̄c is the
power lost inside the cavity (i.e., the power contained in the light leaving the cavity but not returning back
into the propagating fiber mode). The two coefficients µ and ν, denote, respectively, the fraction of the power
incident on the cavity and the fraction of the power dissipated inside the cavity which contribute to heating.

6.3.2 Heating model

Figure 6.7: a) Schematic of the device (not to scale). The heat load is located inside the cavity (at temperature
Tcav), which is connected to the helium outside (at temperature TMC) via long narrow sheaths filled with
helium.
b) Simplified geometry of the setup, along with the relevant dimensions.
c) The heating model. The cavity is modeled as a point heat capacity, which is connected to a reservoir
through a one-dimensional heat-conducting channel.

To quantitatively describe the heating effects, we have developed a simple model of heat transport in the
device. The steady-state solution of this model yields the dependence of the device temperature Tcav on the
heat load Φ and the temperature of the mixing chamber TMC. The dynamical solution provides an expression
for the thermal relaxation time of the helium inside the cavity, whose subsequent experimental measurements
allow us to place additional constraints on the system parameters.

Heat transport equation

First, let us define the geometry of the device. Its general layout is shown in Figure 6.7a, and the simplified
version in Figure 6.7b. The cavity is a cylindrical volume of helium confined between the two fiber faces inside
the ferrule. It is thermally linked to a larger volume of helium outside the ferrule via two identical sheaths.
We assume that the helium outside the ferrule has large heat capacity and a good thermal link to the mixing
chamber, so its temperature does not depend on the power dissipated inside the cavity and is the same as the
mixing chamber temperature TMC.

Figure 6.7c shows the final simplified model. Since both sheaths are nearly identical, we replaced them with
a single sheath with doubled cross-sectional area; due to its extreme aspect ratio, we can treat this sheath as
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a one-dimensional channel with a heat capacity per unit length Cl and a thermal resistance per unit length
Rl. Next, because the sheaths are long, narrow, and have low thermal conductivity, we can assume that the
temperature inside the cavity is approximately homogeneous, so we can treat it as a point object with a heat
capacity C0. Thus, the whole system is represented as a point heat capacity located at x = l and experiencing
heat load Φ, which is connected to a reservoir at x = 0 through a 1D channel. The reservoir is maintained at a
constant temperature TMC.

If we denote the temperature-dependent specific heat (per unit volume) of helium by cV (T ) and its thermal
conductivity in the channel by κ(T ), we get for the parameters above

C0(T ) = VcavcV (T ) (6.20)

Cl(T ) = AshcV (T ) (6.21)

Rl(T ) = (Ashκ(T ))−1, (6.22)

where Vcav is the volume of the cylindrical cavity and Ash is the combined cross-sectional area of the sheaths.
The two equations governing the heat transport in the channel are[154]

j = − 1

Rl(T )

∂T

∂x
(6.23)

Cl(T )
∂T

∂t
= − ∂j

∂x
. (6.24)

The first equation relates the heat current j(x) and the temperature gradient ∂T
∂x (positive values of j denote

heat flowing in the positive x direction, i.e., from the reservoir into the cavity), and the second one describes the
heating of the helium inside the channel. The boundary condition at the reservoir is simply T (x = 0) = TMC,
while for the cavity it is expressed through a heat flow balance

Φ =

(
C0
∂T

∂t
− j
)∣∣∣∣

x=l

. (6.25)

This last relation shows that the power Φ dissipated in the cavity is partially spent on increasing its temperature
and partially transmitted into the channel. Because the thermal conductivity κ and heat capacity cV are
temperature-dependent, the equations above are in principle non-linear. Nevertheless, since both parameters
have the same dependence c(T ) = δV T

3, κ(T ) = εV T
3, we can transform the equations into linear ones with an

appropriate substitution. For that, we express the material parameters as

C0(T ) = VcavcV (T ) = δ0T
3 (6.26)

Cl(T ) = AshcV (T ) = δlT
3 (6.27)

Rl(T ) = (Ashκ(T ))−1 = (εlT
3)−1, (6.28)

where δ0 = VcavδV , δl = AshδV and εl = AshεV . Substituting these expressions into equations (6.23), (6.24) and
boundary condition (6.25), we obtain

j(x) = −εlT 3∂T

∂x
= −εl

4

∂(T 4)

∂x
(6.29)

− ∂j
∂x

= δlT
3∂T

∂t
=
δl
4

∂(T 4)

∂t
(6.30)

Φ =

(
δ0T

3∂T

∂t
− j
)∣∣∣∣

x=l

=

(
δ0

4

∂(T 4)

∂t
− j
)∣∣∣∣

x=l

. (6.31)
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Denoting u = T 4, u0 = T 4
MC, and using the first equation to express j leads to

∂u

∂t
=
εl
δl

∂2u

∂x2
(6.32)

u|x=0 = u0 (6.33)(
∂u

∂t
+
εl
δ0

∂u

∂x

)∣∣∣∣
x=l

=
4Φ

δ0
. (6.34)

Thus, the heat transport equation is expressed as a one-dimensional diffusion equation with the diffusion
coefficient D = εl/δl.

Steady state solution

First, we consider a steady state solution for a constant heat load Φ. The diffusion equation turns into ∂2u
∂x2 = 0,

which has the general solution u = a+ bx. The boundary condition at x = 0 immediately yields a = u0 = T 4
MC.

From the second boundary condition we find b = ∂u
∂x = 4Φ

εl
, which results in

u(x) = u0 +
4Φ

εl
x, (6.35)

From this, the temperature of the cavity can be determined as

T 4
cav = u(l) = T 4

MC +
4Φ

εl
l. (6.36)

This relation provides the necessary connection between the mixing chamber temperature TMC, the heat load Φ
and the device temperature Tcav. Together with equation (6.19), it can be used to model the heating behavior
demonstrated in Figure 6.6 (see subsection 6.3.3).

Transient dynamics

Next, we investigate the dynamics of this system. We consider the system to be in the steady state derived
above, and then abruptly turn off the power source at t = 0. With then expect the cavity temperature to decay
to TMC exponentially with some characteristic time τ0, which we want to determine.

To find the time evolution of the temperature we use the eigenfunction expansion of the solution:

u(x, t) = u0 +
∑
n

Tn(t)vn(x), (6.37)

where vn(x) is an eigenfunction of the Laplace operator with the appropriate boundary conditions

∂2vn
∂x2

= −λnvn (6.38)

vn(0) = 0 (6.39)(
εl
δl

∂2vn
∂x2

+
εl
δ0

∂vn
∂x

)∣∣∣∣
x=l

= 0. (6.40)

If we denote λn = k2
n (choosing the opposite sign λn = −k2

n results in the inability to satisfy both boundary
conditions simultaneously, as well as an exponentially diverging time evolution), we get from the first two
equations that vn(x) = sin(knx). The boundary condition at x = l restricts the values of kn

− εl
δl
k2
n sin(knl) +

εl
δ0
kn cos(knl) = 0, (6.41)
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which can be rewritten as

(knl) tan(knl) = rV (6.42)

with rV = lδl
δ0

= lAsh
Vcav

= Vsh
Vcav

is the ratio of the sheath and the cavity volumes. The solutions for this equation
exhaust all of the values kn.

Now we can substitute the expansion back into equation (6.32) to obtain the equations for the time-dependent
parts Tn:

∂u

∂t
=

εl
δl

∂2u

∂x2
(6.43)∑

n

vn
∂Tn
∂t

=
εl
δl

∑
n

Tn
∂2vn
∂x2

= − εl
δl

∑
n

k2
nTnvn. (6.44)

As the eigenfunctions are orthogonal,d) equation (6.44) has to be satisfied for each Tn independently

∂Tn
∂t

= −εlk
2
n

δl
Tn = −Tn

τn
, (6.45)

where τn = δl
εlk2

n
is the characteristic decay time. The solution for this equation is

Tn(t) = Tn(0)e−t/τn . (6.46)

We are mostly interested in the longest relaxation time τ0 corresponding to the smallest value of kn, which we
denote as k0

τ0 =
δl
εl

1

k2
0

. (6.47)

With several percent error, k0 can be approximated by

(k0l)
−2 ≈

(
2

π

)2

+ rV , (6.48)

so the relaxation time becomes

τ0 ≈
εl
δl
l2
(

4

π2
+ rV

)
=

δlT
3l

εlT 3/l

(
4

π2
+ rV

)
=
cl2

κ

(
4

π2
+ rV

)
=
Csh

Ksh

(
4

π2
+ rV

)
, (6.49)

where Csh = cAshl = δlT
3l is the total heat capacity of the sheath, and Ksh = κAsh/l = εlT

3/l is the total
thermal conductance of the sheath.

The expression above for the thermal relaxation time τ0 depends only the sheath’s heat capacity, thermal
conductance, and the geometric parameter rV . The heat capacity of the sheath can be known fairly well, since
it only depends on its volume and the specific heat of liquid helium, which for low temperatures is well known
[113]. Thermal conductivity, however, is much harder to evaluate a priori, since it depends upon the particular
geometry of the conducting channel (which determines the mean phonon travel path between collisions with the
boundaries) and the scattering properties of its wall. Therefore, measurements of τ0 can provide an estimate
for the thermal conductivity without the need for any assumptions about the specularity of reflections from the
sheath surface.
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Figure 6.8: Mechanical quality factor Qm as a function of the device temperature Tcav calculated from the
heating model (6.36) and (6.19). This plot shows the same data as in Figures 6.6a and b, but with a
rescaled horizontal axis; the dashed blue and red lines and the solid black line have the same meaning as
Figure 6.6a. Marker colors denote the circulating photon number.

6.3.3 Fitting the quality factor measurements

Combining (6.18), (6.36) and (6.19) we arrive at the final expression for the mechanical quality factor in terms
of observable system parameters:

1

Qm
=

1

Qm,rad
+
T 4

cav

χ
=

1

Qm,rad
+

1

χ

(
T 4

MC +
4Φ

εl
l

)
=

1

Qm,rad
+
T 4

MC

χ
+

4l

χεl
(µPinc + ν~ωLκintn̄c) . (6.50)

This expression was used to simultaneously fit all of the data shown in Figure 6.6. As independent parameters in
the fit we chose Qm,rad (the zero-temperature quality factor describing the radiation loss), ν/µ (the ratio of the
two dimensionless heating coefficients) and µl/εl (a combined parameter which characterizes the reaction of the
device temperature to a given incident power); their extracted values are Qm,rad = (70±2) ·103, ν/µ = 390±70
and µl/εl = (12± 2) K4/W. The radiation loss quality factor is in a fairly good agreement with the theoretical
prediction of Qm,rad = (77± 5) · 103 (subsection 6.3.1). The large value of the heating coefficients ratio ν/µ is
consistent with the idea that a substantial fraction of the power inside the cavity leads to heating, while only a
small portion of the incident power generates heat (i.e., most of the incident power is reflected). The ratio µl/εl
is harder to interpret, since we do not know the heat conductivity εl/l; however, the measurements described in
the next subsection allow us to place some constraints on it, and thus obtain independent estimates of µ and ν.

d)Because of the non-trivial boundary condition (6.40), the orthogonality condition is expressed as
∫ x=l

x=0
vn(x)vm(x)dx +

(l/rV )vn(l)vm(l) ∝ δn,m, rather than the more common
∫ x=l

x=0
vn(x)vm(x)dx ∝ δn,m. One can check explicitly that the eigen-

functions vn(x) = sin(knx) with the condition on kn given by equation (6.42) satisfy the first orthogonality relation, but not the
second one. Nevertheless, existence of any orthogonality condition is enough to justify equation (6.45).

One way to obtain the correct orthogonality condition is to model the cavity heat capacity as a δ-function in the channel heat
capacity per unit length: C′

l(T, x) = Cl(T ) + C0(T )δ(x − l). This turns the boundary condition at x = l into a simple no-flow

condition j|x=l = 0, but forces us to use a generic orthogonality relation
∫ x=l

x=0
vn(x)vm(x)C′

l(x)dx = 0. Together with the definition
of C′

l(T, x), this relation is equivalent to the one presented above.
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Figure 6.8 demonstrates the final output of the thermal model. There all of the quality factor data presented
in Figure 6.6 is replotted as a function of the device temperature Tcav extracted from the thermal model for the
parameters described above. Despite large differences in the circulating photon number and the incident power
shown in Figure 6.6, all of the data now follows the theoretical curve (6.18), provided that the internal helium
temperature T is interpreted as Tcav.

6.3.4 Thermal relaxation time

As we mentioned in the end of subsection 6.3.2, we can use the thermal relaxation time τ0 to determine the
thermal conductivity of the sheaths, which is otherwise hard to calculate.

We measure τ0 by changing the circulating optical power (which is proportional to the power dissipated
inside the cavity, and therefore to the heat load Φ) and monitoring the response of the temperature-dependent
linewidth of the acoustic mode. The experiment is performed using the OMIT/A technique described in
subsection 6.2.1, but with the probe beam frequency being fixed exactly one acoustic frequency away from
the control beam: Ωp = νp − νcon = −ωm. This way, the magnitude of the OMIA part of the probe beam
reflection (described by equation (6.17)) is inversely proportional to the linewidth of the acoustic mode, which
is a monotonic function of the device temperature. Hence, by observing the OMIA response as a function of
time we can access the temperature dynamics. In practice, rather than measuring a step response to a change in
the dissipated optical power, we perform a lock-in measurement in which we sinusoidally modulate the optical
drive and record the magnitude and phase of the response of the OMIA signal amplitude.

Figure 6.9: Amplitude and phase of the linewidth response as a function of the modulation frequency of the
circulating optical power. The blue line is the fit to a double exponential (6.51); for comparison, the green
line shows the fit to a simple exponential decay with a time delay, which corresponds to setting τf = 0 in
equation (6.51).

The results are shown in figure 6.9. The data was fit to a double exponential decay with two time scales τs

and τf and an additional time delay τd

δγm,int[ω] ∝ 1

1 + iωτs

1

1 + iωτf
eiωτd . (6.51)
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We attribute the longer of the two decay times τs ≈ 350 µs to the thermal response. The shorter time τf ≈ 40 µs
is only required to account for the data at frequencies above 2 kHz; it might arise from some other faster thermal
process in the system (e.g., heating of the dielectric stack, or thermal equilibration of the helium inside the
cavity), or from the mechanical response itself. Finally, the time delay τd ≈ 30 µs can be attributed to the
sound propagation delay, as it is comparable to the ballistic phonon travel time in the sheath l/cHe ≈ 12 µs.
In interpreting the slowest time τs as the thermal response time τ0 we assumed that the thermal response is
the slowest time scale in the system. Indeed, the observed time τs ≈ 350 µs is much larger than either optical
(κ−1 . 3 ns) or mechanical (γ−1

m . 20 µs) lifetime, and we are not aware of any other similarly slow process
occurring inside the device.

Finally, we use the measured value of τ0 to estimate the thermal conductance. First, we need to calculate
the heat capacity, for which we can use the known value for the specific heat cν/T

3 = 8.3× 10−2 J/(mol ·K4)
[113], which leads to the heat capacity per unit volume cV /T

3 = 3 × 103 J/(K4 ·m3). Next, we evaluate the
volumes. The cavity has a diameter of dcav = 133 ± 5 µm and a length of lcav = 70 µm, so its volume is
Vcav = π

4d
2
cavlcav = (1.0± 0.1)× 10−12 m3. The sheaths have the same outer diameter dcav (which is set by the

inner diameter of the ferrule), inner diameter dsh = 125 µm and length l = 3 mm; this means that the combined
volume of two sheaths Vsh = Ashl = 2π4 (d2

cav − d2
sh)l = (3.5 ÷ 16) × 10−12 m3. The large spread in the volume

estimates is due to the uncertainty in the sheath thickness hsh = (dcav − dsh)/2 = (1.5 ÷ 6.5) µm. From the
volume estimates we obtain rV = 0.06 ÷ 0.27 and Csh/T

3 = (1.0 ÷ 4.8) × 10−8 J/K4. Using the experimental
value for the time constant τ0 = 3.5× 10−4 s we get Ksh/T

3 = εl/l = (2.5÷ 7.8)× 10−5 W/K4.
Now we can use this value of εl/l to estimate the heating fractions µ and ν introduced in equation (6.19).

From the experimentally obtained µl/εl = (12± 2) K4/W we get that µ = (2.5÷ 10)× 10−4 and, consequently,
ν ≈ 400µ = (0.1÷0.4). This agrees with an intuitive expectation that a sizable fraction of the power lost inside
the cavity (in our case, between 10% and 40%) contributes to the heat load. The rest of the optical power is lost
to a combination of surface scattering losses (both due to the surface roughness and the mirror misalignment)
and coupling into the non-propagating fiber modes (i.e., imperfect matching between the cavity mode and the
traveling fiber mode).

Another way we can assess the validity of these thermal conductivity estimates is by using the theoretical
expression for the thermal conductivity of a cylindrical channel[155]:

κ(T ) =
1

3
c(T )cHedch

2− f
f

, (6.52)

which is applicable when the phonon mean free path is limited by scattering at the channel boundaries. Here
dch is the diameter of the channel, and f is the fraction of diffusive phonon scattering events at the channel
walls (the rest of the scattering events are assumed to be specular). This equation can be rewritten as

2− f
f

=
3

cHedch

κ(T )

c(T )
. (6.53)

We can apply this formula to the sheath by using equation (6.49) to express the ratio c/κ. With that, we find

2− f
f

=
3

cHedch

l2

τ0

(
4

π2
+ rV

)
. (6.54)

If we approximate dch by twice the sheath thickness (to account for the non-cylindrical channel shape) dch ≈
2hsh = (3÷ 13) µm, we will find that the diffusive scattering fraction f is between 3% for the minimal sheath
thickness of 1.5 µm and 20% for the maximal sheath thickness of 6.5 µm. These values appear reasonable for
the optically smooth glass surfaces of the ferrule and the fiber and a typical wavelength of thermal phonons
λth = 2π ~cHe

3kBT
& 10 nm for T < 0.4 K.

6.4 Performance and limitations

Now that we have described the device performance, we can ask how well it performs as a quantum optomechan-
ics device. To provide a quantitative answer, we analyze two figures of merit: the optomechanical cooperativity
C (equation (2.152)) and the thermal optomechanical cooperativity Cth (equation (3.1)).
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Figure 6.10: Cooperativity (left) and thermal cooperativity (right) of the first generation device as a function
of the circulating photon number. In both plots dashed lines assume that all of the incident laser power
is contained in the control beam, while solid lines assume that 10% of the total incident power is in the
control beam. The yellow markers in both plots show the experimental results in our system for the highest
achieved cooperativity. All of the plots assume TMC = 0.

Both of these quantities grow with increasing circulating power. However, in our case heating due to the
optical absorption leads to an increase of the helium temperature. As a consequence, the mechanical linewidth
also increases, which causes the cooperativities to go down. Since the extra mechanical damping is proportional
to the dissipated power, these two processes end up compensating each other, so the cooperativity saturates
at high circulating powers. However, the thermal cooperativity has an extra factor of 1/nth,m, so at high

temperatures it starts decreasing: Cth = C/nth,m ∝ 1/T ∝ n̄
−1/4
c . Therefore, it will have a maximum for some

circulating photon number.
Figure 6.10 summarizes these processes and shows the dependence of both cooperativities on the circulating

photon number. Since the heat load depends both on the circulating and on the incident power, we need to
make some assumptions about the latter. The dashed lines show an ideal situation where all of the incident
optical power is contained in the control beam. The solid lines depict a more realistic case where only 10% of
the incident power is in the control beam. This is the highest reasonable fraction in the φM approach that we
use, and is the highest fraction used in the experiments. The yellow markers show the best performance that
we observed in the experiment, which corresponds to the OMIT/A sweeps at the top of the red curve in Figure
6.4. The cooperativity (left plot in Figure 6.10) was directly extracted from the OMIT/A feature size (equation
(6.17)), and the thermal cooperativity was estimated assuming the mechanical bath temperature to be equal
to the device temperature extracted from the theoretical model. The measured cooperativity C ≈ 0.04 matches
fairly well with the expectations. However, both this observed value and the ideal saturation cooperativity
C ≈ 0.2 are still significantly below 1, and the maximal thermal cooperativity is even lower (for comparison,
cooperativities above 104 are routinely achieved[82, 156, 157], and the highest observed thermal cooperativity
is 250[157]). This means that this device is still not well-suited for the quantum optomechanics applications.
However, there are some straightforward ways to improve the performance, which is why we manufactured a
new version of the device. The description of the new device and of the new experiments that we were able to
perform with it is presented in Chapter 8.
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Chapter 7

Undriven motion measurement theory

In this Chapter I will expand the general treatment of the undriven mechanical motion measurement given in
section 2.6 to make it more applicable to the experiments performed with our superfluid helium device. We
address four main points:

• We introduce the double control beam measurement scheme designed to simultaneously measure both
motional sidebands in the resolved sideband regime, which allows for easier and more direct observation
of sideband asymmetry (section 7.1).

• In addition to calculating the outgoing radiation, we also consider the measurement process and derive
expressions for the photocurrent correlators (section 7.2).

• We introduce another measurable quantity: the sideband cross-correlator, and we discuss its interpretation
and its quantum signatures (mostly discussed in subsection 7.2.2).

• Finally, we take into account the photothermal coupling, and determine how its presence affects measure-
ment results and interpretations (section 7.3).

As only a handful of results derived here are actively used in the following chapters, I briefly summarize
them in section 7.4.

7.1 Double control beam scheme

First, we lay out the double beam measurement scheme and describe the corresponding system dynamics, which
ultimately lets us produce an expression for the outgoing radiation. The derivation is going to follow closely
the one presented in chapter 2, specifically sections 2.3 and 2.6.

7.1.1 Measurement schematic

One of the main goals of the experiments described in this work is to observe quantum optomechanics effects,
starting with the sideband asymmetry. By sideband asymmetry we mean the perceived difference of one
phonon between the Stokes and anti-Stokes sidebands, which is discussed in subsection 2.6.2. To measure this
asymmetry, we need to detect undriven motion in both mechanical sidebands.

A standard way of observing undriven mechanical motion in the resolved sideband regime is shown in Figure
7.1a. There, a single drive (usually called the “measurement” or “control” beam) is detuned from the cavity
resonance by about the mechanical frequency, so one of the motional sidebands (the one which is closer to the
resonance) experiences a resonant cavity enhancement. However, this scheme does not allow us to detect both
sidebands efficiently, because the off-resonant sideband (in Figure 7.1a this is the anti-Stokes, or “red” sideband)
experiences very strong cavity filtering by a factor of ∼ (4ωm,eff/κ)2 ≈ 3000. To detect this other sideband, we
add a second control beam at a detuning +ωm,eff as shown in Figure 7.1b. This way, each beam produces a
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a)

b)

Figure 7.1: a) Optical tone configuration for the measurement of the undriven motion. The horizontal axis is
scaled in units of optical cavity linewidths. Tones detunings and the mechanical motion linewidth are not
to scale (except for the locking beam).
b) Optical tone configuration for the simultaneous measurements of both mechanical sidebands. The
horizontal axis is scaled in units of optical cavity linewidths. Tones detunings and the mechanical motion
linewidth are not to scale (except for the locking beam).

single resonant sideband, which is different for different beams. As an added benefit, both mechanical sidebands
are produced and measured simultaneously, so they represent the same mechanical motion. This means that in
addition to measuring their individual PSDs we can also calculate their cross-correlator. As we show in section
7.2, this quantity allows us to extract the correlations between the mechanical motion and the optical vacuum
noise, which reveals thr action of RPSN on the mechanical oscillator (discussion of a related quantity, an optical
quadrature correlator, and its relation to the RPSN, is given in Ref. [158]).

The double beam technique has already been demonstrated in Ref. [12], and a similar scheme involving
switching detuning of a single control beam has been used in Ref. [80]. The latter scheme, however, is less
convenient for us, as it does not allow for measuring the sideband cross-correlator (since the sidebands are
measured one at a time). A different approach to simultanous measurement of both sidebands is to apply a
single control tone close to the cavity resonance to have approximately equal filtering of both sidebands. It has
been adopted in many experiments[81, 83, 82, 156, 159], one of which[159] also demonstrated measurement of
the sideband cross-correlator (via the optical quadrature correlator). However, a combination of high sideband
resolution (ωm/κ ≈ 15) and strong optical heating prevents us from using this method efficiently.

To describe the scheme more quantitatively, let us denote the frequencies of the “upper” and “lower” control
beam as respectively ωcon,u and ωcon,`. Thus, we expect the Stokes sideband coming from the upper beam to
lie around ωcon,u − ωm,eff and the anti-Stokes sideband of the lower beam to be at ωcon,` + ωm,eff . If we choose
the beams corresponding detunings such that ∆u = ωcon,u − ωc0 ≈ ωm,eff and ∆` = ωcon,` − ωc0 ≈ −ωm,eff ,
both of these sidebands will be close to resonance. To resolve them, and to avoid complications arising from a
mechanical squeezing Hamiltonian[160, 161, 162, 163], we slightly shift them away from each other by increasing
the frequency difference between the two control beams: |∆u|+|∆`| = ωcon,u−ωcon,` = 2ωm,eff +δ, so the distance
between the two sidebands becomes δ. To keep the sidebands well resolved, but still both resonant with the
cavity, we require γm,eff � δ � κ. It is possible to do this in our system thanks to the large difference between
the optical linewidth κ ≈ 2π ·20 MHz and the mechanical linewidth γm,eff ≈ 2π ·3 kHz. In the end, we typically
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set δ = 2π · 200 kHz.

7.1.2 Equations of motion and linearization

In order to describe the measurement process, we start with the standard optomechanical equations of motion
(2.49), (2.50):

˙̂a = −κ
2
â− ig(0)â

(
b̂+ b̂†

)
+
√
κintξ̂int +

√
κextξ̂ext +

√
κextaine

+iωc0t (7.1)

˙̂
b = −

(γm

2
+ iωm

)
b̂− ig(0)â†â+

√
γmη̂. (7.2)

Here â and b̂ are respectively the optical and the mechanical annihilation operators, g(0) is the optomechanical
coupling, κint and κext are the internal and the external optical loss rates with the corresponding vacuum noise
inputs ξ̂int and ξ̂ext, ain is the external classical drive, κ = κint +κext is the total optical loss, ωm and γm are the
mechanical frequency and damping, and η̂ is the mechanical thermal noise drive. The first equation is written
in the frame rotating at the bare cavity frequency ωc0, hence the e+iωc0t factor in front of ain.

Next, we specify the optical drive. It is comprised of two control tones denoted “lower” and “upper” in
Figure 7.1, with the corresponding detunings ∆` and ∆u; the later discussion will assume that ∆` ≈ −ωm

and ∆u ≈ +ωm. Denoting the tones’ amplitudes by ain,` and ain,u, we can express the drive as ain(t) =
ain,`e

−i∆`t + ain,ue
−i∆ut.

After that, we apply the usual expansion of â in powers of g(0), as in section 2.3. The zeroth order only
includes the coherent drive and not the vacuum noise, and results in the equations of motion

ȧ = −κ
2
a− ig(0)a(b+ b∗) +

√
κextain (7.3)

ḃ = −
(γm

2
+ iωm

)
b− ig(0)|a|2. (7.4)

The radiation pressure force in the second equation −ig(0)|a|2 has two components: one static and one at
frequency |∆u−∆`| ≈ 2ωm. Since both of these are far away from the mechanical resonance, and the radiation
pressure force is relatively small, we can ignore them in our case and simply assume b = 0. To put it more

quantitatively, these forces result in a dimensionless mechanical displacement on the order of z0 ≈ g(0)

ωm
n̄c, where

n̄c = |a|2 is the average intracavity photon number. We can ignore this displacement when considering the
optical mode if its contribution to the cavity detuning is less than a cavity linewidth: z0g

(0) � κ, which results
in n̄c � κωm

(g(0))2 . For our system this bound is about 4 · 108, which is much higher than the maximum circulating

photon number used in the experiment n̄c . 104. Thus, ignoring the static mechanical displacement is justified,
and the zeroth order solution for the optical mode becomes

ā = ā`e
−i∆`t + āue

−i∆ut (7.5)

ā` =

√
κextain,`

κ/2− i∆`
(7.6)

āu =

√
κextain,u

κ/2− i∆u
. (7.7)

Next, the linearized equations of motion are

˙̂
d = −κ

2
d̂− ig(0)(ĉ† + ĉ)ā(t) +

√
κintξ̂int +

√
κextξ̂ext (7.8)

˙̂c = −
(γm

2
+ iωm

)
ĉ− ig(0)(ā∗(t)d̂+ d̂†ā(t)) +

√
γmη̂, (7.9)

where d̂ and ĉ are the first order expansion terms for the optical and mechanical modes respectively.
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It is convenient to introduce a combined vacuum noise operator

ξ̂ = (
√
κextξ̂ext +

√
κintξ̂int)/

√
κ. (7.10)

Because κint + κext = κ, this operator has the same correlation properties (2.11)-(2.13) as ξ̂int,ext. Equation
(7.8) for the optical mode can be rewritten as

˙̂
d = −κ

2
d̂− ig(0)(ĉ† + ĉ)ā(t) +

√
κξ̂. (7.11)

After applying the Fourier transform (specifically, the “noise” Fourier transform defined in appendix A.2.2)
and using some of its properties described in appendix A.2.3, the equations of motion become(κ

2
− iω

)
d̂[ω] = −ig(0)

(
ā`

(
ĉ[ω −∆`] + ĉ†[ω −∆`]

)
+ āu

(
ĉ[ω −∆u] + ĉ†[ω −∆u]

))
+
√
κξ̂[ω] (7.12)(γm

2
− i(ω − ωm)

)
ĉ[ω] = −ig(0)

(
ā∗` d̂[ω + ∆`] + ā∗ud̂[ω + ∆u] + ā`d̂

†[ω −∆`] + āud̂
†[ω −∆u]

)
+
√
γmη̂[ω]. (7.13)

7.1.3 Solution, dynamical backaction and outgoing field

To solve equations (7.12), (7.13), we substitute the expression for d̂ (i.e., equation (7.12)) into the equation for
ĉ (i.e., equation (7.13)). This produces 16 terms containing mechanical motion (ĉ or ĉ†), which we can divide
into several categories. First, there are 8 terms involving ĉ†. If the mechanical sidebands are far from each other
(|∆u −∆` − 2ωm| � γm,eff), these terms are off-resonant for the mechanical mode, and can be ignored. Of the
remaining 8 terms, 4 include beating of the sideband of one control beam against the other beam, which would
result in expressions like ĉ[ω ± (∆u − ∆`)]; since ∆u − ∆` ≈ 2ωm � γm,eff , these terms are also very far off
resonance and can be neglected. The last 4 terms produce a combination of the standard dynamic backaction
effects of the beams (two terms per beam), and thus should be preserved. With the addition of the vacuum
noise term, we obtain the following equation for the mechanical mode:(γm

2
− i(ω − ωm)

)
ĉ[ω] = (g(0))2

(
|ā`|2(χc[ω −∆`]− χc[ω + ∆`])

+|āu|2(χc[ω −∆u]− χc[ω + ∆u])
)
ĉ[ω]

−ig(0)
(
ā∗` d̂ξ[ω + ∆`] + ā`d̂

†
ξ[ω −∆`]

+ā∗ud̂ξ[ω + ∆u] + āud̂
†
ξ[ω −∆u]

)
+
√
γmη̂[ω]. (7.14)

Here χc[ω] = (κ/2− iω)−1 is the cavity susceptibility, and d̂ξ̂[ω] = χc[ω]
√
κξ̂[ω] are the vacuum fluctuations of

the intracavity field.
As in section 2.5, we can rewrite the mechanical equation of motion as

ĉ[ω] = χm,eff [ω]
(
−iF̂RPSN[ω] + F̂th[ω]

)
, (7.15)

where the modified mechanical susceptibility is

χm,eff [ω] = (γm/2− i(ω − ωm) + iΣ[ω])−1 ≈ (γm,eff/2− i(ω − ωm,eff))−1, (7.16)

with the mechanical linewidth and the mechanical frequency modified by the dynamic backaction:

γm,eff = γm − 2ImΣ[ωm,eff ] = γm + δγm,eff (7.17)

ωm,eff = ωm + ReΣ[ωm,eff ] = ωm + δωm,eff . (7.18)
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The self-energy Σ[ω] for the mechanical system is defined as

Σ[ω] = i(g(0))2
(
|ā`|2(χc[ω −∆`]− χc[ω + ∆`]) + |āu|2(χc[ω −∆u]− χc[ω + ∆u])

)
, (7.19)

which is simply a sum of two contributions like (2.87), one for each beam. In the same vein, the radiation
pressure force is

F̂RPSN[ω] = g(0)
(
ā∗` d̂ξ[ω + ∆`] + ā`d̂

†
ξ[ω −∆`] + ā∗ud̂ξ[ω + ∆u] + āud̂

†
ξ[ω −∆u]

)
, (7.20)

which is, again, a sum of two radiation pressure forces like (2.86). Finally, the thermal force is exactly the same
as before (equation (2.85)):

F̂th[ω] ≡ √γmη̂[ω]. (7.21)

Note that the radiation pressure is still Hermitian: F̂ †RPSN[ω] = F̂RPSN[ω].
Now we are ready to find an expression for the intracavity field. Because we focus on the part of the

spectrum close to the optical resonance ω ≈ 0, we can neglect the other two sidebands: the red sideband of
the lower control beam, which corresponds to ĉ†[ω − ∆`] ≈ ĉ†[+ωm] ≈ 0, and the blue sideband of the upper
control beam, corresponding to ĉ[ω −∆u] ≈ ĉ[−ωm] ≈ 0 (in addition, as we mentioned before, these sidebands
are strongly filtered by the optical cavity response). The optical field thus becomes

d̂[ω] ≈ χc[ω]
(
−ig(0)

(
ā`ĉ[ω −∆`] + āuĉ

†[ω −∆u]
)

+
√
κξ̂
)

(7.22)

Finally, the outgoing field can be calculated using the input-output relations (2.8):

d̂out = ξ̂ext −
√
κextd̂

= ξ̂ext −
√
κextχc[ω]

(
−ig(0)

(
ā`ĉ[ω −∆`] + āuĉ

†[ω −∆u]
)

+
√
κξ̂
)

(7.23)

The mechanical annihilation operator spectrum has peaks at +ωm,eff , while the creation operator (being its
Hermitian conjugate) is peaked at −ωm,eff . Thus, if we denote the location of the red sideband (coming from
the ĉ† term) as ωr and the location of the blue sideband (which comes from the ĉ term) as ωb, we get

ωr = ∆u − ωm,eff (7.24)

ωb = ∆` + ωm,eff . (7.25)

Because of the earlier choice of ∆` ≈ −ωm and ∆u ≈ +ωm, both of these frequencies are close to zero.

7.2 Photocurrent PSDs and a cross-correlator

7.2.1 Relating photocurrent to the outgoing field

Next, we need to relate the photocurrent PSD and cross-correlators to this outgoing field. As shown in equation
(C.5) from appendix C.1, the photocurrent PSD can be found as

Sii[ω] = G2|aOLO|2
(
S
d̂†out,d̂out

[ω − ωOLO] + S
d̂†out,d̂out

[−ω − ωOLO] + 1
)
, (7.26)

with the outgoing field spectrum defined as

S
d̂†out,d̂out

[ω] =
〈
d̂†out[ω]d̂out[−ω]

〉
. (7.27)

In the following discussion we assume a negatively detuned OLO, that is, ωOLO < 0 in the cavity frame.
Now, let us consider what would be the photocurrent i(t) and its corresponding Fourier transform i[ω].

After mixing with the optical local oscillator, we expect the two mechanical sidebands of interest to be located
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around ωr,b − ωOLO (i.e., the distance between the OLO at ωOLO and the sidebands at ωr,b). Hence, we can
define the shifted “local” Fourier transforms

ir,b[δω] ≡ i[ωr,b − ωOLO + δω] (7.28)

(note that unlike i[ω] these do not correspond to any real function of time, so in general ir[ω] 6= (ir[−ω])∗). The
PSDs of the sidebands are then described by

S
(rr)
ii [δω] ≡ 〈ir[δω](ir[δω])∗〉 = Sii[−ωOLO + ωr + δω]

= G2|aOLO|2 ×
×(S

d̂†out,d̂out
[−2ωOLO + ωr + δω] + S

d̂†out,d̂out
[−ωr − δω] + 1) (7.29)

S
(bb)
ii [δω] ≡ 〈ib[δω](ib[δω])∗〉 = Sii[−ωOLO + ωb + δω]

= G2|aOLO|2 ×
×(S

d̂†out,d̂out
[−2ωOLO + ωb + δω] + S

d̂†out,d̂out
[−ωb − δω] + 1). (7.30)

Here S
(rr)
ii [δω] and S

(bb)
ii [δω] are the PSDs of the red and the blue sideband respectively, and δω is the frequency

shift in the PSD from the sideband maximum.
While the second terms in the parentheses S

d̂†out,d̂out
[−ωr,b − δω] correspond to the optical spectrum close

to the cavity resonance, the first terms probe the spectrum roughly 2ωOLO away from the cavity resonance,
and therefore are insensitive to the cavity dynamics (more rigorously, the cavity susceptibility in the expression
(7.23) is very small). Moreover, because of the normal ordering of the operators in S

d̂†out,d̂out
the vacuum noise

terms ξ̂ do not contribute. Thus, it is clear that S
d̂†out,d̂out

[2ωOLO] ≈ 0, and the PSDs simplify to

S
(rr)
ii [δω] ≈ G2|aOLO|2(S

d̂†out,d̂out
[−ωr − δω] + 1) (7.31)

S
(bb)
ii [δω] ≈ G2|aOLO|2(S

d̂†out,d̂out
[−ωb − δω] + 1). (7.32)

Next, we turn to the cross-correlator between the two sidebands. It is natural to define it as

S
(rb)
ii [δω] ≡ 〈ib[δω]ir[−δω]〉 = 〈i[−ωOLO + ωb + δω]i[−ωOLO + ωr − δω]〉. (7.33)

Note that ir is not complex conjugated, because it comes from ĉ† rather than ĉ. Similar to equation (C.4) from
appendix C.1, we can use the definition of the Fourier transform i[δω] to express the result above through the
time correlator Cii(t, τ):

S
(rb)
ii [δω] =

∫ +∞

−∞
Cii(t, τ)ei(−2ωOLO+ωr+ωb)tei(ωb/2−ωr/2+δω)τdτ

= G2(a∗OLO)2 ×

×
∫ +∞

−∞

〈
:
(
eiωb(t+τ/2)d̂out

(
t+

τ

2

))(
eiωr(t−τ/2)d̂out

(
t− τ

2

))
:
〉
eiδωτdτ. (7.34)

This expression can be greatly simplified if we recall from input-output theory[2] that the commutation relations
of the outgoing fields are the same as the incoming ones. This implies that d̂out (just like ξ̂ext) commute at
different times, so the time ordering inside the ensemble averaging is irrelevant. Therefore, we can apply the
Wiener-Khinchin theorem again and arrive at

S
(rb)
ii [δω] = G2(a∗OLO)2

〈
d̂out[ωb + δω]d̂out[ωr − δω]

〉
. (7.35)
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7.2.2 Correlator values and interpretation

Now we have everything we need to calculate the PSDs (7.31), (7.32) and the cross-correlator (7.35) for the
optical field (7.23) obtained earlier.

We start with the sideband PSDs S
(rr)
ii and S

(bb)
ii , which is proportional to S

d̂†out,d̂out
[ω]. As noted before,

due to the normal ordering the terms containing the vacuum noise ξ̂ do not contribute. Thus, we are left with

S
d̂†out,d̂out

[ω] =
〈
d̂†out[ω]d̂out[−ω]

〉
= κext|χc[−ω]|2(g(0))2

(
|ā`|2Sĉ†ĉ[ω + ∆`] + |āu|2Sĉĉ† [ω + ∆u]

)
. (7.36)

We have also omitted two other terms involving the mechanical motion: ā∗uā`〈ĉ[ω + ∆u]ĉ[−ω −∆`]〉 and
ā∗` āu

〈
ĉ†[ω + ∆`]ĉ[−ω −∆u]

〉
. While not strictly zero, these terms are nevertheless small because the mechanical

susceptibilities of the two terms in the product do not overlap. For example, in the first expression the two
mechanical terms are centered around ω = ωm−∆u = −ωr and ω = −ωm−∆` = −ωb; as we are working in the
assumption |ωr − ωb| � γm,eff (well resolved sidebands, as discussed in subsection 7.1.1), the product of these
two terms is always small.

Now we need to calculate the mechanical motion correlators:

Sĉ†,ĉ[ω] = |χm,eff [−ω]|2(SRPSN
F̂ ,F̂

[ω] + Sth
F̂ †,F̂

[ω]) (7.37)

Sĉ,ĉ† [ω] = |χm,eff [+ω]|2(SRPSN
F̂ ,F̂

[ω] + Sth
F̂ ,F̂ † [ω]). (7.38)

The PSD of the thermal force is given by equations (2.117), (2.118):

Sth
F̂ †,F̂

[ω] = γmnth (7.39)

Sth
F̂ ,F̂ † [ω] = γm(nth + 1), (7.40)

and the spectrum of the radiation pressure is similar to equation (2.119):

SRPSN
F̂ ,F̂

[ω] ≡
〈
F̂RPSN[ω]F̂RPSN[−ω]

〉
= (g(0))2κ

(
|ā`|2|χc[ω + ∆`]|2 + |āu|2|χc[ω + ∆u]|2

)
. (7.41)

Like in section 2.6, its antisymmetric part still satisfies the criterion

SRPSN
F̂ ,F̂

[ωm,eff ]− SRPSN
F̂ ,F̂

[−ωm,eff ] = (g(0))2κ
(
|ā`|2(|χc[ωm,eff + ∆`]|2 − |χc[−ωm,eff + ∆`]|2)

+|āu|2(|χc[ωm,eff + ∆u]|2 − |χc[−ωm,eff + ∆u]|2)
)

= −2ImΣ[ωm,eff ] ≡ δγm,eff . (7.42)

We can once again define the effective RPSN phonon bath occupation (2.127)

nRPSN =
SRPSN
F̂ ,F̂

[−ωm,eff ]

δγm,eff
, (7.43)

which results in exactly the same results for the mechanical motion PSD as before (equations (2.129) and
(2.130)):

Sĉ†,ĉ[ω] =
nmγm,eff

γ2
m,eff/4 + (ω + ωm,eff)2

(7.44)

Sĉ,ĉ† [ω] =
(nm + 1)γm,eff

γ2
m,eff/4 + (ω − ωm,eff)2

nm =
nRPSNδγm,eff + nth,mγm

γm,eff
. (7.45)
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With these spectra the PSD of the outgoing field is

S
d̂†out,d̂out

[ω] = κext|χc[−ω]|2(g(0))2 ×

×

(
|ā`|2

nmγm,eff

γ2
m,eff/4 + (ω + ωb)2

+ |āu|2
(nm + 1)γm,eff

γ2
m,eff/4 + (ω + ωr)2

)
. (7.46)

As expected, it is comprised of two Lorentzians centered at ω = −ωr and ω = −ωb. From (7.31), (7.32) the
photocurrent PSDs of the individual sidebands are

S
(rr)
ii [δω] ≈ G2|aOLO|2

(
κext|χc[ωr]|2(g(0))2|āu|2

(nm + 1)γm,eff

γ2
m,eff/4 + δω2

+ 1

)
(7.47)

S
(bb)
ii [δω] ≈ G2|aOLO|2

(
κext|χc[ωb]|2(g(0))2|ā`|2

nmγm,eff

γ2
m,eff/4 + δω2

+ 1

)
. (7.48)

Both are Lorentzians with shot noise background, and with area under the Lorentzian proportional to nm or
nm + 1 for the blue and the red sideband respectively.

Now we switch to the cross-correlator (7.35), which is proportional to
〈
d̂out[ωb + δω]d̂out[ωr − δω]

〉
. Because

the normal ordering is not enforced, there will be terms involving the vacuum noise:〈
d̂out[ωb + δω]d̂out[ωr − δω]

〉
≈ −κext(χc[ωr]χc[ωb])(g(0))2ā`āuSĉ,ĉ† [ωm,eff + δω]

+i
〈(
ξ̂ext[ωb + δω]−

√
κextκχc[ωb]ξ̂[ωb + δω]

)
×
(√

κextχc[ωr]g
(0)
(
āuĉ
†[−ωm,eff − δω]

))〉
. (7.49)

The first term is just the mechanical motion PSD, similar to the sidebands’ PSDs (as before, we assumed
δω ∼ γm,eff � |ωr − ωb| and neglected all off-resonant mechanical terms). The second term involves the
correlations of the optical vacuum fluctuations with the mechanical motion, which are non-zero because the
mechanical oscillator is driven by the radiation pressure shot noise arising from these vacuum fluctuations.
Thus, this term directly represents the action of the radiation pressure shot noise on the mechanical oscillator.

Using expression (7.10) for ξ̂ and (7.20) for F̂RPSN, we get〈
ξ̂[ωb + δω]F̂RPSN[−ωm,eff − δω]

〉
= g(0)ā`

〈
ξ̂[ωb + δω]d̂†ξ[−ωb − δω]

〉
= g(0)ā`χc[−ωb]

√
κ (7.50)〈

ξ̂ext[ωb + δω]F̂RPSN[−ωm,eff − δω]
〉

=
√
κext/κ

〈
ξ̂[ωb + δω]F̂RPSN[−ωm,eff − δω]

〉
= g(0)ā`χc[−ωb]

√
κext, (7.51)

so that 〈(
ξ̂ext[ωb + δω]−

√
κextκχc[ωb]ξ̂[ωb + δω]

)
ĉ†[−ωm,eff − δω]

〉
= i(χm,eff [ωm,eff + δω])∗

〈(
ξ̂ext[ωb + δω]−

√
κextκχc[ωb]ξ̂[ωb + δω]

)
F̂RPSN[−ωm,eff − δω]

〉
= i(χm,eff [ωm,eff + δω])∗

√
κext(1− κχc[ωb])g(0)ā`χc[−ωb]

= −i(χm,eff [ωm,eff + δω])∗
√
κextg

(0)ā`χc[ωb]. (7.52)

Note that this expression depends on the full complex mechanical susceptibility, unlike, for example, the me-
chanical PSD, where only |χm,eff |2 is present. This implies that it is sensitive to the phase response of the
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mechanical oscillator, meaning that this term really is a correlator between the force and the displacement
(simple force-force or displacement-displacement correlators would not depend on the force-displacement phase
shift).

The complete noise correlator becomes〈
d̂out[ωb + δω]d̂out[ωr − δω]

〉
≈ Gcc

(
Sĉ,ĉ† [ωm,eff + δω]− (χm,eff [ωm,eff + δω])∗

)
(7.53)

Gcc = −κext(χc[ωr]χc[ωb])(g(0))2ā`āu. (7.54)

where Gcc simply is a conversion factor between the displacement and the outgoing field.
Finally, the photocurrent cross-correlator is

S
(rb)
ii [δω] = G2(a∗OLO)2Gcc (ωm,eff + δω]− (χm,eff [ωm,eff + δω])∗)

= G2(a∗OLO)2Gcc

(
(nm + 1)γm,eff

γ2
m,eff/4 + δω2

−
γm,eff/2− iδω
γ2

m,eff/4 + δω2

)

= G2(a∗OLO)2Gcc
(nm + 1/2)γm,eff − iδω

γ2
m,eff/4 + δω2

. (7.55)

Figure 7.2: Illustration of the PSD of the Stokes sideband S
(rr)
ii [δω] (red), the PSD of the anti-Stokes sideband

S
(bb)
ii [δω] (blue), and the sideband cross-correlator S

(rb)
ii [δω] (green). The horizontal axis is normalized in

units of the mechanical linewidth, and all three quantities have been shifted horizontally to share the same
origin. The vertical axis is normalized in phonons, and the two PSDs have their shot noise background

subtracted (S
(rb)
ii [ω] has no background). Imaginary parts of the PSDs (S

(rr)
ii and (S

(bb)
ii ) are not plotted,

since they are identically zero.

This expression is different from (7.47) and (7.48) in several important ways. First, there is no shot noise
background present, as this noise is uncorrelated between the two sidebands (it is important to note that the
measurement SNR is still affected by the shot noise; it just averages to zero instead of to some finite value).
Second, the cross-correlator is complex, with an imaginary part that is antisymmetric in δω and has a magnitude
of 1/2 of a phonon. Finally, the real Lorentzian part of the cross-correlator is proportional not to nm (like in

S
(bb)
ii ) or nm + 1 (as in S

(rr)
ii ), but to nm + 1/2. As was shown above in the equation (7.53), this additional half

of a phonon in the real part together with the anti-Lorentzian imaginary part can be combined to produce a
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complex mechanical susceptibility. This susceptibility shows up because of the correlation between the random
radiation pressure force noise and the mechanical displacement driven by this force, and thus is an unambiguous
signature of the RPSN acting on the mechanical oscillator.

Figure 7.2 illustrates expressions (7.47), (7.48) and (7.55). The vertical axis has been normalized in units of
phonons, so that the Lorentzian height corresponds to the phonon number factor. The data shown in the figure

corresponds to the average phonon occupation nm = 2, which is the height of the anti-Stokes sideband S
(bb)
ii .

One can clearly see the difference in one phonon between the red and the blue sidebands, the difference in 1/2
of a phonon between the cross-correlator and either of the sidebands, and the magnitude of 1/2 of a phonon in
the imaginary part of the cross-correlator.

7.3 Photothermal coupling

Since the current device demonstrates some degree of photothermal coupling, we need to check how its presence
affects the results of the previous section.

7.3.1 Quantum treatment of the photothermal coupling

The quantum treatment of the photothermal coupling is a generalization of classical treatment from subsection
6.2.4, and is similar to Ref. [164]. In order to capture its non-unitary character, we model it as an additional
optical loss and an extra mechanical force whose magnitude is proportional to the optical power lost to that
channel. To describe this quantitatively, we first introduce an optical loss channel with a rate κpt and a

corresponding vacuum noise ξ̂pt. This modifies the original equation of motion for the optical mode (7.1) to

˙̂a = −κ
2
â− ig(0)(ĉ† + ĉ)â+

√
κintξ̂int +

√
κptξ̂pt +

√
κext(aine

+iωc0t + ξ̂ext). (7.56)

The total damping is now a combination of all three loss rates: κ = κint + κpt + κext. The vacuum noise

ξ̂pt is uncorrelated with any other noise and is described by the same correlation relations (2.11)-(2.13). The
amplitude of the field lost to that channel can be found from the input-output relations, just like (7.23) for the
external coupling:

âout,pt = ξ̂pt −
√
κptâ. (7.57)

The corresponding power is simply

Îout,pt = â†out,ptâout,pt. (7.58)

The photothermal force is proportional to this intensity. As discussed in subsection 6.2.4, it can experience
low-pass filtering, which we can model by writing a relaxation equation

τpt
˙̂
Fpt = −F̂pt +

Gpt

κpt
Îout,pt, (7.59)

where Gpt is the DC proportionality coefficient between the intracavity photon number n̄c and the photothermal
force (the extra factor of 1/κpt compared to subsection 6.2.4 comes from the fact that it multiplies the outgoing
photon flux, not the stored photon energy), and τpt is the time constant of the low-pass filter. The solution of
this equation (in the Fourier domain) is

F̂pt[ω] =
GptÎout,pt[ω]/κpt

1− iωτpt
. (7.60)

Like before, we assume that ω ≈ ωm,eff , since we are only interested in the forces in a small frequency band
around ωm,eff . After this substitution and going back into the time domain, we obtain

F̂pt(t) =
Gpt/κpt

1− iωm,effτpt
Îout,pt(t) =

g
(0)
pt

κpt
Îout,pt(t), (7.61)
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where we defined the single-photon photothermal optomechanical coupling g
(0)
pt = Gpt/(1 − iωm,effτpt). It

is analogous to g(0), but it is in general complex (owing to the low-pass filtering) and appears only in the
mechanical equation of motion, since its origin is non-unitary.

Next, we once again perform the first order expansion of the optical mode â = ā + d̂. This leads to the
photothermal force

F̂pt(t) =
g

(0)
pt

κpt
â†out,ptâout,pt

=
g

(0)
pt

κpt

(
ξ̂†pt −

√
κpt(ā

∗ + d̂†)
)(

ξ̂pt −
√
κpt(ā+ d̂)

)
≈ g

(0)
pt |ā|2 + g

(0)
pt (ā∗d̂+ d̂†ā)−

g
(0)
pt√
κpt

(ā∗ξ̂pt + ξ̂†ptā). (7.62)

In the following we ignore the static force term g
(0)
pt |ā|2 (this term is incorrect anyway, since we have used the

low-passed proportionality coefficient Apt,eff instead of the static Apt), just as for the radiation pressure.
After adding the photothermal force, the mechanical equation of motion becomes

˙̂c = −
(γm

2
+ iωm

)
ĉ− ig(0)â†â− iF̂pt +

√
γmη̂

= −
(γm

2
+ iωm

)
ĉ− i(g(0) + g

(0)
pt )(ā∗d̂+ d̂†ā)

+i
g

(0)
pt√
κpt

(ā∗ξ̂pt + ξ̂†ptā) +
√
γmη̂. (7.63)

Indeed, we see that the two optomechanical couplings g(0) and g
(0)
pt enter the mechanical equation on equal

footing, barring the vacuum noise term involving ξ̂pt. At the same time, only g(0) appears in the optical

equation (7.56), owing to the non-unitarity of g
(0)
pt .

7.3.2 Effects of the photothermal coupling

The rest follows fairly closely the derivation for case of pure radiation pressure. After transitioning into the
Fourier domain and solving for ĉ[ω], we find, similarly to (7.15)

ĉ[ω] = χm,eff [ω]
(
−iF̂OFSN[ω] +

√
γmη̂[ω]

)
. (7.64)

Compared to (7.15), there are two modifications here. First, the expression for the mechanical susceptibility
is still the same χm,eff [ω] = (γm/2 − i(ω − ωm) + iΣ[ω])−1, but the self-energy is slightly different (similar to
(6.15)):

Σ[ω] = ig(0)(g(0) + g
(0)
pt )×

×
(
|ā`|2(χc[ω −∆`]− χc[ω + ∆`]) + |āu|2(χc[ω −∆u]− χc[ω + ∆u])

)
(7.65)

(this expression is proportional to g(0)(g(0) +g
(0)
pt ), in contrast with

(
g(0)
)2

in the radiation pressure case (7.19)).

Second, the RPSN force F̂RPSN is replaced by a more general optical force shot noise (OFSN) force

F̂OFSN[ω] = g(0)
(
ā∗` d̂ξ[ω + ∆`] + ā`d̂

†
ξ[ω −∆`] + ā∗ud̂ξ[ω + ∆u] + āud̂

†
ξ[ω −∆u]

)
+g

(0)
pt

(
ā∗` d̂pt[ω + ∆`] + ā`d̂

†
pt[ω −∆`] + ā∗ud̂pt[ω + ∆u] + āud̂

†
pt[ω −∆u]

)
, (7.66)

78



where the RPSN is associated with the same vacuum noise as before d̂ξ[ω] = χc[ω]
√
κξ̂[ω], while for the

photothermal noise it is modified:

d̂pt[ω] = χc[ω]
√
κξ̂[ω]− ξ̂pt√

κpt
. (7.67)

Since g
(0)
pt is in general complex, the optical force is no longer Hermitian: F̂ †OFSN 6= F̂OFSN. Therefore, we need

to calculate two different force noise spectra:

SOFSN
F̂ ,F̂ † [ω] ≡

〈
F̂OFSN[ω]F̂ †OFSN[−ω]

〉
= |g(0) + g

(0)
pt |2κ

(
|ā`|2|χc[ω + ∆`]|2 + |āu|2|χc[ω + ∆u]|2

)
−2Re

[
(g(0) + g

(0)
pt )∗g

(0)
pt

(
|ā`|2χc[−ω −∆`]) + |āu|2χc[−ω −∆u]

)]
+
|g(0)

pt |2

κpt

(
|ā`|2 + |āu|2

)
= (g(0))2κ

(
|ā`|2|χc[ω + ∆`]|2 + |āu|2|χc[ω + ∆u]|2

)
+2Re

[
g(0)g

(0)
pt

(
|ā`|2χc[ω + ∆`] + |āu|2χc[ω + ∆u]

)]
+
|g(0)

pt |2

κpt

(
|ā`|2 + |āu|2

)
(7.68)

SOFSN
F̂ †,F̂

[ω] ≡
〈
F̂ †OFSN[ω]F̂OFSN[−ω]

〉
= (g(0))2κ

(
|ā`|2|χc[ω + ∆`]|2 + |āu|2|χc[ω + ∆u]|2

)
+2Re

[
g(0)g

(0)
pt

(
|ā`|2χc[−ω −∆`] + |āu|2χc[−ω −∆u]

)]
+
|g(0)

pt |2

κpt

(
|ā`|2 + |āu|2

)
(7.69)

(the PSDs differ only in the sign of the cavity susceptibility arguments in the second line; if g
(0)
pt is real, it is

possible to use the relation (χc[ω])∗ = χc[−ω] to show that both lines are the same). Nevertheless, the general
property (7.42) of the antisymmetric component of the noise spectrum still holds:

SOFSN
F̂ ,F̂ † [ω]− SOFSN

F̂ †,F̂
[−ω] = (g(0))2κ

(
|ā`|2(|χc[ω + ∆`]|2 − |χc[−ω + ∆`]|2)

+|āu|2(|χc[ω + ∆u]|2 − |χc[−ω + ∆u]|2)
)

+2Re
[
g(0)g

(0)
pt

(
|ā`|2(χc[ωm + ∆`]− χc[ωm −∆`])

+|āu|2(χc[ωm + ∆u]− χc[ωm −∆u])
)]

= 2Re
[
g(0)(g(0) + g

(0)
pt )

(
|ā`|2(χc[ωm + ∆`]− χc[ωm −∆`])

+|āu|2(χc[ωm + ∆u]− χc[ωm −∆u])
)]

= −2ImΣ[ωm] = δγm,eff . (7.70)

This result relies crucially on the presence of the ξ̂pt/
√
κpt term in the photothermal force noise, and on the

fact that this noise is partially correlated with the intracavity field. Ignoring it and simply replacing the g(0) by

g(0) + g
(0)
pt in the equation of motion for ĉ (which is sufficient for a classical treatment) would violate the above

property and ultimately result in [ĉ, ĉ†] 6= 1.
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Relation (7.70) allows us to follow the same route as for a purely radiation pressure coupled system. We
can still define the effective occupation of the bath associated with the optical force

nOFSN =
SOFSN
F̂ †,F̂

[−ωm,eff ]

δγm,eff
(7.71)

and obtain the equilibrium occupation of the mechanical mode in the same way as in the expression (7.45)
before:

nm =
nOFSNδγm,eff + nthγm

γm,eff
. (7.72)

With that, the expressions for the mechanical spectrum look the same as (7.44) and (7.45):

Sĉ†,ĉ[ω] =
nmγm,eff

γ2
m,eff/4 + (ω + ωm,eff)2

(7.73)

Sĉ,ĉ† [ω] =
(nm + 1)γm,eff

γ2
m,eff/4 + (ω − ωm,eff)2

. (7.74)

The difference is concealed in the definitions of the optomechanical self-energy Σ = δωm,eff − iδγm,eff/2 and the
equilibrium mechanical occupation nm.

Since equation (7.12) for the optical mode does not change (except for an additional loss channel), the
general expression (7.36) for the PSD of the outgoing light still holds. Following that, the results for the PSDs
of the red and blue sidebands are also the same as before (equations (7.47) and (7.48)).

To find S
(rb)
ii we can still apply expression (7.49). In order to do so, we once again need to calculate the

correlations between the vacuum noise and the mechanical motion, which follow from the generalized optical
force noise: 〈

ξ̂[ωb + δω]F̂ †OFSN[−ωm,eff − δω]
〉

= (g(0) + g
(0)
pt )∗ā`

〈
ξ̂[ωb + δω]d̂†ξ[−ωb − δω]

〉
−(g

(0)
pt )∗

ā`√
κpt

〈
ξ̂[ωb + δω]ξ̂pt[−ωb − δω]

〉
= (g(0) + g

(0)
pt )ā`χc[−ωb]

√
κ− (g

(0)
pt )∗

ā`√
κ

(7.75)〈
ξ̂ext[ωb + δω]F̂ †OFSN[−ωm,eff − δω]

〉
= (g(0) + g

(0)
pt )∗ā`χc[−ωb]

√
κext. (7.76)

These lead to 〈(
ξ̂ext[ωb + δω]−

√
κextκχc[ωb]ξ̂[ωb + δω]

)
F̂ †OFSN[−ωm,eff − δω]

〉
=
√
κext(1− κχc[ωb])(g(0) + g

(0)
pt )∗ā`χc[−ωb]−

√
κext[ωb](g

(0)
pt )∗ā`

= −
√
κextg

(0)ā`χc[ωb], (7.77)

which is not dependent on the photothermal coupling. This means that the rest of the derivation follows the
pure radiation pressure case, and we arrive at the same expression (7.55) as before.

7.4 Summary

To sum up, we have introduced the double control beam measurement scheme and described three main quan-
tities that it provides: the two individual sidebands’ PSDs, and their cross-correlator. We explored how these
quantities show up in the photocurrent record, which produced final expression (7.47) and (7.48) for the sideband
PSDs and equation (7.55) for the cross-correlator.
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We have also identified quantum optomechanics signatures in the measurement results: a one-phonon dif-
ference between the two sideband magnitudes (sideband asymmetry), and a half-phonon difference between the
cross-correlator and the sideband PSDs. We attribute the sideband asymmetry to the fundamental difference
between the rates of absorption (Stokes) and emission (anti-Stokes) processes in the mechanical oscillatora), and
the cross-correlator features to the correlations between the optical vacuum noise and the mechanical motion,
which arise from the action of RPSN on the mechanical mode.

Finally, we have included photothermal coupling into the model. We demonstrated that while it changes
the mechanical mode parameters (equation (7.65)) and the effective optical bath occupation (equations (7.68),
(7.69) and (7.71)), it does not affect expression (7.47), (7.48) and (7.55) for the measured quantities. Therefore,
we have shown that the photothermal coupling does not distort the quantum optomechanics signatures.

a)A different interpretation is mentioned in section 2.6
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Chapter 8

Second generation device

In this Chapter I will cover the results obtained in our second generation device. I start by listing its changes
and improvements compared to the first generation device (section 8.1). Then I show the results of the OMIT/A
characterization and the observation of the dynamical backaction effects (section 8.2). After that, I describe
our approach to measuring and calibrating the undriven mechanical motion (section 8.3), we use to determine
the mechanical bath temperature (section 8.4). Finally, I discuss the observed quantum optomechanical effects,
specifically, the sideband asymmetry and the RPSN signatures (section 8.5).

8.1 Design improvements and device parameters

Figure 8.1: Top: Schematic of the second generation device cell. The black arrow on top shows the direction of
gravity.
Bottom: Zoom-in of the cavity region denoted by the magenta rectangle in the top figure. Blue color
variations denote the standing acoustic wave, with darker regions corresponding to higher helium density;
red line shows the intensity profile of the standing optical wave inside the cavity.

In the previous chapter we demonstrated that the device performance was severely limited by heating caused
by the light absorbed by the cavity mirrors. We have also shown that this heating is mostly due to the very poor
thermal contact between the cavity volume and the rest of the helium. To improve the thermal conductivity,
we altered the design as shown in Figure 8.1. The main difference compared to the first generation device
(described in section 5.1, specifically Figure 5.1) is that instead of a single alignment ferrule we use two ferrules,
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and the cavity is formed in the space between them. This way the cavity is in immediate contact with a larger
helium bath, so we expect a much higher thermal conductivity and, as a result, much weaker heating effects.

In order to align the two ferrules, a single piece of fiber is threaded through both ferrules simultaneously,
and then they are epoxied to a single glass slide. After the epoxy cures, the alignment fiber is removed, and
the two ferrules effectively form a “super-ferrule”, whose alignment and robustness to thermal contraction is on
par with a single ferrule. The rest of the device assembly proceeds as described in section 5.1.

The are also several less significant but still important improvements. First, the fibers’ OD (and, conse-
quently, the ferrule ID) was changed from 125 µm to 200 µm. This made the fibers more mechanically robust,
which allows for a better alignment of the two ferrules (a thinner alignment fiber might not be stiff enough to
align the ferrules). Second, improvements in the fiber mirror manufacturing and optical coating quality let us
produce better optical cavities. As a result, the optical linewidth decreased from 46 MHz (the best observed
value for the first generation device) to 22.1 MHz. Finally, in an attempt to improve the acoustic quality factor,
we implemented acoustic DBR structures below the optical ones using the same dielectric coating technique
(they were, in fact, deposited in the same coating run). This resulted in a slight increase of the acoustic reflec-
tivity, boosting the quality factor by about 50%. For more details on the acoustic DBR performance, see Ref.
[141].

Figure 8.2: Comparison of the mechanical linewidths of the first generation device (red) and of the second
generation device (green). All data has been taken for low mixing chamber temperature TMC < 70 mK.

As demonstrated in Figure 8.2, the design changes result in a great improvement of the mechanical quality
factor. First, the temperature dependence of the mechanical loss is much weaker in the second generation
device: compared to the first generation, the mechanical linewidth barely changes with power. Second, the zero-
temperature limit is also better: the first generation device has the radiation quality factor of Qm,int ≈ 70, 000,
while in the second generation it is raised to Qm,rad ≈ 100, 000.

The rest of the new device parameters are fairly similar to the first generation. The mirrors’ ROC are
slightly bigger: r1 = 496 µm and r2 = 325 µm, compared to r1 = 409 µm and r2 = 282 µm for the old device.
The cavity length was measured in the same way as for the first generation device (section 6.1), and the results

are shown in Figure 8.3. The obtained effective lengths are L
(opt)
eff = 66.54± 0.07 µm for the optical mode and

L
(ac)
eff = 65.38 ± 0.10 µm for the acoustic modes, yielding a similar penetration depth of δL = 0.58 ± 0.06 µm.

The estimates of the penetration depth from the difference between the filled and the empty cavity length are
also fairly close: δL = 0.44± 0.02 µm.

As in the first generation device, all of the optomechanical measurements shown below were performed
during a separate cooldown, with the system parameters being slightly different from the data depicted in

Figure 8.3. The cavity length was L
(ac)
eff = 68.0 ± 0.10 µm and the optical mode number was n

(opt)
λ/2 = 91,

which corresponds to the optical wavelength (in vacuum) of λopt = 1529.6 nm and the mechanical frequency
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a) b)

Figure 8.3: a) Frequency difference between the consecutive resonances ∆ωn for different resonance indices
n measured for an empty cavity (red) and for the same cavity filled with superfluid helium (blue). The
longitudinal index n corresponds to the number of nodes of the standing optical wave inside the cavity,
and is formally defined in equation (B.32).
b) Mechanical (blue) and optical (green) resonance frequencies as a function of optical longitudinal mode
index. Note that the plots have different vertical axes scale. The vertical axes are rescaled for the data to
have the same slope, and shifted for clarity.

Parameter First generation Second generation

L, µm 84.1 68.0

n
(opt)
λ/2 112 91

λopt, nm 1538.3 1529.6

κ/(2π), MHz 69 22.1

κext/(2π), MHz 15 9.7

ωm/(2π), MHz 317.44 319.24

Qm,rad 60,000 100,000

g(0)/(2π), kHz 3.18 3.60

g
(0)
pt /(2π), kHz i · 0.97 i · 0.83

Table 8.1: Parameter comparison between the first and the second generation devices.

of ωm = 2π · 319.24 MHz. The optical cavity linewidth is still the same κ = 2π · 22.1 MHz, and the external
coupling is κext = 0.44κ = 2π · 9.7 MHz.

A list of most important parameters for the first and for the second generation devices is given in Table 8.1.

8.2 OMIT measurements and the dynamical backaction

Just as for the previous device, we start the characterization by performing OMIT/A measurements. This time,
however, we can reach large enough intracavity power to observe the dynamical backaction effects (section 2.5),
i.e., we can control the linewidth and frequency of the acoustic mode using the optomechanical interaction.
The results are summarized in Figure 8.4. All of the data were fit simultaneously to the expectations of the
optomechanical theory with the photothermal coupling, described in subsection 6.2.4. Specifically, we used
equations (6.16) and (6.17) for the data in the left part of Figure 8.4 (OMIT/A response), and equation (6.17)
(together with expressions (2.91), (2.92) for the optomechanical frequency and linewidth change) for the data in
the right part. The only two free parameters are, as before, the radiation pressure single-photon optomechanical

coupling g(0) and the photothermal single-photon coupling g
(0)
pt ; as before, we assume the photothermal coupling
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Figure 8.4: Left: relative amplitude (top) and phase (bottom) of the OMIT/A feature as a function of the
control beam detuning for several control beam powers. The data is conceptually the same as in Figure
6.4, but shows much larger amplitude of the OMIT/A response. Solid lines are fits to the OMIT theory
with photothermal coupling (subsection 6.2.4).
Right: change in the mechanical frequency (top) and damping (bottom) due to the dynamical backaction.
This data is obtained in the same experiments as the data shown in the left part, but with the two lowest
power datasets excluded due to poor SNR. The solid lines are the fits to the dynamical backaction theory
with photothermal coupling (subsection 6.2.4).

to be purely imaginary. The results are g(0) = 2π ·(3.60±0.1) kHz and g
(0)
pt = i ·2π ·(0.83±0.1) kHz. Essentially

the same results (within the statistical error) are obtained from an individual fit of the OMIT/A data (left half
of Figure 8.4) or an individual fit of the dynamical backaction data (right half of Figure 8.4). Theoretical
calculations like the ones in subsection 6.2.5 yield g(0) lying between 2π · 3.55 kHz and 2π · 4.1 kHz, with the
best estimate of the reflection angle φ = −0.2π resulting in g(0) = 2π ·3.88 kHz. While the agreement is slightly
worse than for the first generation device, the experimental results are still within 10% from the theoretical
expectations. The difference can be attributed to the uncertainties in the calibration of the optical power, of
the external cavity coupling, or of the cavity geometric parameters (most likely, mirror ROCs).

8.3 Undriven motion measurement

Another experiment made possible by the improved cavity design is the measurement of the undriven mechanical
motion, whose concept is described in sections 2.6 and 7.1. This motion arises due to the thermal noise coming
from the mechanical bath, and thus represents thermal fluctuations of superfluid helium density inside the
cavity. As the device temperature is very low, the magnitude of this motion is fairly small (the typical variation
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Figure 8.5: PSD of the voltage at the input of ZILI, which is proportional to the PSD of the photocurrent. The
horizontal axis is shifted to have zero at the mechanical resonance frequency. Solid line shows the fit to a
Lorentzian with a frequency-independent background (equation (8.1)).

in the relative helium density is about 5 · 10−9, resulting in a cavity detuning of only 30 kHz), which requires
long integration times to resolve in our system.

8.3.1 Measurement scheme

The optical tones that we use for the observation of the undriven motion are described in the previous chapter
and are shown in Figure 7.1a,b. They are similar to the scheme used for the OMIT/A measurements (section
6.2), but this time the probe beam (which was used to produce an intensity beatnote that drives the mechanical
mode) is absent, and instead of detecting the coherent response of the probe drive, the PSD of the photocurrent
is calculated. Since most of the undriven motion measurement was performed in the double-beam configuration
(Figure 7.1b), this is the measurement we will focus on. To describe a single-beam measurement scheme (Figure
7.1a), we only need to set one of the control beam powers to be zero.

Below is the outline of the PSD measurement procedure:

(a) Lock the laser and the experimental cavity; as before, the cavity resonance is detuned by νc ≈ 2π·2100 MHz
from the OLO.

(b) Set up the control beams by applying two microwave tones to the phase modulator. Usually, one of these
tones is created by a dedicated microwave generator MWG 2, and the other by mixing up one of the ZILI
outputs. We can denote the frequencies of these two microwave tones as νcon,` for the lower frequency
one (usually, the one output by MWG 2) and νcon,u for the upper frequency one (created with the ZILI).
Their corresponding detunings from the cavity resonance are ∆` = νcon,` − νc and ∆u = νcon,u − νc.

For the best sensitivity, the detunings of the control beams should be close to ±ωm,eff , so that one of their
mechanical sidebands is resonant with the optical cavity. This implies that the corresponding microwave
frequencies are νcon,` ≈ νc − ωm,eff ≈ 2π · 1780 MHz and νcon,u ≈ νc + ωm,eff ≈ 2π · 2420 MHz.

(c) Using the ZILI as a spectrum analyzer, measure the PSD of the photocurrent around νcon,` + ωm,eff and
νcon,u − ωm,eff , which are the frequencies (in the microwave domain) of the mechanical sidebands closest
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to the cavity resonance. We will denote the former photocurrent PSD (around νcon,` + ωm,eff) as S
(``)
ii [ω]

and the latter PSD as S
(uu)
ii [ω].

To obtain the photocurrent PSD, the ZILI demodulates the input signal at a given frequency (the center
frequency of the PSD region of interest) and records the resulting demodulated quadratures at a reduced
sampling rate (typically, about 200 kSa/s). This operation can be effectively thought of as recording the
time-dependent photocurrent i(t), but only corresponding to a narrow (half of the sampling frequency,
i.e., ∼ 100 kHz) frequency region of interest. After that, we apply the Fast Fourier Transform (FFT)
algorithm in the post-processing and get the photocurrent Fourier transform i[ω], which is then used to
produce the photocurrent PSD Sii[ω] =

〈
|i[ω]|2

〉
. In practice, the ensemble averaging 〈· · ·〉 is replaced by

either time-averaging or data binning (averaging together neighboring data points).

This method of PSD calculation yields the same results as other approaches, for example, narrow-band
filtering of the signal followed by a power detector (which is the method frequently used to calculate optical
spectrum, and which we effectively implement with the TFPC in appendix D.2 and D.7). However, the
fact that we obtain time record of the photocurrent i(t) becomes important for calculating the sideband
cross-correlator, as described in section 7.2 and appendix D.9.

As described in appendix C.1.2, the obtained photocurrent PSDs correspond to the optical PSD around
(ωOLO + νcon,`) + ωm,eff for the lower control beam sideband, and around (ωOLO + νcon,u)− ωm,eff for the upper
control beam (where ωOLO is the frequency of the OLO). In the cavity frame ωOLO is the OLO detuning,
which is fixed to be ωOLO = −νc due to the cavity locking. This means that the measured photocurrent PSDs
are centered around (νcon,` − νc) + ωm,eff = ∆` + ωm,eff = ωb and (νcon,u − νc) − ωm,eff = ∆u + ωm,eff = ωr

respectively for the lower and the upper control beams, where ωr,b are defined in equation (7.28) in section 7.2.
As shown in subsection 7.2.2 and equations (7.47) and (7.48), we expect these parts of the spectrum to contain
the mechanical motional sidebands. These sidebands are manifest as Lorentzian peaks with width equal to
the mechanical linewidth, and height proportional to the average mechanical phonon occupation nm (for the
anti-Stokes sideband) or nm +1 (for the Stokes sideband). Figure 8.5 shows an example of one of the mechanical
Lorentzians.

Both of the sidebands are fit to the general form of a Lorentzian with a frequency-independent background:

S
(``)
ii [ω] = A

(``)
bg

(
1 + L

(``)
rel

(γm,eff/2)2

(γm,eff/2)2 + (ω − (νcon,` + ωm,eff))2

)
(8.1)

S
(uu)
ii [ω] = A

(uu)
bg

(
1 + L

(uu)
rel

(γm,eff/2)2

(γm,eff/2)2 + (ω − (νcon,u − ωm,eff))2

)
, (8.2)

from which we obtain the mechanical frequency ωm,eff , mechanical linewidth γm,eff , and the Lorentzian heights

relative to the background L
(``)
rel and L

(uu)
rel . These relative heights are used to extract the mean phonon occu-

pation nm of the mechanical oscillator, as described in the next subsection.

8.3.2 Normalization scheme

For simplicity, we start by considering the lower control beam sideband PSD S
(``)
ii , which corresponds to the

anti-Stokes mechanical sideband described by equation (7.48). We can rewrite that expression as

S
(bb)
ii [δω] = G2|aOLO|2

(
κext|χc[ωb]|2(g(0))2|ā`|2

nmγm,eff

γ2
m,eff/4 + δω2

+ 1

)

= G2|aOLO|2
(

4
κext

κ

4(g(0))2|ā`|2

κγm,eff

1

1 + (2δω/γm,eff)2
nm

1

1 + (2ωb/κ)2
+ 1

)

= G2|aOLO|2
(

4ηκ
Γmeas,`

γm,eff

1

1 + (2ωb/κ)2
nm

1

1 + (2δω/γm,eff)2
+ 1

)
. (8.3)
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Here Γmeas,` = 4(g(0))2|ā`|2
κ is the measurement rate of the lower control beam, and ηκ = κext

κ is the contribution
to the measurement quantum efficiency due to the imperfect external coupling to the cavity.

If we compare equation (8.3) to the fit function (8.1), we see that their functional forms agree, and that the
mechanical linewidths are consistent between the two expressions. To show that the mechanical frequencies agree

as well, recall that S
(bb)
ii was defined as (equation (7.30)) S

(bb)
ii [δω] = Sii[δω+ ωb − ωOLO]. Using the definition

ωb = ∆`+ωm,eff = (νcon,`−νc)+ωm,eff and ωOLO = −νc we can rewrite it as S
(bb)
ii [δω] = Sii[δω+νcon,`+ωm,eff ],

which agrees with the expression (8.1). Finally, the last fit parameter, the relative mechanical Lorentzian height,
is expected to be

L
(``)
rel = 4ηκ

Γmeas,`

γm,eff

1

1 + (2ωb/κ)2
nm, (8.4)

This expression is derived under the assumption of no additional loss or noise sources between the cavity
output and the detector. Now, assume that there is a finite transmission from the cavity output to the photode-
tector η`. It will affect the signal part of the PSD, but not the background, which will stay 1 in photon units.
This is especially apparent in the normal-ordering description of the photodetection, where the background
comes from the optical local oscillator, which is unaffected by the additional loss (at least, in the standard
heterodyne measurement scheme, where the OLO is combined with the signal right at the PD input). Thus,
the relative height is multiplied by η`

L
(``)
rel = 4ηκη`

Γmeas,`

γm,eff

1

1 + (2ωb/κ)2
nm. (8.5)

Next, let us consider the effect of additional sources of noise on the way from the cavity to the photodetector.
We denote their strength relative to the vacuum noise as nadd = 1

ηn
− 1, were ηn ≤ 1 represents the drop in the

quantum efficiency due to this additional noise. With that, the noise background becomes 1 + nadd = 1
ηn

, and
the relative lorentzian height is further reduced to

L
(``)
rel = 4ηκη`ηn

Γmeas,`

γm,eff

1

1 + (2ωb/κ)2
nm. (8.6)

Finally, there may be additional mechanisms reducing the signal-to-noise ratio which can not be readily
attributed to loss or additional noise. For example, one such source of noise is the heterodyne non-ideality
coming from the fact that OLO power is not infinitely larger than every other optical tone in the system (this
mechanism is described quantitatively below). We can denote the quantum efficiency reduction of these residual
mechanisms as ηr and get the final expression

L
(``)
rel = 4ηκη`ηnηr

Γmeas,`

γm,eff

1

1 + (2ωb/κ)2
nm

= 4ηt
Γmeas,`

γm,eff

1

1 + (2ωb/κ)2
nm, (8.7)

where ηt = ηκη`ηnηr is the combined quantum efficiency of the measurement process. For a sideband close to
the optical resonance |ωb| � κ the expression above simplifies to

L
(``)
rel = 4ηt

Γmeas,`

γm,eff
nm. (8.8)

To calibrate the measurement rate Γmeas,` we use the OMIT/A data. The expression for the normalized
amplitude of the OMIT/A feature is derived in subsection 6.2.4, equation (6.16):

arel,+ = −
2 |ā|2 g(0)

(
g(0) + g

(0)
pt

)
γm,eff

χc[ωb]

= −
g(0) + g

(0)
pt

g(0)

Γmeas,`

γm,eff

1

1− 2iωb/κ
. (8.9)
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The minus sign denotes that for a blue sideband (i.e., red-detuned control beam) the OMIT/A feature is a dip,
so the Lorentzian is subtracted from the background. Similar to the motional sideband PSD, the expression
can be further simplified for an on-resonance sideband:

arel,+ = −
g(0) + g

(0)
pt

g(0)

Γmeas,`

γm,eff
. (8.10)

If the photothermal coupling g
(0)
pt is known, then the measurement of arel,+ can be used to extract the ratio

Γmeas,`/γm,eff . Knowing this ratio and ηt, one can then use formula (8.8) to relate the measured relative height

of the Brownian motion peak L
(``)
rel to the mechanical oscillator occupation nm, and consequently rescale the

vertical axis in the motional PSD data in units of phonons.
A similar calibration (using the same value of ηt, but a different individually determined measurement rate

Γmeas,u) is performed for the anti-Stokes acoustic sideband S
(uu)
ii . Finally, to normalize the cross-correlator data

S
(rb)
ii we apply a scaling coefficient which is the geometric mean of the coefficients for the red and the blue

sidebands.
The relevant contributions to the quantum efficiency in our setup are measured to be:

• Imperfect input cavity coupling ηκ = κext/κ = 0.44± 0.03.

• Optical loss between the cavity output and the optical amplifier η` = 0.44. Its calibration procedure is
described in appendix D.8.

• EDFA input noise ηn = 0.35 ÷ 0.40 (∼ 4 dB noise figure), depending on the total power incident on the
amplifier. Its measurement procedure is described in appendix D.5.

• Imperfection of the heterodyne detection. The idealized description of the heterodyne detection usually
assumes that the power in the OLO is much larger than in the rest of the optical field. If this assumption
is relaxed, then the background of the motional sideband, which is proportional to the total laser power,
becomes larger in comparison with the signal component, which comes only from the mixing with the
OLO. As a result, the SNR degrades by the additional factor of ηr = POLO/Ptot, where POLO is the power
in the OLO and Ptot is total power incident on the photodiode. In our measurements ηr varies between
0.7 and 0.95, depending on the strength of the microwave drives used to create the control beams.

• Image noise of the mixdown circuit. As mentioned in appendix D.3, the mixer circuit is not ideal, and it
allows the noise from other parts of the spectrum (“image noise”) to be folded on top of the signal, which
reduces the signal-to-noise ratio (SNR); thus the SNR of the “down-mixed” intermediate frequency (IF)
signal on the output of the mixer can be higher than the SNR of the radio-frequency (RF) signal on the
output of the photodetector.

The most common example of such a process is a standard (i.e., not image rejection) mixer, whose action
can be thought of as multiplying the RF input by the microwave local oscillator (MWLO) signal at a
frequency νMWLO to produce the IF output. Since positive and negative frequencies at the IF output
“fold” on top of each other, the signal at some frequency νIF will be a sum of RF signals at νMWLO + νIF

and νMWLO− νIF; if only one of these contains actual signal (e.g., the brownian motion peak, in our case)
but both have the same amount of noise, this “folding” reduces SNR by a factor of 2.

We performed calibrations of our image rejection mixer, as described in appendix section D.3. It turns
out that at the relevant frequencies the added noise is suppressed by at least 22 dB, meaning that the
associated quantum efficiency is η ≥ 1− 10−2.2 ≈ 0.993. Therefore, we ignore this noise factor entirely.

• Electronic noise, mostly coming from the first microwave amplifier and the ZILI input preamplifier. This
kind of noise is different from the other noise sources as it is additive rather than multiplicative, that is,
its magnitude does not depend on the light incident on the photodiode. In particular, it is present when
there is no incident power which makes is relatively easy to account for in the calibration: we measure it
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beforehand with the laser and EDFA turned off, and then subtract it from the ZILI voltage PSD as the
first step before applying other calibrations.

Combining these contributions, the total quantum efficiency ηt of the setup was between 0.05 and 0.08
depending on the measurement configuration. These estimates do not include electronics noise, because it is
additive, so that its effect varies a lot depending on the optical power, measurement scheme, etc. Nevertheless,
it is typically only about 1% of the total noise background (most of which is due to the EDFA noise). Hence it
does not noticeably affect the numbers presented above, although we do take it into account in the calibration
procedure. The relative error in the determination of the quantum efficiency is 7%, which almost entirely comes
from the uncertainty in the relative input cavity coupling ηκ.

8.4 Thermal motion

In order to estimate the device heating and validate the normalization procedure, we performed thermal motion
measurements for different MC temperatures and circulating powers. For each measurement we converted the
mechanical phonon occupation nm into the mechanical thermal bath occupation nth,m by taking into account
optomechanical damping and radiation pressure shot noise (RPSN) heating, for which we use equation (7.72),
where nOFSN is defined in equations (7.71) and (7.69):

nmδγm,eff = SOFSN
F̂ †,F̂

[−ωm,eff ]

= 2Re
[
g(0)

(
g(0) + g

(0)
pt

) (
|ā`|2χc[ωm,eff −∆`] + |āu|2χc[ωm,eff −∆u]

)]
+
|g(0)

pt |2

κpt

(
|ā`|2 + |āu|2

)
≈ 2Re

[
g(0)

(
g(0) + g

(0)
pt

)
|āu|2χc[ω + ∆u]

]
+
|g(0)

pt |2

κpt

(
|ā`|2 + |āu|2

)
, (8.11)

where we dropped the RPSN coming from the lower control beam as |χc[ωm,eff−∆`]| ≈ |χc[2ωm,eff ]| � |χc[ωm,eff+
∆`]|. We additionally assume almost resonant sidebands |ωm,eff−∆u| � κ, we can approximate χc[ωm,eff−∆u] ≈
χc[0] = 2/κ and simplify further:

nmδγm,eff ≈ 4
(g(0))2

κ
|āu|2 +

|g(0)
pt |2

κpt

(
|ā`|2 + |āu|2

)
. (8.12)

The first term in this expression corresponds to the RPSN, and it only depends on independently measured
parameters. In our measurements we had |ā`|2 ≈ |āu|2 < 1200, so the RPSN added at most about one phonon
worth of mechanical energy, in the sense that its contribution to the term nOFSNδγm,eff/γm,eff in equation (7.72)
was not more than one. The second term, however, involves the photothermal channel loss rate κpt, which we
can not access experimentally. There are several ways of estimating this loss quantity.

One way is to assume that all of the internal cavity loss contributes to the photothermal force. This means
that κint = 0 and, consequently, κpt = κ − κext ≈ 0.56κ. With that assumption, the photothermal force noise
(second term in equation (8.12)) is about 5% of the RPSN (first term in equation (8.12)), or about 0.05 phonons.
This is much smaller than many statistical and systematic uncertainties in out measurement of nm, so it can
safely be ignored.

The other way is to use the absorption of the DBR mirrors to estimate the amount of power dissipated in
the cavity. Room-temperature calorimetry measurements performed by the coating company yield an estimate
of the optical absorption a = 3 ppm (per single reflection) for laser wavelength λopt = 1064 nm[165]. Given
the cavity finesse F ≈ 100, 000, we can calculate the fraction of optical losses associated with absorption to be
aF/(2π) ≈ 0.05 per mirror, or 0.1 total. Therefore, we can assume κpt ≈ 0.1κ, so that the added phonon number
is ∼ 25% of RPSN contribution, i.e., about 0.25 phonons. This is still small enough that we can ignore it while
interpreting thermal motion data (and it is even smaller for the majority of measurements, where n̄c < 1000
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and this contribution is < 0.1 phonon), where the typical thermal bath occupation is ∼ 10 phonons. Thus, in
the analysis we ignore the photothermal force contribution to the optical noise and assume nOFSN = nRPSN,
where nRPSN is calculated for the purely radiation pressure case and is defined in equation (7.43).

Figure 8.6: Left: thermal phonon occupation of the mechanical bath nth,m as a function of the mixing chamber
(MC) temperature TMC. Marker color encodes the circulating photon number. The dashed lines shows the
expectations nth,m = nth(TMC), where nth(T ) is defined in (2.10). The grey area around this line shows
the systematic uncertainty in determining nth,m; it mostly comes from the uncertainty in calibration of
ηκ = κext/κ.
Right: Same data as in the left part, but with the horizontal axis rescaled to represent the effective bath
temperature extracted from the thermal model.

With this simplification, we can now calculate the mechanical thermal bath occupation nth,m given the
mechanical mode occupation nm. The result of this analysis is shown in the left part of Figure 8.6, which plots
nth,m as a function of the MC temperature TMC. For TMC & 150 mK the experimental results agree pretty well
with the expectation that the bath temperature is equal to TMC (i.e., nth,m = nth(TMC) = (exp(~ωm,eff/kBTMC)−
1)−1). However, for lower temperatures the experimental values are higher than theoretical expectations, and
are generally larger for high circulating photon numbers. This implies that there is still some optical heating
present in our system, which causes the helium bath temperature to be higher than TMC.

It turns out that the heating mechanism in the second generation device is very different from the first
generation device (section 6.3). The behavior of that device was explained fairly well by assuming that the
helium temperature distribution inside the cavity is homogeneous, and that the heating occurs because of the
low thermal conductivity of the helium sheaths connecting the cavity with a large helium bath. The current
device, however, fails to be described by a similar model, and seems to exhibit highly inhomogeneous temperature
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Figure 8.7: Change in the mechanical frequency (blue) and the mechanical linewidth (green) as a function of
the circulating photon number (left) or the MC temperature (right). The temperature in the left plot was
kept below 100 mK, and the circulating photon number in the right plot is below 300.

profile. This is especially apparent if we include behavior of the mechanical linewidth and frequency (as shown in
Figure 8.7), which is qualitatively different between the MC heating (which raises device temperature uniformly)
and optical heating. For example, increasing TMC leads to increase in mechanical frequency, while increasing
n̄c decreases the mechanical frequency (meanwhile, both processes cause growth in nth,m, as can be seen from
Figure 8.6).

To explain this behavior, we developed a model which assumes that the optical absorption and heating
happens in a localized manner, and so creates hot-spots on the mirror surfaces. Immediately next to these hot-
spots (10÷500 nm) the heat flux density is very large, so the thermal transport is in the highly nonlinear Gorter-
Mellink regime[166, 167], where the thermal conductivity becomes very low. Because of that, the temperature
at the hot-spots can be very high (1 ÷ 2 K, compared to . 300 mK of the bulk helium), which results in
complicated behavior of the mechanical linewidth, frequency and bath occupation. The full model is fairly
complicated, so I do not present it here; for an extensive quantitative treatment see Ref. [141]. Nevertheless,
we can use this model to calculate the effective thermal bath temperature Teff , and then rescale the horizontal
axis in Figure 8.6 to reflect this temperature. The results of this rescaling are shown in the right part of Figure
8.6. It demonstrates a much better agreement between the experiment and the expectations over large range
of temperatures and circulating photon numbers.

8.5 Quantum signatures

Finally, let us consider signatures of the quantum optomechanics in the measured undriven motion. As was
described in Chapter 7, the effects that we are looking for are the sideband asymmetry and the correlations
between the mechanical motion and the vacuum noise background (which is a signature of RPSN). To observe
them, we need to measure PSDs of both sidebands and their cross-correlator. An example of one such measure-
ment is shown in Figure 8.8, which plots the normalized PSDs and the normalized sideband cross-correlator.
The observations seem to be in a good qualitative agreement with the theory expectations (7.47), (7.48) and
(7.55): the difference between the Stokes and the anti-Stokes sideband is close to one phonon (the expected
value for the sideband asymmetry), the real part of the cross-correlator lies exactly between two sideband PSDs,
and its imaginary part has a span of 1/2 of a phonon.
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Figure 8.8: PSD of the Stokes sideband S
(rr)
ii [δω] (red), PSD of the anti-Stokes sideband S

(bb)
ii [δω] (blue), and

sideband cross-correlator S
(rb)
ii [δω] (green). All three quantities have been shifted horizontally to share

the same origin, and the two PSDs have their background subtracted (S
(rb)
ii [ω] has no background). The

vertical axis is normalized in phonons, as described in subsection 8.3.2. Imaginary parts of the PSDs (S
(rr)
ii

and S
(bb)
ii ) are not plotted, since they are identically zero. The solid lines show fits to a Lorentzian lineshape

(top plot) or an anti-Lorentzian lineshape (bottom plot). The average mechanical phonon occupation for
this data is nm ≈ 11.

To examine the results quantitatively, we first fit the PSDs to a Lorentzian lineshape

S
(xx)
ii [δω] = S

(xx)
bg + n(xx)

m

(γm,eff/2)2

(γm,eff/2)2 + δω2
(8.13)

(where the superscript (xx) can stand for (rr) for the Stokes sideband or (bb) for the anti-Stokes sideband), and
the cross-correlator to a combination of a real Lorentzian and an imaginary anti-Lorentzian part, as suggested
by (7.55):

S
(rb)
ii [δω] =

eiφrb

(
n

(rb)
m γm,eff − 2if

(rb)
m δω

)
γm,eff/4

(γm,eff/2)2 + δω2
. (8.14)

Here the factor of γm,eff/4 in the numerator is added in order for n
(rb)
m to correspond to the Lorentzian height,

and the angle φrb is a fit parameters added to accommodate for potential errors in calibration of the angle of
the cross-correlator (described in appendix D.9). In practice, fixing φrb = 0 does not significantly affect the
results, as it is usually fairly small: φrb < 20 mrad. Nevertheless, it provides a useful assessment for the quality
of the phase calibration.
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To extract the quantum effects, we calculate three independent signatures: the sideband asymmetry n
(rr)
m −

n
(bb)
m , which is expected to be one phonon; the difference between the real part of the cross-correlator and the

anti-Stokes sidebands magnitudes n
(rb)
m −n(bb)

m , which should be 1/2 of a phonon; and the span of the imaginary

part of the cross-correlator f
(rb)
m , which is also expected to be 1/2 of a phonon. We then repeatedly measure

these three quantities while varying different system parameters such as MC temperature, control beam powers,
and total incident power.

Figure 8.9: Top: occupation of the thermal mechanical bath as a function of the effective bath temperature
extracted from the thermal model. This plot is the same as the right panel of Figure 8.6, and serves here
as a reference.
Bottom: Three quantum signatures: n

(rr)
m − n

(bb)
m , n

(rb)
m − n

(bb)
m and f

(rb)
m , plotted as a function of the

effective bath temperature. The latter two quantities are multiplied by 2 to have their expected values
equal 1 (dashed line). The grey area around the dashed line show the statistical uncertainty due to the
imperfect motion measurement calibration. Circular markers denote the data taken with approximately
balanced control beams (less than 15% power difference); triangle markers correspond to the data taken
with purposefully imbalanced control beams (power ratio between 1.5 and 3.5). The data were averaged
with a 20 mK window, and the error bars show the statistical error of the averages.

The results are shown in Figure 8.9, where the data is plotted against the effective mechanical bath temper-
ature extracted from the thermal model described in section 8.4. The experiment shows good agreement with
expectations in a large range of effective mode temperatures (from 70 to 250 mK), which confirms the validity
of the calibration procedure and the quantum behavior of the optomechanical system. In addition, we have
performed a series of measurements with deliberately unbalanced control beam powers (by a factor of 2), which
still demonstrate the same values of all three signatures (shown with triangle markers in Figure 8.9).

The agreement between the experimental data and the theory also implicitly shows that our assumptions
about the ratio between the radiation pressure optomechanical coupling g(0) and the photothermal coupling

g
(0)
pt were correct. To see that, consider equation (8.10) which is used to extract the ratios Γmeas,`/γm,eff and
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Γmeas,u/γm,eff from the OMIT/A amplitudes arel,+ and arel,−. In order for this to work, we need to know the

ratio of g
(0)
pt /g

(0). Previously we extracted this ratio by assuming that the photothermal force is very filtered,

so g
(0)
pt has to be purely imaginary; were it not the case, we would not have had enough experimental data to

determine it independently of g(0).
Indeed, all of the “classical” optomechanical signatures that we have considered, such as the OMIT/A

response amplitude (equation (6.16)) or the magnitude of the dynamical backaction (equation (7.19)) always

depend on the product g(0)(g(0)+g
(0)
pt ). This is a consequence of those experiments having a “loop” design, where

an excitation starts and ends in the same element (either optical, or mechanical), and only temporarily passes
through the other one. For example, in the OMIT/A experiment the probe beam excitation starts in the optical
domain, then gets written on the mechanical motion through the optical force, and after that gets transferred
back into the optical domain as a control beam sideband. Similarly, in the dynamical backaction description
an excitation starts in the mechanical domain, then gets converted into a modulation of the intracavity field,
and later acts back on the mechanical oscillator. Thus, the effect of both of these processes is going to be
proportional to the product of the two conversion rates. Since the conversion rate from the mechanical to the

optical domain is g(0) (as in equation (7.56)), and the rate of the opposite process is g(0) + g
(0)
pt (as can be seen

in equation (7.63)), their product is g(0)(g(0) + g
(0)
pt ), and this is the only combination accessible through the

OMIT/A or the dynamical backaction measurements.
In a way, the measurements of the quantum signatures and, to a lesser extent, the measurements of the

thermal motion provide a way around this problem by giving us a “mechanical drive” with a well-defined
amplitude (either mechanical zero point fluctuations, or environment thermal noise). Thus, the measured effect
does not rely on the light acting on the mechanical motion, so it only depends on the radiation pressure coupling
g(0), as can be seen in, e.g., equation (7.47). This lets us measure the radiation pressure coupling g(0) in an
independent experiment, confirming that there is no “stray” real-valued photothermal coupling in our system,
which would obscure quantum effects.

Hence, in the end, the agreement shown in Figure 8.9 confirms our initial assumption about predominantly
unitary optomechanical interaction, meaning that it can in principle be used to initialize, manipulate and read
out the quantum state of the mechanical system with minimal information loss. Therefore, the acoustic modes
in superfluid helium could potentially serve as a quantum memory or a quantum bus in hybrid optomechanical
systems.
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Chapter 9

Conclusion and future directions

9.1 Device performance

As we showed in the previous Chapter, the second generation device has significantly better performance than
the first generation device (see, e.g., Figure 8.2 and Table 8.1). This allowed us to perform qualitatively
different measurements, such as dynamical backaction (section 8.2) and qunatum sideband asymmetry (section
8.5). Now I want to discuss the improvements more quantitatively by calculating the cooperativity and the
thermal cooperativity for the new device.

Figure 9.1: Experimental dependence of the MC temperature on the total optical power incident on the cavity
(blue dots) and its linear fit (black line).

Similar to the first generation device, the performance is ultimately limited by the optical heating, which
degrades the mechanical mode parameters. To calculate the dependence of the mechanical linewidth (used for
both cooperativities) and the effective mechanical bath temperature (needed for the thermal cooperativity) on
the circulating photon number, we used our thermal model outlined in section 8.4 and described in detail in Ref.
[141]. Unlike the first generation device (see section 6.3 and equation (6.50)), this model does not explicitly
include the incident laser power, in the sense that given the same n̄c and TMC the incident power does not
affect the results. However, as the dilution refrigerator has a limited cooling capability, the MC temperature
does depend on the incident power (and seems to be roughly independent of the circulating photon number,
given the same incident power). This dependence, along with a linear fit, is shown in Figure 9.1. We use the
parameters of this linear fit to estimate the MC temperature for a given incident power, and then use this MC
temperature in the heating model.

The results of these calculations are demonstrated in Figure 9.2, where we plot the cooperativity and the
thermal cooperativity as a function of the circulating photon number. Each plot has three lines. The dotted
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line shows the results obtained when the MC heating is neglected, and its temperature is set to zero. Thus,
this data represents a perfect case of an infinite cooling power of the refrigerator. Next, the dashed line takes
this heating into account, and to calculate the incident power for a given intracavity photon number it assumes
that only control beams are incident on the cavity. Finally, the solid line represents the assumption of 10% of
the total incident power being in the control beams (i.e., the incident power for a given n̄c is 10 times larger
than for the dashed line, while all other parameters are kept the same).

Figure 9.2: Cooperativity (left) and thermal cooperativity (right) of the second generation device as a function
of the circulating photon number. Dotted lines show the results for a fixed zero MC temperature, dashed
lines dashed lines assume that all of the incident laser power is contained in the control beam, while solid
lines assume that 10% of the total incident power is in the control beam. The yellow markers in both plots
show the experimental results in our system for the highest observed cooperativity. All of the plots assume
TMC = 0.

The yellow markers show the maximum measured cooperativity of about 1.5, which corresponds to a thermal
cooperativity of about 0.14. Both of these values seem to be close to their maximum expected values according
to the model described by the solid blue lines. While these values are still smaller than the best observed in
the field (C > 104[82, 156, 157] and Cth ≈ 250[157]), they nevertheless represent an improvement by a factor
of 30 compared to the first generation device, and they are large enough to allows us to observe quantum
optomechanical effects.

9.1.1 Comparison to other superfluid helium optomechanics experiments

Now let us compare these results to other superfluid optomechanics experiments, which are described in section
4.3.2. Since the Helmholtz resonator experiments[131, 132] are not yet in the cavity optomechanics settings,
we will not consider them here, and we will focus on the other two experiments: density waves in a MW
resonator[126] and third sound waves on a microtoroid[127]. One should keep in mind that those experiments
were not necessarily designed with a goal of maximizing the optomechanical cooperativity, so the comparison
could be unfair.

The MW resonator experiment[126] demonstrated very high mechanical quality factor Qm > 108[112], more
than 3 orders of magnitude larger than the highest Qm,rad ≈ 105 in our device. The “optical” linewidth
κ = 2π × 230 Hz was also smaller than in our device (κ = 2π · 22.1 MHz), mostly due to the smaller overall
frequency scale: the MW quality factor in that work is about 5 times larger than the optical quality factor in
our device. On the other hand, because of this smaller frequency scale and larger mechanical mode volume, the
optomechanical coupling was much weaker g(0) ≈ 2π · 6.7 · 10−9 Hz. This results in a fairly small cooperativity:
for the maximal reported cavity photon number n̄c ≈ 3·108 the cooperativity is about 4·10−6. Another potential
issue for the quantum optomechanics applications is the classical MW noise. Even for the copperativity reported
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above the MW drive power was about 4 nW, which corresponds to a shot noise PSD of −145 dBc/Hz. Reducing
classical phase noise below this level at only ωm ≈ 2π · 8 kHz detuning away from the MW pump tone might
be a challenging engineering problem, and it becomes proportionally harder if higher cooperativity is desired.

The third sound optomechanics devices[127] utilized an optical mode with wavelength λopt = 1.555 um and
linewidth κ = 2π×22 MHz, which is very close to our parameters. The mechanical mode had a significantly lower
frequency: ∼ 500 kHz, meaning that the device was in the fairly unresolved sideband regime. In that work the
authors were able to optomechanically damp the mechanical mode by about a factor of 4, which corresponds to a
cooperativity of ∼ 5. However, the optomechanical coupling was dominated by photothermal forces; if only the
radiation pressure force is taken into account, the cooperativity goes down to ∼ 0.1[168], with a corresponding
thermal cooperativity ∼ 10−5 for the 300 mK base temperature of a 3He cryostat. Additionally, as shown in
section 7.3, the photothermal coupling can add a lot of additional force noise acting on the mechanical resonator,
which makes it less suitable for quantum optomechanics applications.

9.2 Future directions

Now I want to describe possible ways to improve and expand our measurements of the superfluid helium
optomechanics.

9.2.1 Acoustic wave optomechanics

Figure 9.3: Cooperativity (left) and thermal cooperativity (right) of the second generation device, including
potential improvements. The lines style (dotted, dashed or solid) is the same as described in the caption
of Figure 9.2. The line color encodes possible improvements: blue lines correspond to the current version
of the device, black lines assume additional acoustic DBR mirrors, green lines assume presence of addi-
tional membrane barriers inside the cavity, and red lines assume both improvements (acoustic DBRs and
membranes) together.

We have discussed in section 8.4 that the second generation device performance is mainly limited by optical
heating. However, since the heating is mostly restricted to very tightly localized spots right at the mirrors’
surface, it is hard to significantly reduce its effect on the mechanical mode. Nevertheless, there are still some
improvements which could increase the cooperativity or the thermal cooperativity at least in some range of
optical powers:

a) One effect which is straightforward to address is the dilution refrigerator cooling efficiency. As can be
seen in Figure 9.2, it strongly affects the performance of our device, reducing the maximum achievable
cooperativity by a factor of 2 to 10 (depending on the fraction of the control beam in the total incident
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power). Since we have not yet tried to optimize the refrigerator operation in the presented experiments,
there are still some potential gains in trying that.

b) Another limiting factor is the low-temperature acoustic quality factor, which is currently determined only
by the impedance mismatch between helium and glass (see subsection 4.5.2). It is possible to improve
this by implementing an acoustic DBR structure similar to the optical DBR which we use in the fiber
mirrors forming the cavity. As mentioned in susbection 4.5.2, this path is associated with complications
due to a large (factor of 20) sound wavelength mismatch between the sound in helium and in glass, which
means that the sound inside glass does not obey the paraxial approximations. Nevertheless, as discussed
in detail in Ref. [141], it is possible to find some cavity parameters which would improve the acoustic
reflectivity of the fiber mirrors by about a factor of 20 with realistic DBR parameters (2 acoustic layer
pairs). The projected device performance with this improvement is shown with black lines in Figure 9.3.

c) Related to the previous point, one can try to improve the system by transitioning from microscopic fiber
cavities to macroscopic (1÷ 10 cm long) ones. Since most of the acoustic losses (the radiation into glass
mirrors and the thermal heating effects) occur immediately next to the mirror surfaces, their relative
contribution should become smaller, and the acoustic quality factor should go up proportionally to the
cavity length. Similarly, assuming that the optical finesse stays the same, the optical quality factor will
go up in the same manner. On the other hand, the optomechanical coupling g(0) will be reduced, as

g(0) ∝ V −1/2
mode (see section 4.7.2), and the mode volume Vmode increases for larger cavities. We can estimate

it as Vmode ∝ Lw2
0 where w0 =

√
zRλ/π ∝

√
zR ∝

√
L is the mode waist (see section B.2), which implies

that Vmode ∝ L2 and, consequently, g(0) ∝ L−1. Combining all of these dependencies, we arrive at the
conclusion that the cooperativity should stay constant given the same circulating photon number. At
the same time, since both thermal and radiation acoustic losses scale as L−1, the maximum reasonable
number of photons (i.e., the number at which thermal loss is approximately equal to the radiative loss)
stay the same, so the maximum achievable cooperativity is not affected.

On the other hand, some applications might gain from an increased acoustic quality factor. For example,
switching to a 5 cm-long cavity should decrease the mechanical linewidth by a factor of 103, down to
only several Hz, which means that it would be possible to measure the acoustic mode frequency with a
precision of ∼ 10−9. This opens a possibility for precise measurements of the helium properties and their
dependence on, e.g., temperature or pressure.

d) Finally, it still could be possible to better isolate the standing acoustic wave from the mirrors without
sacrificing the optomechanical coupling. To do that, we can incorporate inside the cavity additional
barriers with low optical absorption and high acoustic reflectivity. One candidate for such barrier are Si3N4

membranes[34], which are known to have low optical absorption and scattering (Im {nr} < 1.5 · 10−6[36])
and high mechanical quality factors (> 107 for commercially available membranes[169]). The absorption
issues can be further alleviated by placing the membranes close to the nodes of the optical mode, where
the light intensity is small, so its absorption and scattering is minimized.

The acoustic reflection off such membranes is discussed in subsection B.5.5. To use the expressions
derived there, we need to make some assumptions about the membrane mechanical response function K̃.
In general, this can be expressed as

K̃−1 =
1

σ

∑
n

cn
1

ω2
n − ω2

, (9.1)

where σ is the membrane surface density, and the sum goes over all membrane modes with frequencies ωn.
Prefactors cn denote the participation ratios (for a pressure distribution given by the transverse acoustic
mode profile) for the corresponding modes; they are assumed to be normalized as

∑
n c

2
n = 1. This

expression is fairly complicated and is dependent on the details of the membrane geometry. Hence, for
simplicity we will assume a low-frequency patterned trampoline membrane[43], for which the fundamental
frequency is ω0 ∼ 40 kHz, almost 4 order of magnitude smaller than the acoustic frequency ω. This
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means that we can approximate the membrane as a freely-suspended mass by assuming ω0 ≈ 0 and
cn ≈ δn,0 (for realistic pad/tether ratio of such membrane it is possible to achieve c0 & 0.9), so that
K̃ ≈ −σω2/ (

∑
n cn) ≈ −σω2 (see also subsection B.5.5). This results in the acoustic transmission

coefficient (equation (B.121))

T (mb) =
1

1 +
(
K̃/(2ωZ)

)2 =
1

1 + (σω/(2Z))2 . (9.2)

Assuming the membrane thickness of 100 nm and Si3N4 density of 2.7 · 103 kg/m3, we get σω/(2Z) ≈ 7.9
and the transmission of only T (mb) ≈ 1.6%. Provided that the membranes are positioned correctly inside
the cavity, such barriers can increase the mechanical quality factor by about 1/T (mb) ≈ 60 (even more for
larger membrane thicknesses) without noticeably decreasing the optomechanical coupling. What is more
important, unlike the acoustic DBR structures, the membranes also isolate the mechanical mode from the
mirror surfaces, which proportionally reduces the optical heating effects leading to an improved optical
power handling. The effect of adding the membrane barriers are also shown in Figure 9.3. The green lines
show the improvements for the barriers alone, and the red lines show the potential cooperativities if both
upgrades (acoustic DBRs and membrane barriers) are implemented.

To sum up, as can be seen in Figure 9.3, by implementing all of these improvements we should be able to
increase the cooperativities by more than 3 orders of magnitude and approach C > 103 and Cth > 102, well in
the high thermal cooperativity regime.

Another possible way to proceed with the current device is to perform different kinds of quantum experiments
allowed by the current parameters. One such experiment involves using short laser pulses and single-photon
detectors for heralded generation of non-classical mechanical states[64]. Provided that the heating effects
arise slowly compared to the pulse time, this scheme can yield large instantaneous measurement rates, while
maintaining high mechanical quality factor and low effective mechanical temperature.

9.2.2 Other superfluid helium excitations

Finally, we could pursue superfluid helium optomechanics with excitations which are not acoustic waves. We
have already described one such experiment[127], which studied the third sound in superfluid helium. There
are two other possibilities which we are currently exploring:

a) We can use a half-filled optical cavity to study surface waves on superfluid helium[141]. Compared to the
sound waves, these excitations have a much lower frequency (about 500 Hz for the fundamental mode),
but a comparable optomechanical coupling (g(0) ∼ 500 Hz). In addition, unlike the acoustic Gaussian
modes, there will be multiple surface modes with approximately equal couplings to the optical mode.
This results in a qualitatively different optomechanics regime: g(0) ∼ ωm � κ (unlike g(0) � κ � ωm

for the current device), and a large number of tightly-spaced mechanical modes, which can lead to rich
multi-mode physics (e.g., creation of multipartite optomechanical mixing[170] or entanglement[171, 172],
or achieving a boost in the optomechanical coupling[173]). Some possible issues with this device are still
unclear mechanical loss mechanism, and possibly increased sensitivity to external acoustic noise.

b) The other approach is to build a device consisting only of superfluid helium[174]. The device itself is
a magnetically levitated droplet of superfluid helium with ∼ 1 mm diameter, where the optical mode
is a WGM mode of this spherical resonator, and the mechanical mode is one of the droplet vibrational
modes. Since helium itself has very low optical absorption and low mechanical loss, and there are no other
materials present, this system has a potential of having very high optical and mechanical quality factors,
possibly even achieving strong single-photon coupling regime g(0) & κ.

Another interesting feature of this system is the presence of mechanical degrees of freedom which are not
harmonic oscillators. Specifically, the optical mode frequency depends on the droplet circumference, so it
is sensitive to the rotational motion (which changes this circumference due to centrifugal forces). This is a
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qualitatively different and so far unexplored regime in optomechanics, and it may yield many interesting
experimental and theoretical results.

9.3 Summary and conclusions

In this work we have demonstrated an optomechanical device where the mechanical mode is a standing acoustic
wave in superfluid helium. The first generation of this device demonstrated moderate cooperativity, but it still
allowed us to drive the mechanical oscillator and measure its displacement using only light. We used these
measurements to systematically explore how the the mechanical properties depend on the MC temperature and
the laser power, and clearly identified the poor thermal contact between the cavity and the large helium bath
as a limiting factor for the device performance. We have also demonstrated that the optomechanical coupling
is predominantly electrostrictive in origin, although we a have detected the presence of photothermal coupling
as well.

The second generation device, whose design addressed the thermalization issues, showed an improvement
by a factor of 30 in the optomechanical cooperativity. This let us perform experiments in which we modified
the mechanical mode parameters (linewidth and frequency) using light via the dynamical backaction. It also
allowed us to measure the undriven motion of the mechanical oscillator, which was used (in combination with the
mechanical linewidth and frequency data) to develop a model describing optical heating in this new device. The
undriven motion measurements also exhibited quantum optomechanics effects: the difference in the magnitudes
of the two motional sidebands (sideband asymmetry) demonstrated the fundamental difference in rates between
the Stokes and anti-Stokes scattering processes, while the cross-correlator between the two mechanical sidebands
revealed the correlations between the mechanical motion and the optical vacuum noise, which are created by
the RPSN. This constitutes the first observation of quantum optomechanics effects in a fluid.

Looking into the future, there are several avenues for improvement. So far, it seems like all of the short-
comings of our system (acoustic loss, optical loss, heating problems) stem from the properties of the container
(i.e., the Fabry-Perot cavity), not from the properties of helium itself. As outlined in subsection 9.2.1, we can
improve the performance by either making the container better, or getting rid of it entirely and building a
purely superfluid device. Both approaches have their advantages. Improving the container is more incremental
and easier to implement, and it could provide better control over system parameters, since many of them (such
as optical and mechanical linewidth, and optomechanical coupling) are defined by controllable system geometry
(cavity length, mirrors ROC and reflectivity, etc.). On the other hand, a 100% superfluid device can ultimately
provide better performance, since helium itself is pretty ideal.

In terms of making more “interesting” kinds of systems (i.e., systems containing more than the standard
optomechanics Hamiltonian with a single optical and mechanical modes), there are also several approaches.
One of them is to rely on helium. Unfortunately, the flip side of helium being close to “ideal” is that its density
waves are somewhat “boring”, especially at very low (< 100 mK) temperatures: helium is a fluid (which means
that it has no shear modulus, and that its modes have to be defined by the external geometry); it has zero
viscosity; one cannot vary its chemical composition (the only variable is the isotopic 3He/4He ratio, which
generally should be kept as low as possible to achieve the highest mechanical quality factor[112, 175]); and it is
fairly linear, at least at the typical acoustic mode ZPF levels (the typical relative density variations due to ZPF
in our device are ∼ 10−9). However, superfluid helium does have unusual macroscopic quantum properties,
which can be exploited to create more interesting situations. First, due to its zero viscosity it can maintain
a rotational flow indefinitely, which leads to new kinds of behavior, such as creation of quantized vortices[95].
Second, excited helium atoms can form long-lived (∼ 10 s) excimers[105] with more accessible (compared to He
atoms) optical transitions. Third, superfluid helium does have a quantum order parameter, which is somewhat
similar to the order parameter in superconductors. This means that it is in princple possible to create a
superfluid analogue of the superconducting Josephson junction[176, 177, 178], thus introducing a very strong
non-linearity to the helium flow, potentially even on a single ZPF level. Such non-linearities could allow for the
creation of a quantum anharmonic oscillator, resulting in a mechanical two-level system and paving a way to
the quantum non-linear optomechanics. Finally, the levitated superfluid droplet system can provide access to
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rotational degrees of freedom, which so far have not been investigated in optomechanical systems.
Another way to expand the system is to embed other elements in helium, thus creating hybrid optomechanical

systems. I have already mentioned intrinsic helium excitation such as excimers and vortices. In addition, as
described in section 4.1, helium can serve as a host to many other different systems, such as electrons (both in
bulk and on the surface), atoms, molecules, or nanoparticles. Most of these systems should have some degree
of coupling to the helium pressure (i.e., acoustic waves), or to the position on the surface (i.e., surface waves).
This could create a “hosted system” ↔ “helium waves” ↔ “light” interaction, where acoustic/surface waves
serve as a mediator if the hosted system does not interface with light directly. As we have demonstrated with
our work, the helium↔light interaction is dominated by the radiation pressure, which means that this part of
the interface should not introduce extra noise or information loss.

One fairly successful example of such a hybrid system in the solid-state optomechanics is the MW ↔
optical transducer[85], where a mechanical membrane mediates interaction between these two electromagnetic
domains. As strange as it might seem, currently this is the most promising candidate for this quantum kind of
information transfer. One could imagine a similar system implemented using helium surface waves and electrons
on its surface[101], where the electrons couple to a MW resonator, while helium waves interact with an optical
cavity.

In the end, I do believe that superfluid helium still has a lot to offer to the field of optomechanics, whether
it is in creating canonical devices with outstanding performance, serving as a mediator in hybrid systems,
or forming qualitatively new kinds of optomechanical interactions. It is safe to assume that the potential of
superfluid helium optomechanics is far from being exhausted.
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Appendix A

Mathematical definitions

This Appendix chapter introduces several mathematical definitions and relations used throughout the thesis.

A.1 Correlator and power spectral density

A.1.1 Correlator

We define the time-dependent correlator of two operators as

Câ,b̂(t, τ) ≡
〈
â(t− τ/2)b̂(t+ τ/2)

〉
, (A.1)

where 〈· · ·〉 represents an ensemble average. The same definition applies if a and b are classical variables instead
of operators (in which case their order inside the correlator does not matter).

In many cases the correlator does not depend on the common time t; for stochastic variables or operators,
this would correspond to a stationary random process. In this case we will omit the first argument:

Câ,b̂(τ) ≡ Câ,b̂(0, τ) ≡
〈
â(−τ/2)b̂(τ/2)

〉
=
〈
â(0)b̂(τ)

〉
. (A.2)

The last equality directly follows from the t-independence of the correlator, so that Câ,b̂(0, τ) = Câ,b̂(τ/2, τ).

A.1.2 Power spectral density

We broadly define a double-sided time-dependent power spectral density (PSD) as a Fourier transform of the
corresponding correlator

Sâ,b̂(t, ω) ≡
∫ +∞

−∞
Câ,b̂(t, τ)e+iωτdτ. (A.3)

The usual narrow definition corresponds to the case of a stationary process and a single variable:

Sx̂,x̂[ω] ≡
∫ +∞

−∞
Cx̂,x̂(τ)e+iωτdτ. (A.4)

This definition specifies the PSD in unit2/Hz not in unit2/(s−1) in the sense that the RMS magnitude of x̂
is obtained by integration over an ordinary frequency f = ω/(2π) and not an angular frequency ω:

〈
x̂2
〉
≡ Cx̂,x̂(0) =

∫ +∞

−∞
Sx̂,x̂[2πf ]df =

∫ +∞

−∞
Sx̂,x̂[ω]

dω

2π
. (A.5)
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A.1.3 Properties

There are two important properties of correlators and power spectral densities which are applicable in many
cases:

(1) If b̂ = â† (which for a single-operator PSD would correspond to a Hermitian operator x̂), then the correlator
obeys the relation(

Câ,â†(t, τ)
)∗

=
〈
â(t− τ/2)â†(t+ τ/2)

〉∗
=
〈

(â†)†(t+ τ/2)â†(t− τ/2)
〉

=
〈
â(t+ τ/2)â†(t− τ/2)

〉
= Câ,â†(t,−τ), (A.6)

so the corresponding PSD is real:

(
Sâ,â†(t, ω)

)∗
=

∫ +∞

−∞
C∗â,â†(t, τ)e+iωτdτ

=

∫ +∞

−∞
Câ,â†(t,−τ)e−iωτdτ = Sâ,â†(t, ω). (A.7)

(2) If the operator x̂ commutes at different times (for example, if it is simply a classical variable), the
autocorrelator is symmetric in time Cx̂,x̂(t,−τ) = Cx̂,x̂(t, τ), and the PSD becomes symmetric as well

Sx̂,x̂(t,−ω) =

∫ +∞

−∞
Cx̂,x̂(t, τ)e−iωτdτ

=

∫ +∞

−∞
Cx̂,x̂(t,−τ)e−iωτdτ = Sx̂,x̂(t, ω). (A.8)

Thus, an asymmetric power spectrum inherently corresponds to a non-classical variable.

A.2 Fourier transform

In this work I am using two different variations of Fourier transform defined for two different scenarios. Both
of these use “physicist’s notation” where a positive frequency exponent is expressed as e−iωt.

A.2.1 “Coherent” Fourier transform

For dealing with coherent signals, it is convenient to use the following Fourier transform definition:

Fc {f(t)} [ω] ≡ f (c)[ω] ≡ 1

2π

∫ +∞

−∞
f(t)e+iωtdt. (A.9)

From the orthogonality relations ∫ +∞

−∞
e+iωte−iω

′tdt = 2πδ(ω − ω′) (A.10)∫ +∞

−∞
e+iωte−iωt

′
dω = 2πδ(t− t′) (A.11)

the corresponding inverse Fourier transform is simply

F−1
c

{
f (c)[ω]

}
(t) ≡

∫ +∞

−∞
f (c)[ω]e−iωtdω = f(t). (A.12)

For a coherent signal f(t) = Ae−iω0t this kind Fourier transform yields f (c)[ω] = Aδ(ω − ω′)
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A.2.2 “Noise” Fourier transform

For stochastic variables it is more appropriate to use a “windowed” Fourier transform (for the motivation of
this definition, see, e.g., Ref. [10]):

Fn {f(t)} [ω] ≡ f (n)[ω] ≡ lim
T→∞

1√
T

∫ +T/2

−T/2
f(t)e+iωtdt. (A.13)

This normalization allows one to easily calculate time-independent power spectral densities using the Wiener-
Khinchin theorem:

Sâ,b̂[ω] =
〈
â(n)[ω]b̂(n)[−ω]

〉
. (A.14)

This theorem holds if the two processes have a finite correlation time, i.e., if Câ,b̂(τ) goes to zero for large τ .

A.2.3 Properties and conventions

Below are some common useful properties of Fourier transforms which apply to both definitions above:

F
{
d

dt
f(t)

}
[ω] = −iωF {f(t)} [ω] (A.15)

F
{
f(t)e−iω0t

}
[ω] = F {f(t)} [ω − ω0] (A.16)

F {f(t− τ0)} [ω] = F {f(t)} [ω]e+iωτ0 (A.17)

F {f∗(t)} [ω] = (F {f(t)} [−ω])∗ . (A.18)

The last property means that the notation like f∗[ω] is ambiguous, as it can mean either F {f∗} [ω] or
(F {f} [ω])∗ = F {f∗} [−ω]. In this work we adopt the first meaning, and the second one will be always denoted
explicitly by parentheses:

f∗[ω] ≡ F {f∗} [ω] (A.19)

(f [ω])∗ ≡ (F {f} [ω])∗ . (A.20)

Furthermore, we will omit the superscript (c) or (n) denoting which kind of Fourier transform is used if it is
obvious from the context, or if it is not important for the discussion.
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Appendix B

Mode-related derivations

B.1 Cavity frequency perturbation

In this section we derive the expression for the change in the cavity resonant frequency due to a perturbation
of the medium inside it.

We start with the Maxwell equations and the assumption of no net charges ρq = 0 or currents jq = 0:

∇ ·B = 0 (B.1)

∇ ·D = 0 (B.2)

∇×H =
∂D

∂t
(B.3)

∇×E = −∂B

∂t
. (B.4)

Here E is the electric field, B is the magnetic field, D is the electric displacement field and H is the magnetic
H-field. In addition to the equations above, we assume the standard linear isotropic media relations:

D = εE (B.5)

B = µH, (B.6)

where ε is the electric permittivity and µ is the magnetic permeability. Because we are focusing on dielectric
effects, we will assume that the material has no special magnetic properties: µ = µ0, where µ0 is the vacuum
permeability. Also, for notational simplicity we denote ε = ε0ε

(r), where ε0 is the vacuum permittivity and ε(r)

is the relative permittivity of the material, which may be position dependent.
From the equations above we can obtain the wave equation for the D-field:

∂2D

∂t2
=

1

µ0
∇× ∂B

∂t
= − 1

µ0
∇× (∇×E) = − 1

µ0
∇(∇ ·E) +

1

µ0
∇2E. (B.7)

Note that ε can in principle vary in space, so that ∇ ·E does not have to be zero.
Next, we assume that the electric field corresponds to some mode at frequency ω, so that E(t) = Ee−iωt,

and that the permittivity is constant in time. Then using the relation between E and D we get

∇(∇ ·E)−∇2E = −µ0ε0
∂2
(
ε(r)E

)
∂t2

=
ω2

c2
ε(r)E, (B.8)

where c = 1/
√
ε0µ0 is the speed of light.

This equation along with the boundary conditions determines the frequency and the spatial profile of the opti-
cal mode. For the boundary condition we assume perfectly reflecting (i.e., ideally conducting) walls E(t)

∣∣
∂V

= 0,

where E(t) is the transverse (i.e., parallel to the boundary) electric field. If the mode confinement is more “loose”
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(e.g., DBR mirrors for Fabry-Perot cavities, or evanescently decaying field for WGM resonators), we can imagine
such walls being very far away where they do not significantly perturb the modes.

Now we can employ first-order perturbation theory to determine the change in the resonance frequency due

to a perturbation in the electrical permittivity. First, imagine we have an initial permittivity profile ε
(r)
0 (r) and,

correspondingly, some mode with field magnitude E0(r) and frequency ω0. The field satisfies the equation

∇(∇ ·E0)−∇2E0 =
ω2

0

c2
ε
(r)
0 E0. (B.9)

Now let us introduce a small perturbation to the permittivity δε(r). This perturbation will cause changes in
the field profile δE and the resonant frequency δω. The resulting equation is

∇(∇ · (E0 + δE))−∇2(E0 + δE) =
(ω0 + δω)2

c2
(ε

(r)
0 + δε(r))(E0 + δE). (B.10)

Next, we can use the unperturbed equation (B.9) to get rid of the zeroth-order terms, and then discard terms
which are higher than first order in δω, δε(r) and δE

∇(∇ · δE)−∇2δE =
2ω0δω

c2
ε
(r)
0 E0 +

ω2
0

c2
δε(r)E0 +

ω2
0

c2
ε
(r)
0 δE. (B.11)

All we need from this equation is an expression for δω in terms of the known unperturbed mode parameters

E0, ε
(r)
0 , ω0, and the perturbation δε(r). This means that we do not need to completely solve this equation and

find δE, if we can get rid of it in the final expression.
In order to do that, we multiply the left and the right parts of equation (B.11) by E0 and integrate the

resulting product over the whole space:∫
V

E0 · ∇(∇ · δE)dV −
∫
V

E0 · ∇2δE

=

∫
V

2ω0δω

c2
ε
(r)
0 |E0|2dV +

∫
V

ω2
0

c2
δε(r)|E0|2dV +

∫
V

ω2
0

c2
ε
(r)
0 δE ·E0dV. (B.12)

Using integration by parts and the boundary conditions E
(t)
0

∣∣∣
∂V

= δE(t)
∣∣∣
∂V

= 0, we can show that in the

left-hand side ∫
V

E0 · ∇(∇ · δE)dV −
∫
V

E0 · ∇2δE

=

∫
V
δE · ∇(∇ ·E0)dV.−

∫
V
δE · ∇2E0 (B.13)

With that we can rearrange the terms to get∫
V

2ω0δω

c2
ε
(r)
0 |E0|2dV +

∫
V

ω2
0

c2
δε(r)|E0|2dV

=

∫
V
δE · ∇(∇ ·E0)dV −

∫
V
δE · ∇2E0 −

∫
V

ω2
0

c2
ε
(r)
0 δE ·E0dV

=

∫
V
δE ·

(
∇(∇ ·E0)−∇2E0 −

ω2
0

c2
ε
(r)
0 E0

)
= 0. (B.14)

The last line is zero, since E0 obeys the unperturbed equation (B.9).
Finally, from this equation we obtain the change in the resonance frequency

δω

ω0
= −1

2

∫
V δε

(r)|E0|2dV∫
V ε

(r)
0 |E0|2dV

. (B.15)
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If the initial permittivity is uniform ε
(r)
0 (r) = ε

(r)
0 , we can modify the expression above to get a more intuitive

expression

δω

ω0
= −

∫
V (δε(r)/2ε

(r)
0 )|E0|2dV∫

V |E0|2dV
= −

∫
V
δn
n0
|E0|2dV∫

V |E0|2dV
, (B.16)

where n0 =

√
ε
(r)
0 is the unperturbed refractive index of the medium and δn is its perturbation.

If we assume that δn is also constant everywhere, we get just δω
ω0

= − δn
n0

: the perturbation in the refractive
index changes the cavity’s effective size and, therefore, its resonant frequency. If, however, δn varies in space,
the regions with higher intensity should contribute more to the overall perceived change in n; in this case we
can see the numerator as a weighed average of δn, while the denominator is just a normalization coefficient.

B.2 Cavity modes

In this section we consider Gaussian modes inside a Fabry-Perot cavity, and derive expressions for their spatial
profiles and frequencies.

B.2.1 Gaussian beam

We start with a Gaussian beam[152], which is a solution for the wave equation in the paraxial approximation.
A beam with a waist at z = 0 and propagating in +z direction can be expressed in terms of the complex radius
of curvature q̃(z) = q̃0 + z as

u(x, y, z) = eikz
q̃0

q̃(z)
exp

(
ik
x2 + y2

2q̃(z)

)
, (B.17)

where k = ω/c is the beam’s wave-vector, ω is its frequency and q̃0 can be expressed in terms of the beam waist
w0 as q̃0 = −iw2

0k/2. Equation (B.17) can be rewritten in terms of a position-dependent beam width w(z),
radius of curvature (ROC) R(z), and Gouy phase shift ψG(z) as

u(x, y, z) = eikze−iψG(z) w0

w(z)
exp

(
−x

2 + y2

(w(z))2
+ ik

x2 + y2

2R(z)

)
(B.18)

w(z) = w0

√
1 + (z/zR)2 (B.19)

R(z) = z
(
1 + (zR/z)

2
)

(B.20)

tanψG(z) = z/zR, (B.21)

where zR = iq̃0 = w2
0k/2 is the Rayleigh range, which characterizes divergence of the beam (it can be thought

of as the longitudinal extent of the beam waist). The interpretation of R(z) as the ROC of the beam can be
made more apparent by approximating the phase around some point z = z0 as

φ(x, y, z) ≈ φ(0, 0, z0) + ik

(
x2 + y2

2R0
+ (z − z0)

)
, (B.22)

where R0 ≡ R(z0) and we have neglected the spatial dependence of the slowly changing Gouy phase ψG and
the ROC R. From this, a surface of constant phase obeys the equation x2 + y2 + 2R0(z − z0) = 0, which up to
terms quadratic in z − z0 describes a spherical surface of radius R0: x2 + y2 + (z − z0 +R0)2 = R2

0.

B.2.2 Gaussian modes

A Gaussian beam can be confined to a standing mode with two spherical mirrors, which form a Fabry-Perot
cavity. In order to satisfy the boundary condition imposed by the mirrors, the mode needs to obey two
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conditions. First, its radius of curvature R(z) should be equal to the corresponding ROCs of the mirrors at
their surface (with appropriate signs): R(z1) = −R1, R(z2) = R2, where z1,2 are the positions of the mirrors
and R1,2 are their ROCs, with positive R corresponding to a concave mirror. This fixes the Rayleigh range to

zR =

√
g1g2(1− g1g2)

g1 + g2 − 2g1g2
L, (B.23)

where L is a length of the resonator and g1,2 ≡ 1− L/R1,2 are so-called g-parameters. The resonator is stable
only when the argument of the square root is positive, that is for 0 < g1g2 < 1.

The second requirement comes from the wave nature of light, and it restricts the round-trip phase of the
beam to be a multiple of 2π. We express it as

2knL− 2∆ψG + (φ1 + φ2) = 2πn, (B.24)

where an integer n is a longitudinal number of the mode, kn = ωn/c is the corresponding wave-vector, ∆ψG =
ψG(z2) − ψG(z1) is the Gouy phase shift acquired by the beam between the two mirrors, and φ1,2 are the
reflection phases of the mirrors. For mirrors made of ideal conductors (corresponding to zero electric field on
the surface) these phases are simply π; however, for distributed Bragg reflector (DBR) mirrors these can be
arbitrary and, in principle, wavelength-dependent (see section B.4).

The corresponding mode profile is

un(x, y, z) = eiφ0eiknze−iψG(z) w0

w(z)
exp

(
−x

2 + y2

(w(z))2
+ ikn

x2 + y2

2R(z)

)
+ c.c., (B.25)

which is the real part of the Gaussian beam expression (B.18) with an overall mode phase φ0. The zero of the
z-axis is defined to be at the mode waist, and the corresponding mirror positions are

z1 = − g2(1− g1)

g1 + g2 − 2g1g2
L (B.26)

z2 =
g1(1− g2)

g1 + g2 − 2g1g2
L = z1 + L. (B.27)

One can check that given the Rayleigh range (B.23) the mode ROC obeys the boundary conditions R(z1) = −R1

and R(z2) = R2. Finally, in order to produce the correct reflection phases φ1,2, the overall phase of the mode
φ0 has to satisfy

φ0 + knz2 − ψG(z2) = −φ2/2 mod 2π. (B.28)

Since kn obeys the resonant frequency condition (equation (B.23)), the phase requirement on the other mirror
surface

φ0 + knz1 − ψG(z1) = φ1/2 mod 2π (B.29)

is satisfied automatically.

B.2.3 Resonance frequencies and free spectral range

It tuns out[152] that the full Gouy phase shift is independent of the wavelength and is equal to

∆ψG = arccos(±√g1g2), (B.30)

where the positive sign corresponds to g1, g2 > 0, and the negative sign to g1, g2 < 0. This results in the
following expression for resonant frequencies of a Fabry-Perot cavity formed by perfect conductor mirrors:

ωn = ckn = 2πF

(
n+

∆ψG

π

)
, (B.31)
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where F = c/(2L) is the free spectral range (FSR) of the cavity. The frequency difference between the consec-
utive modes is simply equal to the FSR: ∆ωn ≡ ωn+1 − ωn = 2πF . For mirrors with arbitrary reflection phase
φ1,2(ω) the resonance condition becomes

ωn = 2πF

(
n+

∆ψG

π
− φ1(ωn) + φ2(ωn)

2π

)
, (B.32)

and the distance between the consecutive modes can be expressed as

∆ωn = 2πFeff . (B.33)

Here Feff = c/(2Leff) is the FSR corresponding to the effective cavity length Leff = L + δL1(ωn) + δL2(ωn),
where δLi(ω) is the penetration depth of ith mirror defined as

δLi(ω) =
c

2

∂(φi)

∂ω
. (B.34)

Note that equation (B.34) does not imply φi = 2ωδLi/c, that is, the penetration depth is defined in terms of the
differential response of the mirror’s reflection phase (the difference is similar to, e.g., group velocity vs. phase
velocity). Thus, while knowing the penetration depth is enough to find the frequency difference between the
nearby modes, it is not enough to predict their absolute frequencies.

Finally, we need to consider what happens if the cavity is filled with a uniform dielectric with refractive
index n0. The only difference this introduces in the equations above is the factor of n0 in the relationship
between the mode’s frequency ωn and its wave-vector kn. We can account for this by replacing L with Ln0

in the definitions for F and Feff in (B.32) and (B.33). In addition, the dielectric could change the mirrors’
reflection phase φi and the corresponding penetration depth δLi (an example of this effect is given in subsection
B.4.2), so those need to be adjusted accordingly.

B.3 Transfer matrix formalism

In this section we introduce the transfer matrix formalism for solving 1D propagation of EM waves. We then
use it to derive expressions for the resonant frequency and the linewidth of a simple Fabry-Perot cavity, and
later employ it in considering optical DBR (section B.4).

a) b)

Figure B.1: a) Schematic of the transfer matrix description of wave propagation. b) Schematic of the transfer
matrix description of a material boundary.
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B.3.1 Definition

A transfer matrix describes a linear relation between the incoming and the outgoing electrical fields on one side
and on the other: (

E
(r)
→

E
(r)
←

)
= M ·

(
E

(`)
→

E
(`)
←

)
, (B.35)

where E is the electric field, arrows show the direction of propagation, and (`) and (r) denote two sides of
an optical element (schematic illustrations are shown in Figure B.1). The most important property of these
matrices is that they are easily “stackable”, in the sense that the transfer matrix of a sequence of two elements
is a product of the two transfer matrices. For the definition given in equation (B.35) the product is reversed,
i.e., the rightmost matrix corresponds to the first (leftmost) element.

B.3.2 Common cases

Below we derive transfer matrices for the most common situations.

1. Propagation (shown in Figure B.1a).

Propagation simply adds a phase shift to the forward and the backward waves without mixing them:

M (p)(k, d) =

(
eikd 0
0 e−ikd

)
. (B.36)

Here d is the propagation distance and k is the wave-vector. For a wave of a frequency ω propagating
through a media with a dielectric constant ε and a magnetic permeability µ the wave-vector is

k = n
ω

c
(B.37)

n =

√
εµ

ε0µ0
, (B.38)

where n is the refractive index of the media.

2. Boundary between two different media (shown in Figure B.1b).

To derive the relation at the boundary, we have to consider the boundary conditions. Assuming that the
boundary is non-singular (i.e., it has zero surface conductivity or polarizability), the continuity conditions
are

E(`) = E(r) (B.39)

H(`) = H(r), (B.40)

where H = B/µ is the magnetic H-field. From the Maxwell’s equations the electric and the magnetic
fields can be expressed as

E(`,r) = E(`,r)
→ + E(`,r)

← (B.41)

H(`,r) =
E

(`,r)
→ − E(`,r)

←

Z(`,r)
, (B.42)

with Z(`,r) ≡
√

µ(`,r)

ε(`,r)
is the wave impedance of the media. These relations result in the transfer matrix

M (b)(Z(rel)) =
1

2

(
1 + Z(rel) 1−Z(rel)

1−Z(rel) 1 + Z(rel)

)
, (B.43)

where Z(rel) = Z(r)/Z(`) is the relative wave impedance of the two media. If the media have the same
magnetic permeability (for example, both are non-magnetic, i.e., µ(`) = µ(r) = µ0), then Z(rel) = 1/n(rel),
where n(rel) = n(r)/n(`) is the relative refractive index of the two media.
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3. Dielectric slab in vacuum.

Let us now consider a dielectric slab of width d and refractive index n(d) =
√
ε(d)/ε0, where ε(d) is its

dielectric constant. The transfer matrix in this situation can be obtained by combining the two previous
cases:

M (ds)(d, n(d))

= M (b)(1/n(d))M (p)(k, d)M (b)(n(d))

= cos(kd)

(
1 0
0 1

)
+ i

sin(kd)

2n(d)

(
1 + (n(d))2 1− (n(d))2

1− (n(d))2 −1− (n(d))2

)
. (B.44)

Note that here k = ωn(d)/c is the wave-vector inside the dielectric.

4. Thin dielectric layer.

A thin dielectric layer describes the situation where the slab thickness is negligible compared to the optical
wavelength (both in vacuum and in the dielectric). Formally, we obtain this case by considering M (ds) in
the limit ε(d) →∞, k0d→ 0 and k0ε

(d)d→ const:

M (dl)(ξ) =

(
1 + iξ iξ
−iξ 1− iξ

)
, (B.45)

where ξ = k0dε
(d)/(2ε0). Note that although the layer is assumed to be thin enough that it does not affect

phase of the passing waves (since kd = k0dn
(d) = 2ξ/n(d) → 0), ξ can take any value, including ξ > 1.

A useful property of this transfer matrix is the ease of combining two consecutive layers: M (dl)(ξ1)M (dl)(ξ2) =
M (dl)(ξ1 + ξ2).

B.3.3 Scattering matrix

Another important class of objects is scattering matrices. They connect the same four quantities (incoming and
outgoing fields) as the transfer matrices, but in a different way:(

E
(`)
←

E
(r)
→

)
= S

(
E

(`)
→

E
(r)
←

)
, (B.46)

that is, it expresses scattered waves E
(`)
← and E

(r)
→ in terms of the incident ones E

(`)
→ and E

(r)
← . In the ordering

given above the diagonal elements correspond to reflection, and off-diagonal elements describe transmission.
These matrices describe optical objects in a more intuitive sense (the matrix elements have clear meaning of
reflection and transmission), and they can be readily generalized for an arbitrary number of ports (not just two
for a simple 1D object). However, they do not combine as easily as the transfer matrices: scattering matrix of
the combination of two elements is not simply a product of their scattering matrices.

Barring some degenerate cases (e.g., perfect reflector or perfect absorber), there is a one-to-one correspon-
dence between scattering matrices and transfer matrices:

S(M) =
1

M22

(
−M21 1

M11M22 −M12M21 M12

)
(B.47)

M(S) =
1

S12

(
S12S21 − S11S22 S22

−S11 1

)
. (B.48)

Using these, we can write a scattering matrix of a thin dielectric layer as

S(dl)(ξ) =
1

1− iξ

(
iξ 1
1 iξ

)
, (B.49)
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so its transmission and reflection coefficients are

t(dl) = − i

i+ ξ
(B.50)

T (dl) = |t(dl)|2 =
1

1 + ξ2
(B.51)

r(dl) = − ξ

i+ ξ
(B.52)

R(dl) = |r(dl)|2 =
ξ2

1 + ξ2
= 1− T (dl). (B.53)

Here t(dl) and r(dl) are amplitude reflection and transmission coefficients, while T (dl) and R(dl) are the cor-
responding power coefficients. These expressions suggest that a lossless mirror with transmittivity T can be

modeled as a dielectric layer of strength ξ(m)(T ) =
√

1−T
T . Note that limT→0 ξ

(m)(T ) =∞, that is, for a perfect

reflector one needs an infinite strength mirror.

B.3.4 Cavities

Now we describe of a Fabry-Perot cavity using the transfer matrix formalism. To keep the discussion general,
let us denote the transfer matrix of the cavity content as M (cav)(ω), where ω is the frequency of the circulating
light. This matrix does not include the input and output mirrors, but it includes everything else in the cavity,
i.e., it connect the fields at the leftmost side of the cavity (on the right side of the input mirror) to the fields
of the rightmost side (on the left side of the output mirror). For example, for an empty cavity of length L this
matrix is simply a propagation matrix M (cav)(ω) = M (p)(ω/c, L).

If we include the input mirror of transmittivity Tin and the output mirror of transmittivity Tout, the total
transfer matrix describing the cavity becomes

M(ω) = M (dl)(ξ(out)) ·M (cav)(ω) ·M (dl)(ξ(in)), (B.54)

where ξ(in,out) = ξ(m)(Tin,out) are the dielectric mirror strengths required to achieve the necessary transmission
coefficients. Now we can use this transfer matrix to obtain the corresponding scattering matrix and get the
cavity transmission and reflection coefficients:

t = S21 =
M11M22 −M12M21

M22
(B.55)

r = S11 = −M21

M22
. (B.56)

The resonance of a cavity corresponds to a pole of its transmission or reflection coefficient. From the
equations above it is clear that the poles of r and t correspond to zeros of M22, which yields the equation for
the resonant frequencies of the cavity:

M22(ωres) = 0. (B.57)

The root will in general be complex, with real and imaginary parts corresponding to the frequency and linewidth
of the resonance.

As an instructive and useful example, let us consider an empty cavity made of length L formed by two mirrors
with transmission coefficients Tin and Tout. The cavity transfer matrix is a propagation matrix M (p)(k, L) with
k = ω/c for the empty cavity, so the total transfer matrix is

M(ω) = M (dl)(ξ(in))M (p)(ω/c, L) ·M (dl)(ξ(out)), (B.58)

where ξ(in,out) =
√
Rin,out/Tin,out with Rin,out = 1−Tin,out being the corresponding power reflection coefficients.

For simplicity, we will assume high-reflectivity mirrors Tin,out � 1
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The important transfer matrix element is

M22(ω) = e−iωL/c(1− iξ(in))(1− iξ(out)) + eiωL/cξ(in)ξ(out), (B.59)

which leads to the equation for the resonant frequency

e2iωresL/c = 1 + i

(√
Tin

Rin
+

√
Tout

Rout

)
−
√
TinTout

RinRout
. (B.60)

The solution for this equation is (up to terms of the order T
3/2
in,out)

2ωresL/c = 2πn+

(√
Tin

Rin
+

√
Tout

Rout

)
− i
(
Tin

Rout
+
Tout

Rout

)
, (B.61)

where n is the mode index, similar to the one defined in subsection B.2.3. We can identify the real part of ωres

as the resonant frequency

ωn = Re {ωres} = 2πnF +

(√
Tin

Rin
+

√
Tout

Rout

)
F ≈ 2πnF (B.62)

(where F = c/(2L) is the FSR defined in subsection B.2.3), and the imaginary part as the corresponding
linewidth

κ = −2Im {ωres} = F

(
Tin

Rout
+
Tout

Rout

)
≈ F (Tin + Tout) . (B.63)

The cavity finesse, which is defined as the ratio of the FSR to the linewidth

F =
2πF

κ
, (B.64)

is equal to

F =
2π

Tin + Tout
. (B.65)

This quantity is convenient to characterize Fabry-Perot cavities, since unlike the quality factor Q = ωn/κ = nF
it only depends on the mirror parameters and not on the total cavity length (at least, in the perfect 1D case
where we neglect clipping and diffraction losses).

B.3.5 Perfect mirrors approximation

Equation (B.57) can be simplified if we take the limit of perfectly reflecting input and output mirrors. As we
have shown in the previous section, this corresponds to the infinite mirror dielectric strength ξin,out → ∞. In
this limit the mirror transfer matrix (B.45) becomes

M (mir) ≈ iξ
(

1 1
−1 −1

)
. (B.66)

After substituting this matrix for the mirrors in equation (B.54), resonant condition (B.57) turns into(
M

(cav)
11 +M

(cav)
22 −M (cav)

12 −M (cav)
21

)
(ωres) = 0. (B.67)

In the simple case of the empty cavity mentioned above this immediately leads to e2iωresL/c = 1, which corre-
sponds to the familiar condition of the roundtrip length being a multiple of the optical wavelength.
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Relation (B.67) can be derived in a different way, starting from the perfect reflector boundary condition of

having a zero electric field on the surface. On the left side of the cavity it leads to E
(`)
← = −E(`)

→ , while similarly

on the right E
(r)
← = −E(r)

→ . However, these four fields are also related through the cavity transfer matrix M (cav),
which leads to the condition

0 = E(r)
→ + E(r)

← =
(
M

(cav)
11 E(`)

→ +M
(cav)
12 E(`)

←

)
+
(
M

(cav)
21 E(`)

→ +M
(cav)
22 E(`)

←

)
=

(
M

(cav)
11 −M (cav)

12 +M
(cav)
21 +M

(cav)
22

)
E(`)
→ . (B.68)

If the circulating field E
(`)
→ is non-zero, the equation above is equivalent to (B.67).

B.4 Distributed Bragg reflectors

B.4.1 Finite DBR

Figure B.2: Schematic of a distributed Bragg reflector (DBR). The DBR shown here corresponds to N = 3
layer pairs.

In this section I want to briefly consider distributed Bragg reflector (DBR) mirrors. A DBR is a stack of
dielectric layers, which is comprised of N identical layer pairs, as shown in Figure B.2. Each pair consists of
two dielectric layers made out of materials with dissimilar refraction coefficients. Let us denote the refraction
coefficients of the two dielectrics as n1 and n2, the corresponding layer thicknesses as d1 and d2, and the wave-
vector of light (in vacuum) as k0. With these definitions, the transfer matrix of a single pair is expressed
as

M (pair) = M (b)(n2/n1) ·M (p)(n2k0, d2) ·M (b)(n1/n2) ·M (p)(n1k0, d1). (B.69)

This matrix describes (reading right to left) light propagating through the first dielectric layer, then entering
the second layer, propagating through that, and finally entering back into the first dielectric at the start of the
next pair (remember that the transfer matrix describing a wave going from a material with refractive index n1

into a material with refractive index n2 is M (b)(Z(2)/Z(1)) = M (b)(n1/n2)). The total transfer matrix of N
layers, including the light entering from some outside material with the refractive index n0, is

M (DBR) =
(
M (pair)

)N
·M (b)(n0/n1). (B.70)

In an ideal DBR the layers are assumed to be λ/4 thick, i.e., k0n1d1 = k0n2d2 = π/2. In this case both
propagation matrices are equal to

M (p)(n1k0, d1) = M (p)(n2k0, d2) =

(
i 0
0 −i

)
, (B.71)
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so the transfer matrix of a single pair is

M (pair) = − 1

2nr

(
1 + n2

r 1− n2
r

1− n2
r 1 + n2

r

)
, (B.72)

and the transfer matrix of N pairs is(
M (pair)

)N
=

(−1)N

2nNr

(
1 + n2N

r 1− n2N
r

1− n2N
r 1 + n2N

r

)
, (B.73)

where nr = n2/n1. The total DBR transfer matrix is

M (DBR) =
(−1)N

2nNr

(
1 + (n1/n0)n2N

r 1− (n1/n0)n2N
r

1− (n1/n0)n2N
r 1 + (n1/n0)n2N

r

)
. (B.74)

The amplitude transmission coefficient of the whole DBR mirror can be obtained using equation (B.55):

t =
2(n1/n0)(−1)N

n−Nr + (n1/n0)nNr
. (B.75)

If we assume N � 1, then the power transmission coefficient can be approximated as

T = |t|2 ≈
{

4(n1/n0)2n2N
r , 0 < nr < 1

4n−2N
r , nr > 1.

(B.76)

Thus, unless nr = 1 (i.e., both materials are the same), the transmission coefficient decreases exponentially with
N , so it can be made arbitrarily small by adding more layers. In practice, high-quality mirror DBR coatings
routinely achieve T ≈ 10−6.

B.4.2 Infinite DBR approximation and penetration depth

It is also useful to consider the case of an infinite DBR, but with a potentially mismatched incident light
wavelength (i.e., with layer thicknesses not being exactly λ/4). This will allow us estimate the penetration
depth (defined in equation (B.34)in subsection B.2.3) of a DBR in the perfect reflectivity limit.

Let us start again by considering just N layer pairs without the outside material. If we assume that the
light is only incident from the left, and if we normalize this incident amplitude to be 1, we can write the transfer
relations as (

t
0

)
=
(
M (pair)

)N
·
(

1
r

)
. (B.77)

Here r and t are the amplitudes of the reflected and the transmitted wave respectively, and with our normal-
ization they are simply equal to the the reflection and the transmission coefficients. Next, let us assume that
the single pair transfer matrix M (pair) has a complete set of eigenvectors v1,2 and eigenvalues λ1,2,a) and let us
decompose the transmission vector in terms of these eigenvectors as(

t
0

)
= t (a1v1 + a2v2) , (B.78)

where a1,2 are the decomposition coefficients. Using that decomposition, we can invert the relation (B.77) to
obtain (

1
r

)
= t
(
a1λ
−N
1 v1 + a2λ

−N
2 v2

)
. (B.79)

a)The only way the Jordan normal form of M (pair) could be non-diagonal is if λ1 = λ2, and, as we show later, this implies that
the DBR does not actually serve as a reflector.
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First, let us imagine that |λ1| = |λ2|; since λ1λ2 = det(M (pair)) = 1, this would imply that |λ1| = |λ2| = 1.
However, this means that the RHS magnitude stays approximately the same (on the order of t) regardless of
the number of layers N , which means that the DBR transmission does not depend on N .b)

Since we only want to consider DBRs which get progressively more reflective as N grows, we have to assume
that |λ1| 6= |λ2|. Let us then WLOG denote the smaller eigenvalue as λ1 and the bigger one as λ2; since
λ1λ2 = 1, its means that |λ1| < 1 and |λ2| > 1. Then for very large N such that |λ1|−N � |λ2|−N we can
approximate (B.79) as (

1
r

)
≈ ta1λ

−N
1 v1 ∝ v1. (B.81)

Thus, to find the reflection phase, we simply need to examine the eigenvector corresponding to the smaller
eigenvalue.

Finally, we can consider what would happen if the DBR is preceded by some other objects, e.g., if the wave
enters from a different material as we assumed in the previous subsection. If we denote the transfer matrix
leading to the DBR pairs stack as M (s), the new transfer relations can be expressed as(

t
0

)
=
(
M (pair)

)N
·M (s) ·

(
1
r

)
. (B.82)

Following the same route, we can arrive at an analogue of equation (B.81):

M (s) ·
(

1
r

)
≈ ta1λ

−N
1 v1 ∝ v1, (B.83)

so in the end (
1
r

)
∝
(
M (s)

)−1
· v1. (B.84)

This means that the reflection amplitude is

r =

[(
M (s)

)−1 · v1

]
2[(

M (s)
)−1 · v1

]
1

(B.85)

(where a subscript outside parentheses is a vector index).
Now let us consider a mismatched DBR. Specifically, let us assume that the DBR is perfectly matched for

some wave-vector k0,m, but the incident light has a different wave-vector k0 6= k0,m. We can account for the
mismatch by replacing the ideal propagation matrix (B.71) with

M (p)(n1k0, d1) = M (p)(n1k0, d1) =

(
ieiδ 0
0 −ie−iδ

)
, (B.86)

where δ = k0n1d1 − π/2 = k0n2d2 − π/2 = (k0,m/k0 − 1)π/2 is the extra phase acquired due to the mismatch.
With this, a single pair transfer matrix becomes

M (pair) = − 1

4nr

(
(nr − 1)2 + e2iδ(nr + 1)2 (1 + e−2iδ)(n2

r − 1)
(1 + e2iδ)(n2

r − 1) (nr − 1)2 + e−2iδ(nr + 1)2

)
. (B.87)

b)More rigorously, since |λ1| = 1, we can represent it as λ1 = eiφ. For an arbitrary small precision ε we can choose N such that
|Nφ| < ε mod 2π (which is always possible, following from Dirichlet’s approximation theorem), which leads to λN1 = 1 +O(ε) and
λN2 = 1/λN1 = 1 +O(ε). However, this would mean that(

1
r

)
≈ t (a1v1 + a2v2) ,=

(
t
0

)
, (B.80)

leading to t = 1 and r = 0, i.e., DBR being perfectly transmitting for an arbitrary large N .
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The full expression for the eigenvalues and the eigenvectors are too cumbersome and not very illuminating;
instead, we can expand them to the first order in δ to get

λ1 = −nr λ2 = −1/nr

v1 =

(
−1− i 2

nr−1δ

1

)
v2 =

(
1− i 2nr

nr−1δ

1

)
.

(B.88)

From this, depending on the magnitude of nr, the reflection coefficient is

r =

{
−1− i 2

1−nr δ, 0 < nr < 1

1 + i 2nr
nr−1δ, nr > 1,

(B.89)

so the reflection phase (in the first order in δ) becomes

φ =

{ 2
1−nr δ, 0 < nr < 1
2nr
nr−1δ, nr > 1.

(B.90)

We can find the corresponding penetration depth using equation (B.34):

δL =
c

2

∂φ

∂ω
=

1

2

∂φ

∂k0
=

1

2

dδ

dk0

∂φ

∂δ
=
λ0

4

{ nr
1−nr , 0 < nr < 1

1
nr−1 , nr > 1.

(B.91)

We have used the fact that the stack is almost matched, so dδ
dk0

= n1d1 ≈ λ0/4, where λ0 = 2π/k0 is the vacuum
wavelength. Note that this expression is symmetric with respect to nr → 1/nr (which corresponds to switching
the layers’ order), that is, the penetration depth does not depend on which layer goes first.

If we account for the boundary between the first layer and the outer material with the refractive index n0,
the reflection coefficient turns into

r =

{
−1− in0

n1

2
1−nr δ, 0 < nr < 1

1 + in1
n0

2nr
nr−1δ, nr > 1,

(B.92)

and the penetration depth becomes

δL =
λ0

4

{ n0
n1

nr
1−nr , 0 < nr < 1

n1
n0

1
nr−1 , nr > 1.

(B.93)

B.5 One-dimensional propagation of acoustic waves

Here we will derive equations governing propagation of 1D longitudinal acoustic waves, and then introduce a
transfer matrix formalism (very similar to the one in section B.3) for these waves. After that, we use it to derive
the acoustic reflection coefficient for a material boundary.

B.5.1 Wave equation

We will describe a wave by its displacement profile χ(x, t). The first equation governing the wave motion is
essentially Newton’s second law applied to a tiny slab of material between x + χ(x) and x + dx + χ(x + dx).
The total mass of this slab is dm = ρ0Adx, where ρ0 is the density of a non-strained material and A is the
cross-sectional area of the wave. The acceleration of the COM of this slab is (up to first order in dx) the second

time derivative of the wave displacement: a(x) = ∂2χ
∂t2

. Finally, the net force acting on the slab can be calculated
as dF = (p(x) − p(x + dx))A, where p(x, t) is the (longitudinal) stress inside the material. This lets us write
Newton’s second law as

ρ0A
∂2χ

∂t2
dx = a(x)dm = dF = (p(x)− p(x+ dx))A, (B.94)
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which yields a partial differential equation

ρ0
∂2χ

∂t2
= −∂p

∂x
. (B.95)

The second equation relates the pressure profile p(x) to the wave displacement χ(x), and it comes from the
material properties. We assume the standard linear isotropic Young’s law

p(x) = Eε(x) = E

(
−∂χ
∂x

)
, (B.96)

where ε(x) is the compressional strain and E is the material’s Young’s modulus. Combining the equations
(B.95) and (B.96) we obtain the wave equation

∂2χ

∂t2
=
E

ρ0

∂2χ

∂x2
≡ c2

s

∂2χ

∂x2
, (B.97)

where cs ≡
√
E/ρ0 is the sound velocity in the material.

B.5.2 Energy density and energy flux

The mechanical energy of the wave consists of two parts: kinetic and potential. The kinetic energy of a slice of
material between x+ χ(x) and x+ dx+ χ(x+ dx) with a velocity v(x) = ∂χ

∂t is

dK =
dm

2
v2(x) =

ρ0

2

(
∂χ

∂t

)2

Adx. (B.98)

The potential energy can be calculated using the strain ε(x) as

dP =
E

2
ε2(x)dV =

E

2

(
∂χ

∂x

)2

Adx. (B.99)

Thus, the total energy density for a unit cross-sectional area is

us =
dK + dP

Adx
=
ρ0

2

(
∂χ

∂t

)2

+
E

2

(
∂χ

∂x

)2

. (B.100)

If we examine the time derivative of the energy density, we obtain

∂us

∂t
= ρ0

∂χ

∂t

∂2χ

∂t2
+ E

∂χ

∂x

∂2χ

∂x∂t
= ρ0c

2
s

∂2χ

∂x2

∂2χ

∂t2
+ E

∂χ

∂x

∂2χ

∂x∂t

=
∂

∂x

(
E
∂χ

∂x

∂χ

∂t

)
= −∂ps

∂x
, (B.101)

where we have defined ps = −E ∂χ
∂x

∂χ
∂t . This equation reminds one of thew general form of the 1D continuity

equation ∂ρ
∂t = − ∂j

∂x , where ρ and j are correspondingly the density and flux of some conserved quantity. From
this correspondence we can identify ps as the energy flux (per unit cross-sectional area) carried by the acoustic
waves.

A right-moving wave with frequency ω and amplitude χ0 can be expressed as χ(x, t) = χ0 sin(kx−ωt+φ0),
where k = ω/cs is the wave-vector and φ0 is an overall phase. The instantaneous energy density for this wave is

us(x, t) =
χ2

0

2

(
ρ0ω

2 + Ek2
)

sin2(kx− ωt+ φ0)

= ρ0ω
2χ2

0 sin2(kx− ωt+ φ0), (B.102)
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and after averaging over the wave period it becomes

us(x) =
ρ0ω

2

2
χ2

0. (B.103)

We can write similar expressions for the energy flux:

ps(x, t) = χ2
0Ekω cos2(kx− ωt+ φ0) = Zω2χ2

0 cos2(kx− ωt+ φ0) (B.104)

ps(x) =
Zω2

2
χ2

0, (B.105)

where

Z =
E

cs
=
√
Eρ0 = csρ0 (B.106)

is the acoustic impedance.

B.5.3 Boundary conditions

An interface between two materials should satisfy two conditions. First, the wave displacement should be the
same:

χ(`) = χ(r), (B.107)

where χ`,r are the displacement profiles on the left and on the right side of the boundary respectively. Second,
we assume that the boundary does not produce any additional stress, so the pressure on both sides should also
be the same:

−E(`)∂χ
(`)

∂x
= p(`) = p(r) = −E(r)∂χ

(r)

∂x
. (B.108)

B.5.4 Transfer matrix description for sound

Given the wave equation and the boundary conditions, we can apply exactly the same transfer matrix approach
that we used for light (section B.3) to the sound waves. Similarly to the EM waves definition (B.35), we define
a sound transfer matrix as describing a relation between the sound amplitudes χ on the left and on the right
side of an object: (

χ
(r)
→

χ
(r)
←

)
= M ·

(
χ

(`)
→

χ
(`)
←

)
. (B.109)

Given this definition, the propagation matrix looks exactly the same as for the light (B.36):

M (p)(k, d) =

(
eikd 0
0 e−ikd

)
. (B.110)

The only difference is the relation between the wave-vector and the frequency k = ω/cs.
The boundary transfer matrix can be calculated using the boundary conditions (B.107), (B.108), and it is

slightly different than (B.43)

M (b)(Z(rel)) =
1

2Z(rel)

(
1 + Z(rel) 1−Z(rel)

1−Z(rel) 1 + Z(rel)

)
, (B.111)

with Z(rel) = Z(r)/Z(`), where Z(r,`) are the acoustic impedances of the two media.c)

c)To regain the same expression as (B.43) we would need to define transfer matrices in terms of pressure p(x, t) instead of
displacement χ(x, t).
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Now we can use relations (B.55) and (B.56) to calculate the amplitude transmissions and reflection coeffi-
cients for a material boundary:

t(b) =
2

Z(rel) + 1
(B.112)

r(b) =
Z(rel) − 1

Z(rel) + 1
. (B.113)

Note that |t(b)|2 + |r(b)|2 6= 1, since the reflected and transmitted waves travel in different media. To accom-
modate for that, we can define the power reflection and transmission coefficients which take the impedance
difference into account:

T (b) = |t(b)|2Z
(r)

Z(`)
=

4Z(rel)

(Z(rel) + 1)2
(B.114)

R(b) = |r(b)|2 =
(Z(rel) − 1)2

(Z(rel) + 1)2
. (B.115)

These coefficients describe the powers in respectively the transmitted and the reflected waves relative to the
incident power, and with these it is easy to show that the energy is conserved: T (b) +R(b) = 1.

B.5.5 Interaction with a movable boundary

Figure B.3: Schematic an acoustic wave reflecting off a movable boundary.

Now let us consider a different kind of boundary, which can potentially be moving (e.g., a suspended plate
inside a liquid). We will assume it to be thin enough compared to the sound wavelength (inside the boundary
material), so we can approximate it as an infinitely thin layer. We will denote its displacement from the
equilibrium position as x.

The boundary conditions can be written in the same way as in subsection B.5.3. First, the wave displacement
is still the same on both sides; furthermore, the layer displacement is also the same:

χ(`) = χ(r) = x. (B.116)
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Second, we need to connect the pressures on the two sides. Since the boundary can exert force, these
pressures are no longer equal. However, we will assume that this pressure differential is proportional to the
boundary displacement with some proportionality coefficient K̃: ∆p = p(`) − p(r) = K̃x. For example, if the
boundary is a plate on a spring with a spring constant per unit area kS , we have simply K̃ = kS , and if it is a
free mass with a surface mass density σ, we have K̃ = −σω2. Keeping the proportionality coefficient general,
we can write

−E∂χ
(`)

∂x
+ E

∂χ(r)

∂x
= p(`) − p(r) = K̃x, (B.117)

where we assume that the media is the same on both sides of the boundary, so that E(`) = E(r) = E. In terms
of incident and reflected wave amplitudes, boundary conditions (B.116) and (B.117) can be rewritten as

χ(`)
→ + χ(`)

← = χ(r)
→ + χ(r)

← (B.118)

ikE(−χ(`)
→ + χ(`)

← + χ(r)
→ − χ(r)

← ) = K̃(χ(`)
→ + χ(`)

← ). (B.119)

This results in a transfer matrix

M (mb)(K̃) =

(
1 + iξ iξ
−iξ 1− iξ

)
, (B.120)

where ξ = −K̃/(2kE) = −K̃/(2ωZ) is the “strength” of the barrier. Note the similarity to the transfer matrix
of a dielectric layer (equation (B.44)). It allows us to easily calculate the power transmission coefficient using
equation (B.51):

T (mb) =
1

1 + ξ2
=

1

1 +
(
K̃/(2ωZ)

)2 . (B.121)
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Appendix C

General optics derivations

C.1 Optical detection description

In this section I discuss basics of the photocurrent statistic and the heterodyne measurements. These derivations
are used in calculation of the sideband signatures in the photocurrent power spectral density (PSD) in section
7.2, and in the laser noise measurement analysis (section C.2).

I start by quickly introducing the normal ordering approach to the photocurrent correlators, and then I use
it to derive general equations for the power spectral density (PSD) and the correlator of the photocurrent.

C.1.1 General photocurrent expression

Standard photodetection theory [179] states that, given an optical field âdet landing on the photodetector, the
(time-dependent) autocorrelator of the photocurrent i(t) can be calculated as

Cii(t, τ) ≡ 〈i(t+ τ/2)i(t− τ/2)〉

= G2
〈

: â†det(t+ τ/2)âdet(t+ τ/2)â†det(t− τ/2)âdet(t− τ/2) :
〉

+G2
〈
â†det(t)âdet(t)

〉
δ(τ), (C.1)

where G is the photodetector gain (for an ideal unamplified photodiode this gain is equal to e, the electron
charge) and :: denotes normal and time ordering. The first term in the expression (C.1) corresponds to the
“classical” part of the autocorrelator, arising from the time-varying field amplitude. The second term arises from
the autocorrelator of the individual photon pulses (which are described by the δ-function in the assumption
of infinite photodetector bandwidth), and thus represents the shot noise. Note that since i(t) is simply a
photocurrent, we take it to be classical and real, so Cii(t, τ) is real and symmetric in τ (see appendix A.2.3).

In the same description the mean photocurrent is simply proportional to the average photon flux:

〈i〉(t) = G
〈
â†det(t)âdet(t)

〉
. (C.2)

C.1.2 Heterodyne measurements and photocurrent PSD

Now we consider heterodyne detection. Let us denote the signal optical field as âsig(t) and the optical local
oscillator (OLO) as aOLOe

−iωOLOt, where aOLO is its amplitude and ωOLO is its frequency. This makes the field
incident on the photodiode (after combining with the OLO) âdet = aOLOe

−iωOLOt + âsig(t). One should keep in
mind that in the frame of the signal field we might have ωOLO < 0, since this results in an intuitive picture of
the photocurrent spectrum being just a shifted copy of the optical spectrum; the opposite case where the OLO
frequency is higher than the sidebands frequency is less convenient, since it leads to the photocurrent spectrum
being flipped compared to the optical one.
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If we substitute this expression for âdet into equation (C.1) and expand up to second order in âsig (keeping
in mind that the first order terms average to zero), we get

Cii(t, τ) ≈ G2|aOLO|4 +G2|aOLO|2
(〈
â†sig(t+ τ/2)âsig(t+ τ/2)

〉
+
〈
â†sig(t− τ/2)âsig(t− τ/2)

〉)
+G2|aOLO|2

(
e−iωOLOτ

〈
â†sig(t+ τ/2)âsig(t− τ/2)

〉
+ eiωOLOτ

〈
â†sig(t− τ/2)âsig(t+ τ/2)

〉)
+G2(aOLO)2e−2iωOLOt

〈
: â†sig(t+ τ/2)â†sig(t− τ/2) :

〉
+G2(a∗OLO)2e2iωOLOt〈: âsig(t+ τ/2)âsig(t− τ/2) :〉
+G2|aOLO|2δ(τ). (C.3)

The first line in equation (C.3) is the DC component of the correlator, which is not relevant to the optical
spectrum, and can be ignored. The next three lines reflect beating of the outgoing cavity field with the LO.
Finally, the last line represents the unavoidable detector shot noise.

First, let us consider the time-averaged PSD of the photocurrent, which is defined using the generic PSD
expression (A.3) from appendix A.1:

Sii[ω] ≡ Sii(t, ω) =

∫ +∞

−∞
Cii(t, τ)eiωτdτ, (C.4)

where Sii(t, ω) and Cii(t, τ) denote that these quantities are averaged over the central time t. We assume that
the correlators of the input field are stationary (or at least do not have components at 2ωOLO), and that the
integration time is long enough that we can set e2iωOLOt = 0. In this case, only the second and the last line in
the correlator contribute to the PSD above, which can be re-expressed as

Sii[ω] = G2|aOLO|2
(
S
â†sig,âsig

[ω − ωOLO] + S
â†sig,âsig

[−ω − ωOLO] + 1

)
, (C.5)

where the spectrum of the outgoing field is calculated in the usual way:

S
â†sig,âsig

[ω] =
〈
â†sig[ω]âsig[−ω]

〉
. (C.6)

C.2 Laser noise

In this section I will consider a general description of classical laser noise, its behavior under linear transforma-
tions (such as cavity filtering, delay, or self-interference) and the way to measure it using quadratic detectors
such as photodiodes. These results are later used in the description of the laser noise measurement procedure
appendix D.4.

C.2.1 Definitions

We start with a generic expression for a single laser tone with amplitude aL and frequency ωL: a(t) = aLe
−iωLt.

Next, we add classical noise which in the frame rotating at ωL is represented by a complex random variable
ζ(t):

a(t) = (aL + ζ(t))e−iωLt. (C.7)

Many sources produce noise which is proportional to the total power, and any subsequent attenuation affects
the main tone and the classical noise in the same way. Thus, it is more convenient to describe the noise by
its amplitude relative to the main tone ζrel(t) = ζ(t)/aL. Such description also allows us to easily separate
the noise into an amplitude quadrature ζx and a phase quadrature ζy by setting ζrel(t) = ζx(t) + iζy(t), which
produces the expression for the light amplitude

a(t) = aL(1 + ζx(t) + iζy(t))e−iωLt. (C.8)
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Each of the noise variables ζx, ζy represents only one noise quadrature, so both of them are real.
Now we need to make some simplifying assumption about the noise. First, let us assume that both amplitude

and phase noises are random, stationary, Gaussian and have zero mean. This means that they are fully
characterized by their second-order correlation functions〈

ζx(t)ζx(t′)
〉
≡ Cxx(t− t′) (C.9)〈

ζx(t)ζy(t′)
〉
≡ Cxy(t− t′) (C.10)〈

ζy(t)ζy(t′)
〉
≡ Cyy(t− t′). (C.11)

Since ζx and ζy are real variables, all of those correlators also end up being real; additionally, Cxx and Cyy

are symmetric in time. Being classical variables, ζx and ζy also obey Cauchy-Schwartz inequality: |Cxy(τ)|2 ≤
Cxx(τ)Cyy(τ).

Second, we assume that the total noise power is small compared to the signal power: Cxx(0) ≡
〈
ζ2

x

〉
� 1

and Cyy(0) ≡
〈
ζ2

y

〉
� 1. This will later let us drop quartic terms when calculating power spectral density of a

quadratic detector output.a)

Finally, we can move into the Fourier domain (see appendix A.2) by defining (noise) Fourier transforms
ζx[ω] and ζy[ω], and corresponding power spectral densities and cross-correlators

〈ζx[ω]ζx[−ω]〉 = Sxx[ω] (C.12)

〈ζx[ω]ζy[−ω]〉 = Sxy[ω] (C.13)

〈ζy[ω]ζy[−ω]〉 = Syy[ω]. (C.14)

Since Cxx and Cyy are real and symmetric, so are the power spectral densities Sxx and Syy. The cross-correlator
Sxy obeys a weaker relation Sxy[−ω] = (Sxy[ω])∗, and the flipped-order correlator can be expressed as

Syx[ω] ≡ 〈ζy[ω]ζx[−ω]〉 = Sxy[−ω] = (Sxy[ω])∗. (C.15)

C.2.2 Quadratic detection

Now, let us consider detection of such a noisy laser by an ideal photodiode, for which we start by applying
expressions (C.1) and (C.2) to a classical field with an amplitude a(t). This results in a mean photocurrent
which is simply proportional to a square of the amplitude:

〈i〉 = G
〈
|a(t)|2

〉
, (C.16)

and a photocurrent correlator expressed as

Cii(t− t′) ≡
〈
i(t)i(t′)

〉
= G2

〈
|a(t)|2|a(t′)|2

〉
+G2

〈
|a(t)|2

〉
δ(t− t′), (C.17)

where the second δ-correlated term describes the shot noise of the photodetector. Both of the expressions above
(barring the shot noise term) can also be obtained by simply postulating that the photocurrent is proportional
to the photon flux i(t) = G|a(t)|2.

We can simplify expressions (C.16) and (C.17) if the laser amplitude can be expressed as a(t) = aL(1 +
ζrel(t))e

−iωLt (where aL and ζrel(t) are not necessarily equal to the non-transformed laser amplitude and noise
in the expression (C.7)) and if we assume small laser noise:

〈i〉 = G
〈
|aL(1 + ζ(t))|2

〉
= G|aL|2 +G|aL|2〈ζ∗(t)ζ(t)〉 ≈ G|aL|2 (C.18)

Cii(t− t′) = G2
〈
|aL(1 + ζ(t))|2|aL(1 + ζ(t′))|2

〉
+G2

〈
|aL(t)|2

〉
δ(t− t′)

≈ G2|aL|4 +G2|aL|4
(〈
ζ∗(t)ζ(t′)

〉
+ c.c.

)
+G2|aL|4

(〈
ζ∗(t)ζ∗(t′)

〉
+ c.c.

)
+G2|aL|2δ(t− t′) (C.19)

a)There is an additional assumption required to justify writing the laser field as a perfect wave in equation (C.7): the laser linewidth
should be small compared to other frequency scales. This implies that, e.g., the propagation delay difference τd in subsection C.2.6
is much smaller than the laser coherence time, or that the cavity linewidth in C.2.7 is much larger than the intrinsic laser linewidth.
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Since the second expression is at most quadratic in ζ, it can be easily recast into the corresponding expression
for the power spectral density of the photocurrent:

Sii[ω] = G2|aL|4 (〈ζ∗[ω]ζ[−ω]〉+ 〈ζ[ω]ζ∗[−ω]〉+ 〈ζ[ω]ζ[−ω]〉+ 〈ζ∗[ω]ζ∗[−ω]〉)
+G2|aL|2. (C.20)

C.2.3 Direct detection of a noisy laser

For the non-transformed laser field (C.8) the mean photocurrent is

〈i〉 = G|aL|2, (C.21)

and the noise correlators are

〈ζ∗[ω]ζ[−ω]〉 = 〈(ζx[ω]− iζy[ω])(ζx[−ω] + iζy[−ω])〉
= Sxx[ω] + Syy[ω]− 2Im {Sxy[ω]} (C.22)

〈ζ[ω]ζ∗[−ω]〉 = Sxx[ω] + Syy[ω] + 2Im {Sxy[ω]} (C.23)

〈ζ[ω]ζ[−ω]〉 = 〈(ζx[ω] + iζy[ω])(ζx[−ω] + iζy[−ω])〉
= Sxx[ω]− Syy[ω] + 2iRe {Sxy[ω]} (C.24)

〈ζ∗[ω]ζ∗[−ω]〉 = Sxx[ω]− Syy[ω]− 2iRe {Sxy[ω]}, (C.25)

which results in the photocurrent PSD

Sii[ω] = G2|aL|4 (2Sxx[ω] + 2Syy[ω]) +G2|aL|4 (2Sxx[ω]− 2Syy[ω]) +G2|aL|2

= G2|aL|2
(
4|aL|2Sxx[ω] + 1

)
. (C.26)

As one could expect, only the amplitude noise correlator shows up in the photocurrent power spectral density.
Given expression (C.26), we define the laser to be “amplitude shot noise limited” at a frequency ω if the

classical noise is equal to the shot noise in the photocurrent, i.e., when |aL|2Sxx[ω] = 1/4. Similarly, the laser
is said to be “phase shot noise limited” if |aL|2Syy[ω] = 1/4. Both of these criteria can also be described in

terms of a “shot noise limited power” P
(xx)
L,SN = ~ωL/(4Sxx[ω]) (and the same for P

(yy)
L,SN), which is the power for

which the classical laser noise equals the shot noise. The higher the relative classical noise Sxx, Syy, the lower
the shot noise limited power, i.e., the more attenuated the laser has to be in order for the classical noise to be
equal to the shot noise.

C.2.4 Effects of linear transformations

Now we consider how a linear transformation of the laser field affects the results (C.21), (C.26). We characterize
the linear transformation by its Fourier transfer function K[ω], which multiplies both the main laser tone and
the noise. This changes the laser amplitude to aLK[0] and transforms the noise into

ζK [ω] = K[ω]ζ[ω] (C.27)

ζ∗K [ω] = (K[−ω])∗ζ∗[ω] (C.28)
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(note the minus sign in the second line, which comes from our convention for the Fourier transform conjugating),
which turns the noise correlators (C.22)-(C.25) into

〈ζ∗K [ω]ζK [−ω]〉 = |K[−ω]|2〈ζ∗[ω]ζ[−ω]〉
= |K[−ω]|2 (Sxx[ω] + Syy[ω]− 2Im {Sxy[ω]}) (C.29)

〈ζK [ω]ζ∗K [−ω]〉 = |K[ω]|2〈ζ[ω]ζ∗[−ω]〉
= |K[ω]|2 (Sxx[ω] + Syy[ω] + 2Im {Sxy[ω]}) (C.30)

〈ζK [ω]ζK [−ω]〉 = (K[ω]K[−ω]) 〈ζ[ω]ζ[−ω]〉
= (K[ω]K[−ω]) (Sxx[ω]− Syy[ω] + 2iRe {Sxy[ω]}) (C.31)

〈ζ∗K [ω]ζ∗K [−ω]〉 = (K[ω]K[−ω])∗ 〈ζ∗[ω]ζ∗[−ω]〉
= (K[ω]K[−ω])∗ (Sxx[ω]− Syy[ω]− 2iRe {Sxy[ω]}) . (C.32)

These transformations, in turn, lead to new expressions for the mean photocurrent

〈i〉 = G|K[0]|2|aL|2 (C.33)

and for its power spectral density

Sii[ω] = G2|aL|4
{
|K[0]|2(|K[ω]|2 + |K[−ω]|2)(Sxx[ω] + Syy[ω])

−2|K[0]|2(|K[ω]|2 − |K[−ω]|2)Im {Sxy[ω]}
+
(
(K[0])2(K[ω]K[−ω])∗ + c.c.

)
(Sxx[ω]− Syy[ω])

−2i
(
(K[0])2(K[ω]K[−ω])∗ − c.c.

)
Re {Sxy[ω]}

}
+G2|aL|2|K[0]|2. (C.34)

By introducing a “beatnote” transfer function K̃[ω] = K[ω](K[0])∗ we can simplify the power spectral density:

Sii[ω] = G2|aL|4
{∣∣∣K̃[ω] + (K̃[−ω])∗

∣∣∣2 Sxx[ω]

+
∣∣∣K̃[ω]− (K̃[−ω])∗

∣∣∣2 Syy[ω]

+
((
K̃[ω] + (K̃[−ω])∗

)(
(K̃[ω])∗ − K̃[−ω]

)
Sxy[ω] + c.c.

)}
+G2|aL|2|K[0]|2. (C.35)

It can be seen that, in general, all the noise correlators contribute to the photocurrent PSD, so it can be used
to measure all the noise properties (given an appropriate transformation K[ω]).

One special case is the transformations whose “beatnote” transfer function is real in the time domain:

Im
{
K̃(τ)

}
= 0. Examples of such transformation are: constant phase shift (K̃(τ) = δ(τ)), time delay (K̃(τ) =

δ(τ − τ0)) or attenuation (K̃(τ) = α2, where α is the real attenuation factor). In that case the Fourier transfer
function satisfies the condition K̃[−ω] = (K̃[ω])∗, and the expression (C.35) is greatly simplified:

Sii[ω] = G2|aL|2|K[0]|2
(
4|aL|2|K[ω]|2Sxx[ω] + 1

)
. (C.36)

As in the direct detection case (C.26), the photocurrent PSD reveals only the properties of the amplitude noise.

C.2.5 Power dependence

It is useful to inspect how the photocurrent power spectral density changes if the laser is attenuated, for which
we consider a simple case of frequency-independent transformation K[ω] = α. Since this transformation clearly
satisfies the criterion K[−ω] = (K[ω])∗, the resulting PSD can be found using expression (C.36):

Sii[ω] = G2α2|aL|2
(
4α2|aL|2Sxx[ω] + 1

)
. (C.37)

128



At the same time, the mean photocurrent (C.35) is simply proportional to α2: 〈i〉 = Gα2|aL|2. Thus, the shot
noise contribution to the PSD is proportional to the mean current (α2), while the classical noise contribution
is proportional to the square of the current (i.e., α4). This provides a simple practical way to separate the two
noise contributions by varying the power landing on the photodetector, as described in appendix D.4.1.

C.2.6 Delay line phase noise measurement

Now we can consider the laser noise measurements using an optical delay line. The core of the measurement
setup is a Mach-Zehnder interferometer with an optical delay line in one arm, as shown in Figure D.8. To
describe the interferometer, let us denote the first beam-splitter ratio as α1 : β1, the second beam-splitter ratio
as α2 : β2, the time delay as τd and the phase difference between the two arms (at the main tone frequency) as
δφ.

The light traveling in the first arm of the interferometer acquires a total attenuation α = α1α2. The light
in the second arm similarly experiences attenuation by a factor of β = β1β2, but in addition it acquires a phase
difference factor e−iδφ and a time delay, which manifests as a frequency-dependent phase shift e−iωτd . After
recombining, the total transfer function of the interferometer can be expressed as

Kd[ω] = α+ βe−iδφe−iωτd , (C.38)

which leads to the beatnote transfer function

K̃d[ω] = α2 + β2e−iωτd + αβ(e−iδφ−iωτd + eiδφ). (C.39)

The output of the interferometer then lands on a photodiode, producing a mean photocurrent

〈i〉 = G2|aL|2|α+ βe−iδφ|2 = G2|aL|2(α2 + 2αβ cos δφ+ β2). (C.40)

The power spectral density can be found from expression (C.35):

Sii[ω] = G2|aL|4
{

4
(
α2(α+ β cos δφ)2 + β2(β + α cos δφ)2

)
Sxx[ω]

+8αβ(α+ β cos δφ)(β + α cos δφ) cos(ωτd)Sxx[ω]

+8(αβ sin δφ)2(1− cos(ωτd))Syy[ω]

+4Re
{
iαβ sin δφ(α(α+ β cos δφ) + β(β + α cos δφ)e−iωτd)(1− e−iωτd)Sxy[ω]

}}
+G2|aL|2(α2 + 2αβ cos δφ+ β2). (C.41)

If the interferometer is balanced (α = β = 1/2), this expression simplifies to

Sii[ω] = G2|aL|4
{

4 cos4(δφ/2) cos2(ωτd/2)Sxx[ω]

+4 cos2(δφ/2) sin2(δφ/2) sin2(ωτd/2)Syy[ω]

+4 cos3(δφ/2) sin(δφ/2) cos(ωτd/2) sin(ωτd/2)Re {Sxy[ω]}
}

+G2|aL|2 cos2(δφ/2). (C.42)

There are two complementary approaches that we can take regarding δφ. In one, we can assume that the
the interferometer is stable (or is actively stabilized), so that δφ has some fixed value. In the other approach,
which we chose to implement in the measurements described in appendix D.4, the phase difference is fluctuating
by a magnitude much greater than 2π. This effectively averages the expressions above over all δφ, leading to
the average photocurrent

〈i〉 = G2|aL|2(α2 + β2) (C.43)

and reduces equation (C.41) to

Sii[ω] = G2|aL|4
{

4
(
α4 + α2β2(1 + 3 cos(ωτd)) + β4

)
Sxx[ω]

+4α2β2(1− cos(ωτd))Syy[ω]
}

+G2|aL|2(α2 + β2), (C.44)
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and equation (C.42) to

Sii[ω] = G2|aL|4
{

3

2
cos2(ωτd/2)Sxx[ω] +

1

2
sin2(ωτd/2)Syy[ω]

}
+

1

2
G2|aL|2. (C.45)

This expression shows that the sensitivity of the delay line measurement to different kinds of noise depends
on the noise frequency: for ω = 2πn/τd the setup only measures amplitude noise (as sin2(πn) = 0), while
for ω = 2π(n + 1/2)/τd it only measures phase noise (as cos2(πn + π/2) = 0), and for other frequencies it
measures some linear combination of the two. Note that neither the balanced interferometer expression (C.42)
nor the averaged phase expression (C.44) are sensitive to the noise cross-correlation Sxy; nevertheless, the
Cauchy-Schwartz inequality |Sxy[ω]|2 ≤ Sxx[ω]Syy[ω] provides us with the upper bound.

C.2.7 Cavity reflection

Another way of estimating laser noise is by reflecting it off an optical cavity. Consider a cavity of linewidth κ,
external coupling efficiency ηκ ≡ κext/κ (where κext in the coupling rate through the input port), and detuning
∆ from the main laser tone. The reflection transfer function of such cavity is (from equation (2.31) in section
2.1)

Kcav[ω] = 1− 2ηκχc,rel[ω + ∆] (C.46)

χc,rel[ω] =
1

1− 2iω/κ
. (C.47)

For simplicity, we will only consider a far-detuned case |∆| � κ, where we can approximate Kcav[0] =
1 + iηκκ/∆ ≈ 1 and, consequently, K̃cav[ω] = Kcav[ω](Kcav[0])∗ ≈ Kcav[ω]. Furthermore, we assume a negative
detuning: ∆ = −∆0 < 0, so similarly K̃cav[−ω] ≈ 1 for all ω > 0. With these simplifications, the photocurrent
PSD becomes

Sii[ω] = G2|aL|4
{
|2− 2ηκχc,rel[ω −∆0]|2 Sxx[ω] + |2ηκχc,rel[ω −∆0]|2 Syy[ω]

+ ((2− 2ηκχc,rel[ω −∆0]) (2ηκχc,rel[ω −∆0])∗Sxy[ω] + c.c.)}+G2|aL|2

= G2|aL|4
{

4
(
1− (2ηκ − η2

κ)|χc,rel[ω −∆0]|2
)
Sxx[ω]

+4η2
κ |χc,rel[ω −∆0]|2 Syy[ω]

+8(ηκ − η2
κ)|χc,rel[ω −∆0]|2Re {Sxy[ω]}

+8(2(ω −∆0)/κ)|χc,rel[ω −∆0]|2Im {Sxy[ω]}
}

+G2|aL|2. (C.48)

For positive detuning ∆ = +∆0 the expression is essentially the same, but with an additional minus sign in
front of the Re {Sxy[ω]} term. Thus, these two measurements (positive and negative ∆), together with a simple
power detection to determine Sxx, are enough to fully characterize the classical noise.

C.3 Phase modulation

In this section I present a brief treatment of the phase modulation. I start with a general description (subsection
C.3.1), and then discuss the influence of the phase modulation on the heterodyne measurements (subsection
C.3.2), which is useful in understanding the way we perform driven response measurements (both the optical
cavity response, and mechanical mode response via OMIT/A). Then I describe how the intrinsic non-linearity
of the phase modulation influences the OMIT/A and the undriven mechanical motion measurements,and how
we account for it in the data analysis (subsection C.3.3). I conclude by describing how the phase modulation is
used to produce a more generic kind of modulation (subsection C.3.4), which is important in understanding of
our method of adjusting the laser frequency for locking it to the experimental cavity (appendix D.2).
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C.3.1 General representation

We denote the incident optical tone by aLe
−iωLt, and a set of microwave tones by Vn cos(νnt), where Vn are

the microwave amplitudes and νn are the corresponding microwave frequencies. The output of the modulator
is then expressed as

aφ = aLe
−iωLtei

∑
n(πVn/Vπ(νn)) cos(νnt)

= aLe
−iωLt

∏
n

ei(πVn/Vπ(νn)) cos(νnt) ≡ aLe
−iωLt

∏
n

eiψn cos(νnt), (C.49)

where Vπ(νn) is the (frequency-dependent) voltage at which the phase inside the modulator changes by π, and
ψn ≡ πVn/Vπ(νn) is the microwave tone voltage normalized by Vπ.

Next, we use the Jacobi-Anger expansion for the exponents

eiψn cos(νnt) =

+∞∑
n=−∞

(−i)nJn(ψn)e−inνnt, (C.50)

where Jn(z) is nth Bessel function of the first kind. With this, the output laser becomes

aφ = aLe
−iωLt

∏
n

[
+∞∑

n=−∞
(−i)nJn(ψn)e−inνnt

]
≡ e−iωLt

∑
k

ake
−iνkt, (C.51)

where νk are all possible intermodulation frequencies resulting from the νn, and ak are the corresponding
amplitudes which should be calculated using equation (C.51).

If the microwave drive has only one tone with the amplitude V0 and the frequency ν0, the output becomes

aφ =
+∞∑

n=−∞
(−i)naLJn(ψ0)e−i(ωL+nν0)t, (C.52)

where ψ0 = πV0/Vπ(ν0).

C.3.2 Heterodyne detection

The fact that the phase modulation can not be observed directly has interesting consequences for heterodyne
detection. Imagine performing heterodyne cavity response measurement by using a phase modulator, as shown
in Figure C.1. There the light from the laser goes through a phase modulator driven by the output of a VNA
(the drive amplitude is assumed to be small compared to Vπ). One of the sidebands acquired in the modulator
(the upper sideband in Figure C.1b) serves as a probe, while the carrier acts an OLO. The light is then incident
on the cavity, reflected, and detected using the photodiode. Finally, the output of the photodiode is sent back
into the VNA.

If the amplitude of the drive is small, we can assume that there are only two sidebands generated in the
modulator, that is, |Jn(ψ0)|2 ≈ 0 for |n| > 1. Then the amplitude of the light leaving the modulator and
incident on the cavity can be expressed as

ainc = aLJ0(ψ0)e−iωLt − iaLJ1(ψ0)
(
e−i(ωL+ν0)t + e−i(ωL−ν0)t

)
= aL,0e

−iωLt + aL,1e
−i(ωL+ν0)t + aL,1e

−i(ωL−ν0)t, (C.53)

where aL,0 = aLJ0(ψ0) is the carrier amplitude and aL,1 = −iaLJ1(ψ0) is the sidebands amplitude
The reflection off the cavity can be decomposed into two parts. First is the prompt reflection, which is simply

equal to the incident field. The second is the light which interacts with the cavity and then leaves it through
the input mirror. Now, consider the case where the carrier (i.e., OLO) is far detuned from the cavity, and only
the upper sideband is ever close to the resonance (as shown in Figure C.1b). Since only this upper sideband
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a)

b)

Figure C.1: a) Setup schematic for a heterodyne measurement using a phase modulator. b) Optical tone
configuration for the measurement shown in (a).

interacts with the cavity, we can assume that the other two beams are simply reflected, and approximate the
reflected light amplitude as

arefl = aL,0Kcav[∆]e−iωLt + aL,1Kcav[∆ + ν0]e−i(ωL+ν0)t + aL,1Kcav[∆− ν0]e−i(ωL−ν0)t

≈ aL,0e
−iωLt + aL,1 (1− 2ηκχc,rel[∆ + ν0]) e−i(ωL+ν0)t + aL,1e

−i(ωL−ν0)t

= ainc − 2aL,1ηκχc,rel[∆ + ν0]e−i(ωL+ν0)t ≡ ainc + arefl,cav, (C.54)

where ∆ is the carrier detuning from the cavity and Kcav is defined in (C.46). Thus, the reflected light is the
same as the incident light, with the addition of arefl,cav = −2aL,1ηκχc,rel[∆ + ν0]e−i(ωL+ν0)t coming from the
interaction of the upper sideband with the cavity.

Upon landing on the photodiode, this field produces a photocurrent

〈i〉 = G2|arefl|2 = G2|ainc|2 +G2(a∗incarefl,cav + ainca
∗
refl,cav) +G2|arefl,cav|2, (C.55)

where G is the photodetector gain, as described in subsection C.2.2. Assuming the ideal heterodyne detection
(OLO power much higher than the signal power), we can neglect the last term which is quadratic in aL,1. The
first term is simply a constant |ainc|2 = |aL|2, since the phase modulation does not manifest in the intensity.
Thus, the only beatnote contribution comes from the middle term. If we are interested in the photocurrent
at frequencies close to ν0, we only need to consider the beatnote between the carrier and the sideband (thus
neglecting the beatnote of the two sidebands), which leads to the oscillating part of the photocurrent:

〈i〉 ≈ G2a∗incarefl,cav + c.c. = −2G2a∗L,0aL,1ηκχc,rel[∆ + ν0]e−iν0t + c.c. (C.56)

Therefore, the response measured by the network analyzer, which is the complex amplitude of the e−iν0t term
in the photocurrent, is simply proportional to the cavity susceptibility. This is in contrast with the standard
heterodyne detection (which can be achieved by, e.g., replacing the phase modulator with a single-sideband
modulator), where this response would have had an additional constant background a∗L,0aL,1 coming from
the beating of the promptly reflected sideband with the LO. In the phase modulator heterodyne scheme this
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Figure C.2: Comparison of the phase modulation (left) and the single-sideband modulation (right) for the
heterodyne detection of the optical cavity response. The top row shows the magnitude of the heterodyne
beatnote, the middle row shows its phase, and the bottom row plots the heterodyne signal in a complex
plane.

background is effectively canceled by an equal and opposite beatnote of the other promptly reflected sideband
with the same LO. Figure C.2 compares the two heterodyne schemes.

The treatment above can be extended to an arbitrary cavity output field arefl,cav =
√
κexta, where κext is

the external cavity coupling and a is the intracavity field. In this case, the beatnote part of the photocurrent is

〈i〉 ≈ G2a∗L,0
(√
κextae

+iωLt
)

+ c.c. (C.57)

Hence, the phase modulator heterodyne scheme cancels all of the promptly reflected light effects and provides
a signal which is directly proportional to the intracavity field.
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C.3.3 Non-linearity effects

General treatment

Another effect coming from the use of a phase modulator stems from its intrinsic non-linearity. It manifests
in, e.g., equation (C.51), where the output of the modulator contains all possible intermodulation frequencies,
i.e., all linear combinations of drive frequencies with integer coefficients. Normally, the drives are weak enough
that it is sufficient to only consider first-order sidebands (as in subsection C.3.2). However, in some of the
OMIT/A and undriven motion measurements described in Chapters 6 and 8 (generally, the ones with the
highest control beam power or circulating photon number) the amplitudes of the control MW tones were large
enough (V0 ≈ 0.2Vπ) that the non-linearity could not be ignored.

To describe its effects in a most generic way, we start with equation (C.51) and assume an arbitrary set of
MW tones with frequencies νn and normalized amplitudes ψn. Next, we consider all of these beams (including
the carrier) landing on the cavity. To describe the optomechanical system dynamics, we use equations of motion
(2.49) and (2.50):

˙̂a = −κ
2
â− ig(0)â

(
b̂+ b̂†

)
+
√
κintξ̂int +

√
κextξ̂ext +

√
κextaine

+iωc0t (C.58)

˙̂
b = −

(γm

2
+ iωm

)
b̂− ig(0)â†â+

√
γmη̂, (C.59)

with the incident optical drive ain given by equation (C.51).
In the frame rotating at the cavity frequency ωc the incident optical field becomes ain =

∑
k ake

−i∆kt, where
∆k = ωL + νk − ωc is the detuning of the kth phase modulator tone with amplitude ak and frequency (relative
to the carrier) νk.

As in subsection 2.3.2, next we linearize these equations. The steady state amplitude of the intracavity field
isb)

ā =
∑
k

āke
−i∆kt (C.60)

āk =
√
κextakχc[∆k], (C.61)

where χc[ω] = (κ/2 − iω)−1 is the cavity susceptibility. This amplitude results in a force on the mechanical
oscillator given by

F̄RP = g(0)ā∗ā = g(0)
∑
k

∑
n

ākā
∗
ne
−i(∆k−∆n)t. (C.62)

Next, we consider the linearized optical equation

˙̂
d = −κ

2
d̂− ig(0)ā

(
b̂+ b̂†

)
+
√
κintξ̂int +

√
κextξ̂ext

= −κ
2
d̂− ig(0)

∑
k

āke
−i∆kt

(
b̂+ b̂†

)
+
√
κintξ̂int +

√
κextξ̂ext. (C.63)

Its solution in the Fourier domain can be separated into a motional part d̂ẑ (which is found using Fourier
transform properties described in appendix A.2.3) and a vacuum noise part d̂ξ̂:

d̂[ω] = d̂ẑ[ω] + d̂ξ̂[ω] (C.64)

d̂ẑ[ω] = −ig(0)χc[ω]
∑
k

āk

(
b̂[ω −∆k] + b̂†[ω −∆k]

)
(C.65)

d̂ξ̂[ω] = χc[ω]
√
κξ̂[ω] (C.66)

b)As in subsection 7.1.2, we neglect the static mechanical displacement due to a static radiation pressure force.
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The contribution of the mechanical motion part d̂ẑ to the mechanical force is

F̂ẑ = −ig(0)(ā∗d̂ẑ + ād̂†ẑ)

=
(
g(0)
)2∑

k

∑
n

ākā
∗
n (χc[ω −∆k]− χc[ω + ∆n])×

×
(
b̂[ω + ∆n −∆k] + b̂†[ω + ∆n −∆k]

)
. (C.67)

Now we can make a couple of simplifying assumptions. First, we note that b̂[ω] is centered around ω = +ωm,eff ,

while b̂†[ω] is located around ω = −ωm,eff . This means that they will be coupled only by terms rotating at
∼ 2ωm,eff , i.e., for |∆k −∆n| ≈ 2ωm,eff (satisfied with a precision ∼ γm,eff). In our case, these terms should be
very small, since none of the microwave tones driving the cavity obey that relation (see subsection 7.1.1), and
the higher order sidebands need to be at least fourth order in control drive amplitudes, which are still fairly
small for the control drives used in the experiment. Thus, we can neglect the b̂† terms and get

F̂ẑ ≈
(
g(0)
)2∑

k

∑
n

ākā
∗
n (χc[ω −∆k]− χc[ω + ∆n]) b̂[ω + ∆n −∆k]. (C.68)

Second, the frequency differences between the optical tones are typically much larger than the mechanical
linewidth: |∆n −∆k| � γm,eff for n 6= k (again, this is true for all the first-order optical beams which directly
correspond to the MW drives, and even higher order terms would need to be very well-matched in order to
satisfy |∆n −∆k| . γm,eff). As a result, we disregard all the terms in equation (C.68) for which n 6= k, which
lets us rewrite the optical force as

F̂ẑ = −iΣ[ω]b̂[ω] (C.69)

Σ[ω] = i
(
g(0)
)2∑

k

|āk|2 (χc[ω −∆k]− χc[ω + ∆k]) . (C.70)

The RPSN part of the optical force can be written as (similar to equation (7.20))

F̂RPSN[ω] = g(0)
∑
k

(
ā∗kd̂ξ̂[ω + ∆k] + ākd̂

†
ξ̂
[ω −∆k]

)
. (C.71)

With that, the acoustic equation of motion in the Fourier domain becomes

b̂[ω] = χm,eff [ω]
(
−iF̄RP[ω]− iF̂RPSN[ω] + F̂th[ω]

)
(C.72)

χm,eff [ω] =
(γm

2
− i(ω − ωm) + iΣ[ω]

)−1
, (C.73)

where χm,eff [ω] is the effective mechanical susceptibility, whose expression (C.73) is identical to equation (2.89),
but with the different definition of the optomechanical self-energy Σ[ω] (equation (C.70)). The thermal force is
defined in the same way as before: F̂th[ω] =

√
γmη̂[ω].

Finally, we can calculate the intracavity field:

â[ω] = ā[ω] + d̂[ω] = ā[ω] + d̂ẑ[ω] + d̂ξ̂[ω]. (C.74)

The mechanical sidebands term d̂ẑ can be separated into two parts: one comes from the mechanical motion
induced by the drive beatnotes (which corresponds to the force F̄RP), while the other corresponds to the RPSN
and thermal force driven motion (containing, respectively, F̂RPSN and F̂th). The first part can be phase-coherent
with the zeroth order field ā, since all of the induced mechanical motion terms correspond to beatnotes of the
tones contained in ā. This situation describes, for example, the OMIT/A experiment (section 2.7), where one of
the mechanical sidebands of the control beam interferes with the probe beam, and vice versa. The second part
of the mechanical motion sidebands is not coherent, so it will not interfere with ā; however it might interfere
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with the optical vacuum noise d̂ξ̂, which contributes to, e.g., sideband cross-correlator measurements (subsection

7.2.2).
Equation (C.74), together with the usual input-output relations (equation (2.8)) lets us express the field

reflected off the cavity as

âout,ext[ω] = ain[ω] + ξ̂ext[ω]−
√
κext

(
ā[ω] + d̂ẑ[ω] + d̂ξ̂[ω]

)
. (C.75)

Driven response measurements

First, let us consider the OMIT/A experiment, for which we neglect all the noise terms and focus on the external
coherent drive (like in section 2.7). That transform equation (C.72) into

b̂[ω] = −iχm,eff [ω]F̄RP[ω], (C.76)

and equation (C.75) into

âout,ext[ω] = ain[ω]−
√
κextχc[ω]

(
ā[ω] + d̂ẑ[ω]

)
. (C.77)

These two equations are, in principle, sufficient to calculate the reflection off the cavity. For the analysis
presented in Chapters 6 and 8, we implement this procedure as follows

• First, knowing the microwave drives and phase modulator response (appendix D.7), calculate tones on
the output of the phase modulator using equation (C.51) (for practical reasons, we limit expansion to the
third order in the control beams amplitudes and to the first order in the probe beam amplitude);

• Next, from equations (C.60) and (C.61) determine the steady-state (zeroth order) intracavity field;

• Use this to calculate the optical force F̄RP (equation (C.62)) and the self-energy Σ (equation (C.70));

• From these, determine the mechanical response (equations (C.76) and (C.73));

• Use this calculated response to get the resulting field â = ā + d̂ẑ inside the cavity and find the cavity
reflection âout,ext (equation (C.77))

• Finally, to relate this field to measured quantities, we calculate the electrical response of the photodiode
I ∝ â∗out,extâout,ext, which will consist of all possible beat notes of the reflected optical tones. The amplitude
of the electrical tone oscillating at νp (the frequency of the probe MW drive) is the relevant OMIT signal.
This tone mainly comes of the beating of the probe beam with the OLO, but higher-order intermodulation
tones can also play some role.

All of these calculation are performed numerically.

Undriven motion measurements

When considering the measurement of the undriven motion and the effects of the RPSN, full calculations similar
to the ones described above quickly become intractable (as it needs to take into account optical quantum noise
taken at ±ωm,eff away from all of the incident optical beams, which results in many contributions from different
parts of the spectrum). Therefore, we make one more simplifying assumption: when we consider the system
dynamics, we do not take any higher-order intermodulation tones into account, which means that the treatment
presented in Chapter 7 still applies. This is justified by the fact that no immediate higher-order tones lie close
the cavity resonance or close to ±ωm,eff detuned from the cavity, so they do not appreciably contribute to the
self-energy, and they do not generate any noticeable mechanical sidebands. It is worth noting, though, that we
still use the exact expression for the control beam amplitudes aL,1 ∝ J1(πV0/Vπ), rather than the weak drive
approximation aL,1 ∝ (π/2)V0/Vπ.
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With that assumption, all of the non-linear effects are contained in the description of the photodetection.
The most immediate consequence, which is also mentioned in subsection 8.3.2, is the “OLO depletion”: as only
a fraction of the total optical power is contained in the OLO, the SNR is reduced (the shot noise background
corresponds to the full optical power, but the detection efficiency is proportional to the OLO power). The
other consequence is the “sideband mixing”, where the mechanical sidebands in the MW spectrum do not
correspond exactly to the same sidebands in the optical spectrum, but instead are some linear combination of
these sidebands.

To understand this effect, let us consider the standard double-beam scheme with two control tones with
frequencies νcon,` and νcon,u relative to the OLO. Inside the cavity these beams acquire mechanical sidebands at
frequencies νcon,` + ωm,eff and νcon,u − ωm,eff respectively, and after mixing with the OLO at the photodetector,
these sidebands produce corresponding mechanical motion peaks in the photocurrents. However, there is another
process producing similar signals in the photocurrent. Because of the phase modulator non-linearity, there is an
extra second-order tone at a frequency νcon,`+νcon,u. When this tone mixes with the lower mechanical sideband
frequency νcon,` + ωm,eff , the photocurrent signal occurs at a frequency (νcon,` + νcon,u) − (νcon,` + ωm,eff) =
νcon,u − ωm,eff , which is exactly the frequency of the upper mechanical sideband. As a consequence, the two
sidebands now interfere with each other in the photocurrent, meaning that the detected MW sidebands are
some linear combinations of the optical sidebands.

To account for these effects, we perform numerical calculations similar to the ones we do for the OMIT/A
measurements. The procedure is outlined below.

• First, as before, we use the known microwave drives to calculate the optical cavity drive (equation (C.51))
and the corresponding steady-state intracavity field (equations (C.60) and (C.61)). Two of the intracavity
tones at frequencies νcon,` and νcon,u (relative to the OLO) correspond respectively to the lower and to
the upper control beam.

• Using the two control beam amplitudes, we perform the theoretical calculations to determine the “un-
mixed” (i.e., without taking phase modulator and detection process non-linearities into account) sideband
PSDs (equations (7.47) and (7.48)) and the sideband cross-correlator (equation (7.55)).

• Next, we determine the “mixing coefficients”, which are the contributions of the optical Stokes and anti-
Stokes sidebands in the photocurrent sidebands. To find them, we assume a simple (and unphysical)
“calibration” situation where either b̂[ω] = δ(ω − ωm,eff) and b̂†[ω] = 0 (i.e., only anti-Stokes sidebands

exist), or b̂†[ω] = δ(ω + ωm,eff) and b̂[ω] = 0 (only Stokes sidebands exits). For both of these cases we use
equations (C.64) and (C.65) together with the full set of optical tones incident on the cavity (including
higher-order phase modulator tones) to find all of the mechanical sidebands inside the cavity. Then we
use equation (C.75) to find the reflected light amplitude, and after that calculate the photocurrent using
the same expression I ∝ â∗out,extâout,ext as in the OMIT/A case.

In general, the photocurrent has both the “upper” and the “lower” sidebands due to the higher-order
control beam (and, possibly, other higher-order processes). For both of the sidebands we can determine
the ratio of the sideband amplitude (which is, in general, complex) to the idealized case where only mixing
with the OLO is considered in the photocurrent (which is the case described in section 7.2). This procedure
yields a total of four coefficients: two coefficients (for the “upper” and the “lower” sideband) for each
of the two calibration cases (b̂ = 0 or b̂† = 0). We can denote these coefficients as ci,j , where i denotes
the photocurrent sideband (“u” for “upper” and “`” for “lower”), and j denotes the calibration case (“r”
for b̂ = 0 and “b” for b̂† = 0). Thus, ci,j is the contribution of jth optical sideband to ith photocurrent
sideband, which can be expressed as

i`[ω] = c`,bib[ω] + c`,ri
∗
r [ω] (C.78)

iu[ω] = cu,bi
∗
b[ω] + cu,rir[ω]. (C.79)

Here we i` and iu denote the actual photocurrent sidebands, while ir and ib stand for the “unmixed”
sidebands defined in equation (7.28). In the ideal case without higher-order tones i` = ib and iu = ir, so
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cu,r = c`,b = 1 and cu,b = c`,r = 0. Note the complex conjugates for ir in the first equation and ib in the

second equation. They come about because ib (together with i`) is proportional to b̂, while ir (and iu) is
proportional to b̂†, meaning that they need to be conjugated to be related to each other.

• Finally, from ci,j and equations (C.78) and (C.79) we can express the measured sidebands PSDs and cross-
correlator in terms of the unmixed ones. Consider, for example, the “lower” (i.e., anti-Stokes) sideband
PSD:

S
(``)
ii [ω] ≡ 〈i`[ω](i`[ω])∗〉

= 〈(c`,bib[ω] + c`,ri
∗
r [ω])(c`,bib[ω] + c`,ri

∗
r [ω])∗〉

= |c`,b|2〈ib[ω](ib[ω])∗〉+ 2Re
{
c`,bc

∗
`,r〈ib[ω]ir[−ω]〉

}
+ |c`,r|2〈i∗r [ω](i∗r [ω])∗〉

= |c`,b|2S
(bb)
ii [ω] + 2Re

{
c`,bc

∗
`,rS

(rb)
ii [ω]

}
+ |c`,r|2S

(rr)
ii [−ω]. (C.80)

In a similar manner, we can derive expressions for the other quantities:

S
(uu)
ii ω] ≡ 〈iu[ω](iu[ω])∗〉

= |cu,r|2S(rr)
ii [ω] + 2Re

{
cu,rc

∗
u,bS

(rb)
ii [−ω]

}
+ |cu,b|2S

(bb)
ii [−ω] (C.81)

S
(u`)
ii ω] ≡ 〈i`[ω]iu[−ω]〉

= c`,bcu,bS
(bb)
ii [ω] + c`,bcu,rS

(rb)
ii [ω]

+c`,rcu,b(S
(rb)
ii [ω])∗ + c`,rcu,rS

(rr)
ii [−ω]. (C.82)

• Alternatively, one can invert equations (C.78), (C.79) (or equations (C.80)-(C.82)) and get expressions
for the unmixed PSDs and correlator in terms of the measured ones. This is the route we take in the
experiment.

Similar to the OMIT/A experiments, these calculation are performed numerically to the third order in the
control MW drive amplitudes.

When analyzing the undriven motion, we need to consistently account for non-linear effects both when
“unmixing” the undriven motion sidebands, and when interpreting OMIT/A data for the undriven motion
normalization (subsection 8.3.2). For the latter, we calculate the OMIT/A signal amplitude using two methods:
the complete one, which is described in this section, and a simplified one, which corresponds to the standard
OMIT/A theory (section 2.7). We then find the ratio of the two amplitudes and use it as a scaling factor in
determining the measurement rate Γmeas from the OMIT/A response amplitude (described in subsection 8.3.2).
Since the OMIT/A amplitude is linear in Γmeas and in the total optical power (which is the main factor that
the calibration scheme is designed to address), this scaling factor is sufficient to account for the non-linearity
in the undriven motion calibration.

C.3.4 IQ optical modulation

Phase modulation can serve as a basis for different kinds of modulation. One of the most generic kinds is
IQ modulation, which allows independent control of the phase and the amplitude of the output field. Such
modulator takes a single optical input a(t) = aLe

−iωLt and two control electrical (usually MW) inputs I(t) and
Q(t) encoding two quadratures of the output field (I(t) stands for “in-phase”, i.e., amplitude modulation, and
Q(t) stands for “in-quadrature”, meaning that it is shifted by 90◦ and corresponds to a phase modulation). The
output of the modulator is described as

aIQ(t) = aLe
−iωLt(I(t) + iQ(t)), (C.83)

where for simplicity we assume I(t) and Q(t) to be normalized.
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Figure C.3: Schematic of a DP-MZM. Each splitting/joining point stands for a 50:50 splitter/combiner, and
rectangles denote phase modulators.

The implementation of the IQM used in our setup is a so-called dual-parallel Mach-Zehnder modulator
(DP-MZM), whose schematic is shown in Figure C.3. It consists of two Mach-Zehnder interferometers whose
outputs are combined together with an adjustable phase shift φc. Each of the interferometers in turn has a
phase modulator in one of its arms. For clarity of the derivation, and to be more faithful to the hardware
implementation, we divide the phase modulators in two groups: slow, large-span control signals φ1, φ2 and φc;
and fast, small-span modulation signals δφ1, δφ2. The control signals are used to adjust the operation mode
of the modulator (as demonstrated below, IQ modulation corresponds to a particular combination of these
voltages), while the modulation signals directly correspond to the quadrature signals I(t) and Q(t).

Let us start by considering a single interferometer, for example, the top one. Assuming perfect 50:50 splitters,
the amplitude of light entering each interferometer is aL/

√
2, and the amplitude in each the interferometer arms

is aL/2. The top arm of the interferometer acquires a phase φ1 + δφ1 relative to the bottom arm of the same
interferometer, so before the arms are recombined, its amplitude is aLe

i(φ1+δφ1). This turns the output of the
top interferometer into

aIQ,1 =
aLe
−iωLt

2

(
1 + ei(φ1+δφ1)

)
√

2
. (C.84)

Similarly, the bottom interferometer’s output is

aIQ,2 =
aLe
−iωLt

2

(
1 + ei(φ1+δφ1)

)
√

2
. (C.85)

The final output is a combination of these two outputs with an additional phase shit φc:

aIQ =
aIQ,1e

iφc + aIQ,2√
2

=
aLe
−iωLt

4

((
1 + ei(φ1+δφ1)

)
eiφc +

(
1 + ei(φ2+δφ2)

))
. (C.86)

Now we have to figure out control phases φ1, φ2 and φc corresponding to the IQ modulation. First, we need to
suppress the carrier, which is the signal at the original frequency ωL; this implies having zero output amplitude
when δφ1 = δφ2 = 0:

aIQ|δφ1=δφ2=0 ∝
(

1 + eiφ1

)
eiφc +

(
1− eiφ2

)
= 0. (C.87)

To satisfy this requirement independently of φc, we set φ1 = φ2 = π. This simplifies expression (C.86) to

aIQ =
aLe
−iωLt

4

((
1− eiδφ1

)
eiφc +

(
1 + eiδφ2

))
. (C.88)
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Next, as is often the case, we take the limit of small modulation amplitudes |δφ1,2| � 1 and expand the
exponents:

aIQ ≈ aLe
−iωLt

4

(
(1− 1− iδφ1) eiφc + (1− 1− iδφ2)

)
=
−iaLe

−iωLt

4

(
δφ2 + δφ1e

iφc

)
. (C.89)

If we compare this expression to equation (C.83), we see that we can match them up to a factor of −i/4 (which is
just a combination of attenuation and an unimportant phase shift) if we set φc = π/2, and associate δφ2 = I(t)
and δφ1 = Q(t):

aIQ =
−i
4
aLe
−iωLt (δφ2 + iδφ1) =

−i
4
aLe
−iωLt (I(t) + iQ(t)) . (C.90)

Hence, by setting φ1 = φ2 = π, φc = π/2 we can operate DP-MZM as an IQM. It is important to note that the
control phases must be precisely maintained. Otherwise, the modulator output can transmit a non-suppressed
carrier (if φ1 or φ2 are off), or the modulation quadratures can deviate from the ideal I and Q quadratures (if φc

is off). The latter can lead to, e.g., non-vanishing second sideband when attempting to perform a single-sideband
suppressed carrier modulation (see appendix D.2.2).
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Appendix D

Measurement setup details

In this Appendix I will describe details, auxiliary calibration and characterization methods required for the
measurements of the superfluid helium device.

D.1 Tunable filter cavity setup

Here I describe the tunable filter cavity setup, which is used to get rid of the classical laser phase noise at
ωm ≈ 2π · 320 MHz detuning from the main tone. As mentioned later in section D.4, it allows us to increase
the shot noise limited power of our laser from ∼ 30 µW to < 200 µW.

D.1.1 Setup schematic

The tunable filter cavity setup (TFCS in Figure 5.2) schematic is shown in Figure D.1. The light enters
through the circulator and into the polarization controller (PCnt), where its polarization is adjusted to one of
the polarization eigenstates of the tunable filter cavity (TFC). The TFC is highly birefringent (the splitting of
the two polarization modes is about half of the free spectral range), so the polarization adjustment is necessary.
The reflected light goes back through the circulator and onto the photodetector (PD), while the transmitted
light passes through a second PCnt to adjust its polarization to the correct axis of the polarization-maintaining
fiber on the output of the setup.

The TFC has a tuning input connected to an internal piezo which controls the cavity length. This input is
driven by two signals combined with a bias tee. The DC signal is used to adjust the cavity resonance and keep
it locked to the laser. The RF signal is driven with a sine wave from an arbitrary waveform generator (AWG);
this drive is used to generate the error signal for the lock. Similarly, the reflection signal gets split with another
bias tee into a DC and an RF component. The DC component provides the average reflection power, and the
RF component is mixed with the same AWG signal to produce the error beatnote (BN) signal. Both DC and
BN signal are sent into the micro-controller (µC), which uses this information to generate the feedback signal
(FB OUT) controlling the cavity resonance frequency.

D.1.2 Error signal

To understand the error signal, let us examine the PD output (a similar derivation is also given in Ref. [180]).
As mentioned in appendix C.2.7, reflection off the cavity is described by the susceptibility function (C.46)

Kcav[∆] = 1− 2ηκ
1− 2i∆/κ

, (D.1)

where κ is the cavity linewidth, ∆ is the drive detuning and ηκ ≡ κext/κ is the input coupling efficiency, with κext

being the input coupling of the cavity. Given the laser amplitude aL, laser frequency ωL and cavity resonance
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Figure D.1: Schematic of the tunable filter cavity setup. Red symbols denote optical components, with red lines
corresponding to the interconnecting optical fibers; double lines denote polarization-maintaining fibers,
while single lines denote regular fibers. Green symbols denote electrical components, with green lines
showing electrical connections.

frequency ωc, the amplitude of the reflected light is

arefl = aLKcav[ωL − ωc] = aL

(
1− 2ηκ

1− 2i(ωL − ωc)/κ

)
, (D.2)

and the corresponding power is

Prefl = |arefl|2 = |aL|2
(

1− 4ηκ(1− ηκ)

1 + 4(ωL − ωc)2/κ2

)
. (D.3)

Now let us consider a small sinusoidal perturbation in ωc with frequency ω and amplitude a � κ: ωc =
ωc0 + a sin(νt). Given that the cavity bandwidth is much larger than the perturbation frequency (in our setup
κ ≈ 30 MHz and ν = 37 kHz), the reflection power Prefl can be assumed to be an instantaneous function of
the cavity resonance frequency. Since the perturbation is small, we can expand the reflection power to the first
order in a:

Prefl(t) ≈ Prefl|ωc=ωc0
+
∂Prefl

∂ωc

∣∣∣∣
ωc=ωc0

a sin(νt). (D.4)

The PD signal is proportional to this reflection power. After mixing it with the original drive sin(νt) and
low-pass filtering, the result is the error signal which is proportional to the coefficient in front of sin(νt):

Ve =
∂Prefl

∂ωc

∣∣∣∣
ωc=ωc0

∝ (ωL − ωc0)/κ

(1 + 4(ωL − ωc0)2/κ2)2 . (D.5)

Examples of the DC reflection (D.4) and the error signal (D.5) are shown in Figure D.2. The error signal,
being essentially the derivative of the DC reflection, is equal to zero and has a linear slope when the laser is
resonant with the cavity. This makes it a convenient error signal for locking the cavity on resonance with the
laser. In contrast, the DC reflection signal is quadratic at zero detuning, which means that it does not provide
information on the deviation of the cavity frequency from the laser frequency (deviation in either side produces
the same response), and therefore cannot serve as an error signal.
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Figure D.2: The DC reflection signal Prefl (blue) and the error signal Ve (green) as a function of the laser
detuning from the cavity.

D.2 Locking and IQ modulator details

In this section I describe parts of the measurement setup that are related to locking of the laser to the cavity:
obtaining the error signal, using it to generate the feedback signal, and turning it into a change in the laser
frequency.

D.2.1 Obtaining error signal

As described in subsection 5.2.4, the error signal for cavity locking is obtained by analyzing the reflection of
the weak locking beam. In the limit of far red-detuned OLO (which is the case in our measurements), the
corresponding photocurrent beatnote was derived in the appendix C.3.2, equation (C.56):

〈i〉 ∝ a∗L,0aL,1χc,rel[∆ + νlock]e−iνlockt. (D.6)

Here aL,0 and aL,1 are the amplitudes of the carrier (OLO) and the sideband (locking beam) respectively, ∆
is the OLO detuning from the cavity resonance, χc,rel[ω] = (1 − 2iω/κ)−1 is the normalized optical cavity
susceptibility, and νlock is the carrier-sideband frequency difference, i.e., the frequency of the locking beam drive
in the setup (2100 MHz in our case). Mixing this current with the MWLO and demodulating it inside the ZILI
yields two quadratures X and Y , which correspond to the complex amplitude of the photocurrent beatnote:

X + iY ∝ a∗L,0aL,1χc,rel[∆ + νlock]. (D.7)

Thus, up to some prefactor the quadratures directly correspond to the cavity susceptibility function.
The top left part of Figure D.3 shows an example of the signal (D.7) plotted in the XY -plane for varying

locking beam detuning ∆lock = ∆ + νlock. After the quadratures are calculated, the data is internally shifted
and rotated inside the ZILI, as shown in the top right part of Figure D.3. These transformed XY quadratures
are subsequently converted into voltage signals and sent into an FPGA, where the error signal φe is calculated
as the angle of the quadrature signal: φe = arg (X + iY )/π.

The bottom plot in Figure D.3 shows the error signal φe (black) as a function of lock beam detuning; for
comparison, it also demonstrates the standard Pound-Drever-Hall[180, 181] (PDH) lock signal (gray), which is
simply the Y quadrature of the beatnote. The advantage of the angle error signal is that it is a monotonous
function of the detuning ∆lock. This means that it is possible to change the lock set-point by simply applying
a shift to the error signal, while maintaining a large (potentially, infinite) capture and lock range. This is in
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Figure D.3: Top left: demodulated quadratures of the locking beam beatnote. Top right: same data, but
rotated by 180◦ and shifted by −1 to make the resonance circle centered at zero. Bottom: comparison of
the angle-derived error signal φe (black) to the Pound-Drever-Hall (PDH) error signal (gray).
In the top plots the black line shows the quadratures for the detuning range −5κ ≤ ∆lock ≤ 5κ. The colored
markers show the quadratures (top plots) or error signals (bottom plots) for specific values of ∆lock. The
angle φe on the top right plot is the error signal for the beatnote denoted by the black dot, assuming that
the lock point is ∆lock = 0.

contrast with the standard PDH locking technique, where only locking to the cavity resonance has an unlimited
range, and locking at ∆lock = ±κ/2 (turning points of the signal) is impossible.

D.2.2 Adjusting laser frequency

The modulator used for the frequency adjustment has a dual-parallel Mach-Zehnder modulator (DP-MZM)
realization, which can be set up to work as an IQM by adjusting its internal bias DC voltages (not shown in

144



the schematic), as described in appendix C.3.4. By injecting the same MW signal shifted by 90◦ in the I and Q
ports, one can obtain the modulator output which is a frequency-shifted copy of its input, with the shift equal
to the frequency of the MW signal.

To demonstrate this, let us assume the incident optical beam to have amplitude aL and frequency ωL, and
the MW modulation having frequency ν0 and depth b (the same for both quadratures). Furthermore, we will
ignore the carrier, because the modulator works in the suppressed carrier regime. This turns the output of the
modulator (starting from equation (C.83)) into

aout(t) = aLe
−iωLt(I(t)− iQ(t))

= aLe
−iωLt(b cos(ν0t)− ib sin(ν0t)) = aLbe

−i(ωL+ν0)t, (D.8)

where I(t) = b cos(ν0t) and Q(t) = b sin(ν0t) are the microwave signals controlling respectively I and Q quadra-
tures of the optical field. It can be seen, that the output signal is shifted in frequency by ν0 and scaled down
by a factor of b. The shift direction can be reversed by flipping sign of one of the microwave signals, or by
exchanging them.

D.2.3 Calibrating and stabilizing IQM control voltages

Figure D.4: Typical TFPC sweep for the DP-MZM output with unadjusted control voltages (left) and with
adjusted control voltages (right). The width of the peaks corresponds to the TFPC linewidth, which is
about 200 MHz. The distance between the peaks corresponds to the IQM drive frequency, which is typically
around 3 GHz.

As mentioned in appendix C.3.4, operating the DP-MZM in the IQM mode requires careful adjustment of
the control voltages (denoted as DC1 . . .DC3 in Figure D.5). To perform the initial voltage calibration, we use
the TFPC as a spectrum analyzer, which allows us to measure the power in the carrier and both sidebands
transmitted through the IQM. Examples of such spectra are shown in Figure D.4. Using this data, we adjust
the control voltages until only one sideband is visible in the IQM transmission; from the estimated SNR of the
spectrum measurements, this corresponds to at least 99% of the transmitted power contained in the sideband.

To perform subsequent fine tuning and stabilization during the experiment, we make use of the high-
frequency beatnotes in the monitor FPD. The schematic of the corresponding part of the setup is shown in the
top part of Figure D.5. The high-frequency part of the monitor FPD photocurrent is separated from the DC
part in the bias tee, and then amplified by a chain of broadband (0.05÷6 GHz frequency range) MW amplifiers.
This amplified signal can contain two beatnotes: one at a VCO frequency (2.8 ÷ 3.5 GHz), which comes from
the sidebands beating with the carrier, and another at twice the VCO frequency (5.6÷ 7.0 GHz), coming from
the two sidebands beating with each other. If the DP-MZM operates as a perfect IQM, then neither carrier nor
the other sideband are present, and both beatnotes should be zero. Thus, we need to tune the control voltages
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in a way that minimizes the beatnotes. To detect their powers separately, the amplified beatnote is sent into
a 2-way splitter, one arm of which is low-pass filtered (to keep only the beatnote at the VCO frequency), and
the other arm is high-pass filtered (to keep the other beatnote). After that, both arms are sent into MW power
detectors (MWPD), which transform the beatnote powers into DC voltages. These voltages are then digitized
and sent into a PC, which generates the three control voltages DC1 . . .DC3 that minimize the beatnote powers.

Figure D.5: Schematic of the IQM control voltage stabilization. Red symbols denote optical components, with
red lines corresponding to the interconnecting optical fibers; double lines denote polarization-maintaining
fibers, while single lines denote regular fibers. Green symbols denote electrical components, with green
lines showing either MW or low frequency connections. The parts present in the main schematic (Figure
5.2) are faded out. The optical switch and the TFPC in the monitor part of the setup are omitted for
clarity.

One more source of potential uncertainty is the frequency dependence of the IQ modulation efficiency, which
arises due to all of the MW components (VCO, amplifier, 90◦ hybrid and IQM) having their parameters vary
with the VCO output frequency. To account for that, the output of the VCO is passed through the variable
MW attenuator (VMWA), whose tuning voltage (which determines the attenuation) is controlled to keep the
total optical power on the output of the IQM constant. The optical power is obtained from the DC port of
the bias-tee (which contain information about the optical power landing on the monitor photodiode), and the
feedback parameters are controlled with the FPGA, which is the same one that controls the VCO tuning voltage.

D.3 Image rejection mixer circuit

The main Lock-in/Spectrum Analyzer used in the measurement system (ZILI) has frequency range of 600 MHz,
while the locking MW tone and the motional sidebands in the MW domain are both around 2 GHz. In order
to bridge this frequency gap, we employ single-sideband (SSB) mixers (which we call “up-mixers”) to increase
the frequency of the ZILI outputs, and an image rejection mixer (which we call “down-mixer”) for shifting the
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a) b)

Figure D.6: a) Schematic of the SSB mixer (“up-mixer”) circuit. b) Schematic of the setup used for calibration
of the mixer circuit.

frequency of the photocurrent back into the lock-in range.
Figure D.6a shows the schematic of the SSB up-mixer, which is a relatively standard design. Here both

microwave local oscillator (LO) and the intermediate frequency signal (IF) from ZILI are split via 90◦ hybrids,
and then get mixed in two separate mixers. The outputs of the mixers are recombined on an in-phase combiner,
and then sent through a band-pass filter to improve the rejection of the unwanted sideband. The device
operation is based on 90◦ hybrids providing different phase shifts for the two sidebands. The upper sideband
acquires a +90◦ phase shift in both mixers (due to the +90◦ IF shift in the left mixer, and due to the +90◦

LO shift in the right one), so it interferes constructively at the in-phase combers. The lower sideband, however,
gets the same +90◦ shift in the right mixer, but a −90◦ shift in the left mixer, since it involves the conjugate
of the IF tone. As a result, it is 180◦ out of phase at the two mixer outputs, so it cancels at the final combiner.
If the direction of either of the hybrids is flipped, the sideband roles are reversed, so only the lower sideband is
present at the output. The down-mixer scheme is essentially the same, just with one of the 90◦ hybrids flipped
and run in reverse (i.e., so that the signal enters the RF port and exits from the IF port).

The important mixer figure of merit is the full rejection ratio, which is the ratio of the up-mixed tone to all
other undesirable signals on the output (lower sideband, LO leaked through, higher mixer harmonics, etc.). In
the tone generation part of the setup this ratio determines the strength of the additional unwanted optical tones
(generated in the phase modulator from these undesirable MW signals) landing on the cavity. In the detection
part it characterizes the amount of the image noise mixed down to the IF band, which leads to SNR reduction.

To characterize the performance of the mixer circuit, we use the simple scheme shown in Figure D.6b. The
up-mixer is operating in the usual regime with a fixed LO power (∼ 12 dBm) and frequency (1900 MHz), while
the IF signal frequency is varied over the full operation range (0 to 600 MHz). The output of the mixer is
directed to the SA, which is used to measure power in all of the output tones and determine the full rejection
ratio. A typical result of this kind of measurement is shown in Figure D.7. At the optimal LO power this ratio
is above 20 dB in the working IF frequency band (150 MHz to 400 MHz), so in the data analysis we assume the
mixer to be ideal (i.e., adding no extra tones in the generation part, and no extra noise in the detection part).

D.4 Laser noise measurements

Here I present the procedure for measuring the classical laser noise in our setup. Since this noise can mimic
quantum signatures in our undriven motion measurements[182, 13], it is important to make sure that its
magnitude is low enough. Our scheme for the laser noise measurement relies on the theoretical description
presented in appendix C.2.
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Figure D.7: Result of the mixer circuit characterization. The top figure shows the power in the up-mixed tone
(blue circles) and the combined power in all other tones (red crosses) at the up-mixer output. The bottom
figure plots SNR, which is the ratio of the two powers. The presented data is taken at the LO frequency of
1.9 GHz and the LO power of 12 dBm. In the experiment the typical IF frequency is 200± 20 MHz, which
implies SNR of about 22 dB.

D.4.1 Direct detection

a) b)

Figure D.8: a) Schematic of the setup used to measure the amplitude laser noise. b) Schematic of the delay
line setup used to measure the phase laser noise.

Let us start with direct detection of the laser, which allows one to measure the laser amplitude noise. The
schematic of this measurement is shown in Figure D.8a. There the output of the laser simply passes through
a VOA and lands on the photodetector. The output of this detector passes through a diplexer, whose outputs
are sent into the ZILI inputs. The low-frequency (DC) port of the diplexer is used to monitor the mean laser
power, and the high-frequency (RF) port is routed to the spectrum analyzer inside ZILI to measure the voltage
noise of the photodetector output.

We can represent the photodetector as a biased photodiode with quantum efficiency σ, whose output is
sent into a transimpedance amplifier with a frequency-dependent gain GI[ω] (V/A). The representation of the
photodiode can be further subdivided as an optical attenuator with the amplitude attenuation coefficient

√
σ

(i.e., a power attenuation coefficient σ) followed by an ideal photodiode. Given an optical tone of power PL
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and frequency ωL, the amplitude incident on the photodetector is aL =
√

PL
~ωL

and the amplitude after the

attenuator is
√
σaL, which generates the mean photocurrent 〈i〉 = e|

√
σaL|2 = eσ PL

~ωL
. Finally, the voltage on

the photodiode output is

V = GI[0]〈i〉 = σ
e

~ωL
GI[0]PL = GP[0]PL (D.9)

GP[ω] = σ
e

~ωL
GI[ω], (D.10)

where we have defined the frequency-dependent power gain of the photodiode GP[ω], which is the proportionality
coefficient between the optical power modulation at a frequency ω and the corresponding voltage response.

Next, we consider the photodiode voltage PSD, for which we use the expression (C.37) with the attenuation
coefficient α =

√
σ:

SV V [ω] = (GI[ω])2Sii[ω] = (GI[ω])2e2σ|aL|2
(
4σ|aL|2Sxx[ω] + 1

)
= (GP[ω])2

(
4P 2

LSxx[ω] + PL
~ωL

σ

)
. (D.11)

One can see that non-ideal quantum efficiency (σ < 1) can lead to overestimation of the shot noise level.
From equation (D.11) the classical and the quantum noise produce equal contributions to the photocurrent

PSD when the laser power is PL = ~ωL/(4σSxx[ω]). For an ideal photodiode (σ = 1) we recover the shot noise

limited power P
(xx)
L,SN = ~ωL/(4Sxx[ω]) defined in appendix C.2.3. For a realistic photodiode this power is higher,

since the light experiences additional attenuation σ (see also equation (C.37)).
Different dependence of the classical noise and shot noise on PL in equation (D.11) provides a way to separate

the two contributions in the noise PSD by varying the total laser power. In order to do that reliably, one needs
to know the frequency dependence of the photocurrent amplifier gain GI[ω] (in the simplest case, the amplifier
bandwidth is large enough that GI can be assumed frequency-independent) and the quantum efficiency of the
photodetector (which is usually specified, or can be extracted from the power gain GP if the photocurrent
amplifier gain GI is known). The procedure goes as follows:

(a) Establish the power gain GP[ω] of the photodetector. One can either use a value specified in the manu-
facturer’s datasheet, or determine GP[0] using an independent optical power meter and then use known
dependence GI[ω] to find GP[ω] = (GI[ω]/GI[0])GP[0].

(b) Using the VOA, vary the power PL incident on the photodetector, and for each power determine SV V (PL)
at the frequency of interest using a spectrum analyzer.

(c) Fit this dependence SV V (PL) to a second-degree polynomial: SV V (PL) = a2P
2
L +a1PL +a0. By comparing

this expression to (D.11) we obtain

a2 = 4(GP[ω])2Sxx (D.12)

a1 = (GP[ω])2~ωL

σ
. (D.13)

The coefficient a2 yields the classical noise magnitude Sxx, while a1 (which should be known given GP[ω]
and σ) provides a self-consistent check of the calibration procedure. The zeroth-order coefficient a0 is
simply the combined dark noises of the photodetector and the spectrum analyzer.

D.4.2 Phase noise measurements

As shown in equation (C.37), the phase laser noise can not be measured via direct detection. In order to
convert it into an amplitude noise and observe it, we employ the delay line measurement technique described
in appendix C.2.6.
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The setup schematic is shown in Figure D.8b. Like in the direct detection method, the laser first goes
through the VOA to vary the total power. After that it is sent into a Mach-Zehnder interferometer, one arm of
which contains a variable delay line (VDL), while the other has a VOA and a PCnt. Both the VOA and the PCnt
ensure that the light in the two arms of the interferometer have equal amplitude (α = β in terms of appendix
C.2.6) and polarization, which simplifies interpretation of the experimental results. After recombining, the light
is sent to the photodiode (PD), and the resulting signal is treated in the same way as for direct detection.
The delay line is driven by a sine wave from an arbitrary wave generator with amplitude on the order of laser
wavelength. This leads to averaging over all possible values of the phase shift δφ between the two arms, as
described in C.2.6.

Figure D.9: Typical time dependence of the DC photodetector signal in the delay line measurement setup. The
fast (on the scale of ∼ 1 ms) oscillations are created by the VDL drive generated by AWG, which for the
shown data has a span of about one optical wavelength. The slower (∼ 10 ms) variations correspond to
the drift in the path length difference between the two arms coming from external acoustic vibrations and
temperature fluctuations.

Figure D.9 shows a typical time trace of the DC voltage on the output of the photodetector. It oscillates
between about zero when the light from the two arms interferes destructively and maximum of ∼ 1 V when
the light interferes constructively. The phase modulator and the variable optical attenuator are adjusted to
minimize the lower voltage bound. This ensures that the destructive interference of the light in two arms is
complete, which guarantees that they are matched in power and polarization.

Since the interferometer is designed to average over all phase differences δφ, and it is adjusted to have equal
arms ratio, the average photocurrent is given by equation (C.43) with α = β = 1/2, and its PSD is described by
equation (C.45). After introducing the power photodetector gain similarly to equation (D.9) from the previous
subsection, equation (C.45) gives rise to the following voltage PSD:

SV V [ω] = (GP[ω])2 ×

×
(

6P 2
LSxx[ω] cos2(ωτd/2) + 2P 2

LSyy[ω] sin2(ωτd/2) + PL
~ωL

σ

)
. (D.14)

Note that in this expression PL denotes the average power landing on the photodiode, which is only half of the
power emitted by the laser. This produces the difference (by a factor of two) compared to equation (C.45).

In the majority of cases the phase noise of the laser is significantly larger than the amplitude noise. This
means that the PSD described by the equation (D.14) will have noticeable modulations with a period of
∆ω = 2π/τd. These come from the oscillation (in ω) between the points where the PSD contains strictly
amplitude noise, and the point where it contains strictly phase noise. An example of such oscillations is shown
in figure D.10; their period is about 13.7 MHz, which means that the time delay between the two arms is about
τd = 73 ns, corresponding to the path length difference of 21.9 m. This is consistent with the specified VDL
length of 19 m, which corresponds to ∼ 27 m of the effective path length difference.

By choosing the appropriate noise measurement frequency, it is possible to perform measurements sensitive
only to the amplitude noise or only to the phase noise. Since we are mostly interested in phase noise (as
it is usually much larger than the amplitude noise in a typical laser), we can choose the frequency to be
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Figure D.10: Typical PSD of the photodetector voltage in the delay line measurement. The minima are located
at frequencies ωn = 2πn/τd where the measurement is only sensitive to the amplitude noise; the maxima
correspond to frequencies ωn = 2π(n+1/2)/τd, where the measurement is only sensitive to the phase noise.

ωn = 2π(n+ 1/2)/τd, where the expression (D.14) gets simplified to

SV V [ωn] = (GP[ωn])2

(
2P 2

LSyy[ωn] + PL
~ωL

σ

)
. (D.15)

This expression is almost exactly identical to equation (D.11) obtained for the direct detection. Hence, the rest
of the measurement proceeds as described in the previous section.

In the end, we measured the phase shot noise limited power for our laser around 300 MHz away from the
main tone to be 30 ± 5 µW without the filter cavity, and > 200 µW with the filter cavity (the classical noise
was too small to detect it definitively).

The scheme for the phase noise measurements described here is fairly simple and versatile, as it only requires
a single laser and can in principle be implemented with minimal number of optical components: the variable
delay line, the only non-trivial component, can be substituted for a long enough optical fiber, provided that
the ambient temperature and acoustic fluctuations lead to sufficient averaging over δφ. The main limitation is
that its sensitivity is frequency dependent. In the simple case described above it measures phase noise only at
specific frequencies ωn; in principle, it is possible to measure the amplitude noise separately and subtract it in
the equation (D.14), yielding decent sensitivity to the phase noise at most frequencies.

Another way to estimate the laser phase noise using the reflection off of the experimental cavity is mentioned
in appendix D.10.

D.5 EDFA noise calibration

As the mechanical motion calibration scheme relies on knowledge of the total quantum efficiency of the mea-
surement setup, it is important to determine the added noise of the EDFA. The scheme that we use to calibrate
it relies on adding a small amplitude-modulation signal to the laser, and using the shot noise background as a
reference for the added noise. This way, the added noise is determined directly in the units of shot noise, which
is the amplifier noise figure (NF).

Figure D.11 shows the schematic of the noise measurement setup. The light out of the laser first enters the
amplitude modulator (AM) driven by a sine wave from the arbitrary wave generator (AWG), where it acquires
small amplitude sidebands serving as a calibration signal. After that it passes through a VOA and into a 90:10
optical splitter. The light out of the 10% port lands on the power meter (PM) and serves to monitor the
power leaving at the other (90%) port of the splitter. After that the light out of the 90% port either lands
directly on the PD, or passes through the EDFA and a wide-bandwidth (0.5 nm) TF which filters out amplified
spontaneous emission (ASE) on the output of the EDFA. The output of the photodetector then passes through
a diplexer, and then both arms are sent into the ZILI.
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Figure D.11: Schematic of the setup used for the EDFA calibration.

The noise figure calibration proceeds in two stages. First, the measurement is done without the EDFA and
the TF. The total laser power is varied using the VOA, and for each laser power the tap PM reading, the DC
voltage, the noise PSD (in V2/Hz) and the power in the signal (in V2) are recorded. The noise PSD is analyzed
in the same way as the classical amplitude noise (subsection D.4.1), yielding the magnitude of the classical noise
and the RF power gain GP[ω] extracted from the shot noise power (assuming we know the quantum efficiency
of the PD). A typical result of this analysis is shown in Figure D.12a. The signal power is fit to the quadratic
function of the incident optical power, which lets us extract the signal tone magnitude relative to the optical
carrier. An example of such a fit is demonstrated in Figure D.12b.

After that, the EDFA and the filter are inserted in the setup, and the measurement described above is
repeated. While doing that, it is important to keep the AM drive constant, as the calibration scheme relies on
it being the same in both stages. The analysis then proceeds as follows:

(a) Using the tap power and the signal power dependence extracted earlier, calculate the expected signal
power in the absence of the amplifier. Comparing it to the measured signal power allows us to extract
the small-signal gain of the EDFA.

(b) Subtract the electronic noise background and the photodetector shot noise (calculated for the actual
power landing on the photodiode, as measured by its output DC voltage) from the background PSD. The
resulting noise is solely the output noise the EDFA.

(c) Using the small-signal gain, calculate the expected amplified classical and shot noise background PSDs.
After subtracting the classical noise contribution from the experimental noise PSD we are left with only
amplified shot noise and intrinsic EDFA noise.

(d) Divide the residual by the expected amplified shot noise. This ratio characterizes the noise figure of the
amplifier, i.e., the added input noise of the amplifier relative to the vacuum (shot) noise.

This procedure is repeated for different powers incident on the EDFA, producing the dependence of the
noise figure on the EDFA input power. Figure D.12c shows the measurement result. At low powers the noise
figure reaches about 4 dB; for comparison, the quantum limit for an ideal phase-preserving amplifier is 3 dB.
This plot also compares the NF with and without the TF, which clearly demonstrates the effect of the filtering:
adding the TF reduces the NF by about 1 dB over the whole range, and also prevents it from going up at low
powers. This rise without the TF happens because at low incident optical power most of the output EDFA
power is contained in ASEa), and if unfiltered it contributes a lot of noise (see also footnote in subsection 5.2.3).

After the calibration is done, it is important to preserve the connection between the 90:10 splitter and
the EDFA if possible, as remaking it will likely alter the losses in the connector. This can lead to systematic
errors in determining the power landing on the EDFA and, consequently, invalidate the EDFA calibration. This

a)Generally, the total EDFA output power changes by less than 20% when the input power is varied (including having no incident
light at all). The main effect of changing the incident power is changing the ratio between the ASE and the amplified signal.
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a) b)

c) d)

Figure D.12: Results of the EDFA noise figure calibrations.

a) The background noise PSD as a function of the incident laser power (without the EDFA in the
circuit). The green line is a fit to a second order polynomial with zero intercept, while the red line
shows a fit to a linear function (used only for comparison). The dark noise has been subtracted, so
the PSD is expected to be zero at zero optical power.

b) The power in the signal peak as a function of the laser power (without the EDFA in the circuit). The
green line is a fit to a quadratic function.

c) The dependence of the EDFA noise figure on the incident power. The blue and the red lines show
the NF with and without the TF respectively.

d) The comparison of the small-signal gain and the output power gain of the amplifier. The top plot
shows the output power gain (blue, almost invisible behind red), the beatnote gain (green) and the
small-signal optical gain (red). The bottom plot shows the ratio of the small-signal optical gain and
the output power gain.

All the measurements shown in this Figure were performed for the laser wavelength of 1539 nm (which is
the optical resonance frequency in the first generation device) and the signal frequency of 32 MHz. The
signal frequency is chosen as a compromise between having low laser noise (which gets lower for higher
frequencies) and being well within the PD bandwidth (∼ 150 MHz).

connection is still present in the main measurement setup (figure 5.2 in section 5.2), where the 90:10 splitter is
denoted as Rtap.

To simplify the measurement setup, one could imagine using the ratio of the input and the output powers
of the EDFA to measure gain, as opposed to adding a small AM signal as described above. However, since
the EDFA output contains both the amplified signal and the ASE, the output power is not a good measure
of the signal gain for low input powers. Figure D.12d illustrates this point: by taking the square root of the
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small-signal beatnote gain (green) we can obtain the small-signal optical gain (red). While it looks almost
identical to the optical power gain (blue, hidden behind red), the bottom plot reveals that for 1 µW of laser
power incident on the EDFA there is 0.2 dB difference in the gains. The difference comes from the fact that
the output power has some ASE fraction, so the power ratio overestimates the actual optical gain.

D.6 VNA loop gain calibration

The measurements performed by the VNA (such as OMIT/A sweeps or cavity response sweeps) can have
frequency span of several hundreds of MHz (e.g., cavity sweep in the first generation device, which has optical
linewidth of ∼ 70 MHz), and on those scales many of the employed microwave components have varying gains
and phase shifts. This means that in order to extract the purely optical part of the response (which is the part
occurring between the output of the phase modulator (φM) and the input of the main reflection photodiode),
we need to measure and cancel those frequency-dependent effects.

Figure D.13: Amplitude of multiple cavity response sweeps obtained with the VNA. The solid black line shows
a smoothed envelope (i.e., the line passing through the maxima) of the sweeps, which is interpreted as a
frequency-dependent gain. The dashed black line highlights one of the sweeps.

To do that, we need to have some controlled, consistent and detectable optical response between the phase
modulator and the photodetector, which can be used as a reference to calculate the rest of the measurement loop
gain (coming from the MW components). The easiest way to obtain such response is to use the experimental
optical cavity itself.b) The calibration is done in the same setup as is used in the main experiments, and it
essentially repeats some of the same steps. It proceeds in the following way:

(a) In the standard experimental setup, lock the laser to the cavity. Do not send any other microwave tones
(i.e., in addition to the locking tone) into the phase modulator.

(b) Perform a standard sweep over the cavity resonance using the VNA (the basics of this measurement are
described in subsection C.3.2). The sweep result is a complex Lorentzian as given by equation (C.56), but
distorted by a frequency-dependent gain of the rest of the setup. The distortion includes the microwave
components in the tone generation arm, frequency response of the phase modulator, frequency response
of the photodetector and the microwave components in the detection arm. The central frequency of this
Lorentzian is the detuning of the OLO from the cavity resonance, which is determined by the frequency

b)Since it is impossible to detect the phase modulation by direct detection, we need some non-trivial optical element to make it
visible. If instead of the phase modulation we used an amplitude or a single sideband modulation, it would be sufficient to simply
send the output of a modulator on the photodiode and measure the resulting response.
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of the locking tone and the lock settings in the FPGA feedback. One of such sweeps is shown by a dashed
black line in Figure D.13.

(c) Repeat the VNA sweeps for multiple central frequencies of the Lorentzian, covering the whole range of
frequencies for which we need to determine the loop gain. Figure D.13 shows a set of 891 such sweeps
obtained over a range of cavity detunings between 1850 MHz and 2450 MHz.

(d) Determine the envelope of the resulting set of Lorentzians. Since the Lorentzian response in the optical
domain does not depend on the OLO detuning (at least, as long as that detuning is much greater than
the cavity linewidth), the frequency dependence of the Lorentzians magnitude arises solely from the loop
gain that we set out to calibrate. Thus, the envelope can be interpreted as the magnitude of the gain.
Figure D.13 plots the smoothed envelope with a thick black line.

(e) The phase part of the response can be determined by examining the phase the Lorentzian which contributes
to the envelope (i.e., the tallest Lorentzian) at each frequency.

D.7 Phase modulator Vπ calibration

A lot of the optomechanical measurements (such as determining optomechanical coupling from the OMIT/A
signals or calibrating the undriven motion measurements) require precise knowledge of individual powers in
each optical tone incident on the experimental cavity. The combined power in all the beams can be obtained
using the monitor PD (its calibration is described in section D.8). The relative powers of the beams can be
found by monitoring the microwave drive of the phase modulator and calibrating how the strengths of the
drives at different frequencies translate to the phase sidebands strengths. In this section I describe two different
procedures for performing this calibration.

D.7.1 Optical spectroscopy approach

We start with equation (C.52) expressing the output of the phase modulator. It describes a set of optical tones
centered around the optical carrier frequency ωL and spaced by the microwave drive frequency ν0. From that
equation we can extract the relative power in the mth-order tone (the tone with frequency ωL +mν0):

Prel(m) = |Jm(πV0/Vπ)|2. (D.16)

This expression suggests that by determining the relative optical tone powers it is possible to extract the relative
drive voltage V0/Vπ. To measure the tone powers, we use the tunable Fabry-Perot cavity (TFPC) in the monitor
arm of the setup as an optical spectrum analyzer (see Figure 5.2 and subsection 5.2.5). At the same time, we
measure the microwave drive power by sending off some of the phase modulator drive through the directional
coupler onto the microwave SA. The same directional coupler and SA are later used to measure the strength of
the modulator drive in the experiment, which ensures that the calibration is applied in a consistent manner.

The calibration procedure goes as follows:

(a) Using one of the available microwave generators, send a single microwave tone into the phase modulator.
Configure the OSW to send the analyzed light through the TFPC, and sweep the TFPC resonance
frequency over the optical carrier and the phase sidebands. Examples of such sweeps are shown in Figure
D.14a.

(b) Fit the sweep to a sum of three Lorentzians (black line in Figure D.14a), and from the fit extract rs/c,
the ratio of the first-order sideband power to the carrier power. Simultaneously, measure the microwave
drive power P0 on the input of the spectrum analyzer.

(c) Repeat this procedure while varying P0 to obtain the power dependence of rs/c. Fit this dependence to
the expected expression

rs/c(P0) = (J1(π
√
P0/Pπ))2/(J0(π

√
P0/Pπ))2 (D.17)
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a)

b) c)

Figure D.14: Results of the Vπ calibration using the optical spectroscopy approach.

a) Examples of TFPC sweeps for different amplitudes of the microwave drive V0. Thin black lines show
fits to a sum of three Lorentzian peaks as discussed in the text. The sweeps are offset vertically for
clarity.

b) Dependence of the sideband-to-carrier ratio at the phase modulator output on the phase modulator
drive power, as measured by the SA. Markers show experimental results, solid lines are fits to the
expected dependence (D.17). Marker and line colors encode MW drive frequency.

c) Resulting Pπ (referenced to the SA input) for different drive frequencies ν0.

to obtain Pπ, which is the power corresponding to Vπ referenced to the SA. Typical experimental results
for rs/c(P0) along with fits to the expression (D.17) are shown in Figure D.14b.
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(d) Repeat these steps for different drive frequencies ν0 to get the frequency dependence of Pπ. Figure D.14c
shows this dependence for our experimental setup.

D.7.2 Carrier depletion approach

a) b)

Figure D.15: Results of the Vπ calibration using the carrier depletion approach.

a) Dependence of the amplitude of the experimental cavity sweep on the phase modulator drive power, as
measured by the SA. Markers show experimental results, solid lines are fits to the expected dependence
(D.19). Marker and line colors encode MW drive frequency.

b) Resulting Pπ (referenced to the SA input) for different drive frequencies ν0.

Another way to determine the sideband magnitude is by using the fact that the sidebands draw their power
from the carrier, so the carrier becomes weaker for strong MW drives. If the power in the carrier (relative to
the undriven case) is detected, it can be used to extract the power in the phase sidebands and determine the
microwave drive strength relative to Vπ.

Let us consider the full expansion (C.51) for the phase modulator output in the presence of two microwave
drives: a strong control tone with frequency ν0 and relative amplitude ψ0, and a weak probe tone with frequency
νp and amplitude ψp. If we only leave the terms up to first order in ψp, the output of the phase modulator can
be expressed as

aφ = aLe
−iωLt

+∞∑
m=−∞

(−i)mJm(ψ0)
(
J0(ψp)− iJ1(ψp)e−iνpt − iJ1(ψp)e+iνpt

)
e−imν0t. (D.18)

To extract the carrier depletion due to the control tone J0(ψ0), we perform the cavity response sweep,
as described in section D.6 and appendix C.3.2. We assume that only the upper probe sideband is close to
the cavity resonance, and all other tones (including the ones generated by the presence control drive) are far
off resonance, and therefore are simply reflected off the input cavity mirror. As shown in appendix C.3.2,
the photocurrent beatnote at the frequency νp comes from the beating of the carrier and the probe sideband
which interacted with the cavity, and the magnitude of this beatnote is proportional to the product of the two
amplitudes. In our case the carrier amplitude is aL,0 = aLJ0(ψ0)J0(ψp), and the probe sideband amplitude is
aL,1 = −iaLJ0(φ0)J1(ψp). This leads to the beatnote (c.f. (C.56)

〈i〉 ∝ (aLJ0(φ0)J0(ψp))∗ (aLJ0(ψ0)J1(ψp))χc,rel[∆ + νp]e−iωpt

= (J0(ψ0))2
(
|aL|2J0(ψp)J1(ψp)χc,rel[∆ + νp]

)
e−iωpt. (D.19)
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Since its magnitude is proportional to (J0(ψ0))2, by performing this kind of sweep for multiple control beam
amplitudes ψ0 = π

√
P0/Pπ and fitting their magnitude to the expected dependence |〈i〉| ∝ (J0(ψ0))2 it is

possible to extract Pπ for a given frequency of the control beam. The rest of the calibration procedure is
essentially the same as in the previous subsection. Figure D.15a shows the measured beatnote magnitude as a
function of the phase modulator drive power P0 together with the fits to the expected dependence (D.19), and
Figure D.15b shows the resulting values of Pπ for different drive frequencies.

D.8 Incident and reflected power calibration

Figure D.16: Schematic of the power calibration part of the setup.

As mentioned in section D.7, to determine powers in individual laser tones we need to determine the
total laser power. This power calibration is performed using the 99:1 splitter between the circulator and the
experimental cavity. The schematic of this part of the setup is shown in Figure D.16. The splitter has been
pre-calibrated to precisely determine the ratio between the power incident on the device (port 3) and power in
the INC tap (port 4) and the ratio between the power reflected from the device (port 3) and the REFL tap
(port 2).

During the calibration procedure, a power meter is connected to either port 2 or port 4 of the splitter, and
its reading together with the splitter ratios provide respectively reflected or incident laser power. These powers
are then related to the DC voltages on the output of the monitor (Mtap splitter in Figure 5.2) or the reflection
(Rtap splitter in Figure 5.2) photodiode, providing a way to determine them during the experiment without
use of the power meter. In addition, the ratio of the reflected power to the power landing on the reflection
photodiode yields η`,EDFA, the magnitude of the loss between the calibration splitter and the EDFA. This value
is important in determining the total measurement quantum efficiency for the undriven motion calibrations (see
subsection 8.3.2).

In principle, there can be additional losses between port 3 of the splitter and the experimental cavity, which
could come from the fiber connector or light absorption inside the refrigerator. We assume that these losses
are equal for the incident and for the reflected light, which is true for reciprocal noise sources such as simple
absorption or scattering. This lets us calculate one-way loss as a square root of the round-trip loss: η`,fridge =√
Prefl/Pinc, where Pinc and Prefl are respectively the incident and the reflected power measured at the port 3

of the splitter. Hence, the power incident on the input mirror of the cavity is Pext = Pincη`,fridge =
√
PincPrefl,

and the total loss between the device and the EDFA is η` = η`,EDFAη`,fridge.

D.9 Sideband correlator angle calibration

The sideband correlator S
(rb)
ii [δω] is a complex quantity, so it is important to calibrate its complex phase in order

to correctly extract its real (Lorentzian) and imaginary (anti-Lorentzian) parts. To understand the way we do

it, first recall the procedure for obtaining the sideband spectra S
(rr)
ii and S

(bb)
ii described in subsection 8.3.2.

There the two mechanical sidebands in the photocurrent get eventually mixed down in the ZILI to produce
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the two records i`(t) and iu(t), which correspond to some narrow (∼ 100 kHz) frequency band around the
corresponding demodulation frequencies. If the demodulation frequencies are chosen correctly, the two records
can be readily identified with the sideband photocurrents ir[δω] and ib[δω] defined in equation (7.28). Given
this correspondence, we Fourier transform these photocurrent records, which allows us to calculate their PSDs

as S
(uu)
ii [δω] =

〈
|iu[δω]|2

〉
and S

(``)
ii [δω] =

〈
|i`[δω]|2

〉
and associate them with the theoretical PSD expressions

(equation (7.29) and (7.30)). In calculating S
(uu)
ii and S

(``)
ii the ensemble averaging is usually replaced by time

averaging or data binning.

In the same manner, we can calculate the cross-correlator S
(u`)
ii [δω] = 〈iu[ω]i`[−ω]〉, which is an analogue of

the theoretical cross-correlator S
(rb)
ii [δω]. However, unlike the PSDs which only depend on a single photocurrent

record, the cross-correlator includes both of the records, so it is crucially dependent on the frequencies and
phases of the records being precisely defined and locked to each other. If their relative phase is poorly defined,
the cross-correlator will also acquire a random phase, and if their frequencies are slightly shifted (e.g., if the

frequencies of the two control tones are not locked), the phase of S
(u`)
ii [ω] will change in time, and it will converge

to zero instead of some finite value.
Let us examine these effects quantitatively. We start by establishing a theoretical expression for the pho-

tocurrent i(t) right at the photodetector output, i.e., before mixing down and demodulating. Even though the
exact cross-correlator value (7.55) depends on quantum effects and inclusion of the optical vacuum noise, here
for simplicity we will consider a classical system by setting ξ̂ = 0 and treating the mechanical amplitude ĉ = c
as a classical random variable. As far as the control beam frequencies and phases are concerned, this treatment
should capture all of the important issues. In this classical treatment we can simply say that the photocurrent
is (up to a gain coefficient G) square of the incident optical field: i(t) = G|adet(t)|2. If we assume the same
heterodyne measurement scheme as in appendix C.1.2, we can represent adet as

adet(t) = aOLOe
−iωOLOt + dout(t). (D.20)

Up to first order in dout the photocurrent is

i(t) ≈ |aOLO|2 +
(
a∗OLOdout(t)e

+iωOLOt + c.c.
)
. (D.21)

Here we only focus on the interesting part of the reflected light (the one containing the mechanical sidebands),
and not on, e.g., the reflected control beams. To express dout in the time domain, we are going to use equation
(7.23) and assume the fast (compared to the mechanical lifetime) cavity limit γm,eff � κ (in our systems
γm,eff < 2π · 10 kHz and κ > 2π · 20 MHz), i.e., set χc[ω] ≈ χc[ωr] for the Stokes sideband and χc[ω] ≈ χc[ωb]
for the anti-Stokes sideband:

dout[ω] ≈ i
√
κextg

(0)χc[ωb]ā`c[ω −∆`]− i
√
κextg

(0)χc[ωr]āuc
∗[ω −∆u] (D.22)

dout(t) ≈ i
√
κextg

(0)χc[ωb]c(t)ā`e
−i∆`t − i

√
κextg

(0)χc[ωr]c
∗(t)āue

−i∆ut. (D.23)

We have to keep in mind that this expression for dout is derived in the cavity frame, which means that ωOLO is
specified in the same frame, i.e., it is the OLO detuning from the cavity resonance.

Given the expression (D.22) for dout, we obtain the photocurrent

i(t) = |aOLO|2 +
(
i
√
κextg

(0)χc[ωb]c(t)(a∗OLOā`e
−i(∆`−ωOLO)t)

−i
√
κextg

(0)χc[ωr]c
∗(t)(a∗OLOāue

−i(∆u−ωOLO)t) + c.c.
)
. (D.24)

Since ∆`, ∆u and ωOLO are in the same frame, the terms ∆`−ωOLO and ∆u−ωOLO are the absolute frequency
differences between the control beams and the OLO, i.e., ∆` − ωOLO = νcon,`, ∆u − ωOLO = νcon,u.

Finally, we can separate the photocurrent into two different parts corresponding to the two sidebands:

i(t) = |aOLO|2 + (i`(t) + iu(t) + c.c.) (D.25)

i`(t) = i
√
κextg

(0)χc[ωb]α`c(t)e
−iνcon,`t ≡ G`α`c(t)e−iνcon,`t (D.26)

iu(t) = −i
√
κextg

(0)χc[ωr]αuc
∗(t)e−iνcon,ut ≡ Guαuc

∗(t)e−iνcon,ut, (D.27)
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where G`,u = ±i√κextg
(0)χc[ωb,r]|aOLO|2 are the proportionality coefficients, and α`,u = ā`,u/aOLO is the ratio

of the control beams to the OLO (as shown in section C.3, it is proportional to the corresponding MW drive
amplitude, including the phase). Since c(t) peaks around ωm,eff , we get the maximum of i` at (∆` − ωOLO) +
ωm,eff = ωb − ωOLO and, similarly, maximum if iu at (∆u − ωOLO)− ωm,eff = ωr − ωOLO.

Up to a frequency shift, these photocurrents can be associated with ir and ib defined in (7.28):

i`(t) = e−i(ωb−ωOLO)tib(t) (D.28)

iu(t) = e−i(ωr−ωOLO)tir(t). (D.29)

However, to obtain the required frequency shifts, we still need to demodulate the signal at some frequencies νdem,`

and νdem,u generated internally in the ZILI. This operation can be represented as multiplying the photocurrent by
a corresponding demodulating signal a∗dem,`e

+iνdem,`t or a∗dem,ue
+iνdem,ut; νdem,` and νdem,u are the demodulation

frequencies, while adem,` and adem,u are the amplitudes of the corresponding local oscillators, which encode their
respective phases.c) With that, the actual measured demodulated photocurrents are

id,` = a∗dem,`e
+i(νdem,`)ti` = G`

(
α`a
∗
dem,`e

−i(νcon,`−νdem,`)t
)
c(t) (D.30)

id,u = a∗dem,ue
+i(νdem,u)tiu = Gu

(
αua

∗
dem,ue

−i(νcon,u−νdem,u)t
)
c∗(t). (D.31)

Finally, the cross-correlator calculated from these photocurrents is

C
(u`)
ii (t, τ) = 〈id,`(t− τ/2)id,u(t+ τ/2)〉

= GuG`〈c(t− τ/2)c∗(t+ τ/2)〉e−i(νcon,u−νcon,`−νdem,u+νdem,`)τ/2 ×
×
〈
α`a
∗
dem,`αua

∗
dem,u

〉
e−i(νcon,`+νcon,u−νdem,`−νdem,u)t. (D.32)

(in this expression we made a reasonable assumption that the mechanical mode dynamics is uncorrelated from
the various microwave signal phases, so their ensemble averages can be separated).

We can compare this expression to an idealized classical cross-correlator S
(rb)
ii [δω], which can be obtained

by using equations (7.35) and (7.49) and neglecting all vacuum noise:

S
(rb)
ii [δω] = −G2(a∗OLO)2κext(χc[ωr]χc[ωb])(g(0))2ā`āuSĉ,ĉ† [ωm,eff + δω]

= −G`Guα`αuSĉ,ĉ† [ωm,eff + δω], (D.33)

or in the time domain

C
(rb)
ii (τ) ≡ 〈ir(t+ τ/2)ib(t− τ/2)〉

= −G`Guα`αu〈c(t− τ/2)c∗(t+ τ/2)〉eiωm,effτ . (D.34)

While the control beam beatnotes α` and αu are still present, the rest of the microwave drive does not show up
in this expression, and it also does not depend on the common time t. This comes from an implicit assumption
of “ideal” frequency shifts of ir,b given by equation (7.28).

Let us consider the requirements for equation (D.32) needed to produce a stable predictable result:

• First, all dependence on the common time t needs to be eliminated, otherwise, the time average of
the correlator will become zero. This requires precise cancellation of the microwave drive frequencies
νcon,`+νcon,u−νdem,`−νdem,u = 0, which is achieved by locking all the microwave generators and the ZILI
to the same 10 MHz synchronization signal and choosing appropriate numerical values for their output
frequencies.

c)For simplicity, we omit the fact that the photocurrent has an extra stage of mix-down before entering the ZILI. It does not affect
the generality of the derivation, as the phase and the frequency of this mix-down signal can be absorbed into the demodulation
signals.
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• Second, to relate C
(u`)
ii to C

(rb)
ii we need to match the mechanical motion correlator frequency shift (the

frequency in the exponent containing τ): νcon,u − νcon,` − νdem,u + νdem,` = 2ωm,eff . Since the mismatch
in this equation simply shifts the perceived mechanical frequency, it does not need to be satisfied exactly;
nevertheless, we need it to be approximately correct to be able to extract the mechanical frequency from
the cross-correlator. In practice, we satisfy it by separately setting νdem,`−νcon,` = νcon,u−νdem,u ≈ ωm,eff ,
which means that the mechanical motion is centered independently in both photocurrent records i` and
iu.

• Finally, we need to know the phase factor
〈
α`a
∗
dem,`αua

∗
dem,u

〉
. This is required both to correctly extract

the phase of the cross-correlator, and to make sure that averaging of separate measurements is done
properly (if each measurement has an independent random phase, then their average will end up being
zero).

Figure D.17: Optical tone configuration for simultaneous measurements of both mechanical sidebands. The
horizontal axis is scaled in units of optical cavity linewidths. Tones detunings and the mechanical motion
linewidth are not to scale (except for the locking beam).

In order to determine this phase factor, we use an additional microwave drive of the phase modulator,
which we call a “calibration” tone. In the schematic tone configuration shown in Figure D.17 the sidebands
arising due to this drive are denoted with purple arrows. This microwave tone is generated at a frequency
νcal close (but not exactly equal) to the mechanical frequency ωm,eff . Due to the non-linearity of the
phase modulator (discussed in appendix C.3), it results in second order sidebands on both control beams;
their frequencies are νcon,u ± νcal and νcon,` ± νcal relative to the OLO, or ∆u ± νcal and ∆` ± νcal relative
to the cavity. We are interested in the sidebands closest to the optical cavity resonance, which are at
frequencies ∆u − νcal and ∆` + νcal (denoted by small purple arrows in Figure D.17); the other two
sidebands are far from the optical resonance, and therefore can not be detected, as described in appendix
C.3.2. We want these sidebands to be close enough to the mechanical frequency that they fall within
the demodulation window ZILI (i.e., less than 100 kHz away from the mechanical motion sidebands), but
far enough that they do not experience any OMIT effects: |νcal − ωm,eff | � γm,eff . Typically, we choose
ωm,eff − νcal ≈ 2π · 50 kHz, which satisfies both criteria. After reflection off the cavity and detection,
these sidebands (similarly to the mechanical motion sidebands) produce beatnotes in the photocurrent at
frequencies νcon,u − νcal and νcon,` + νcal. It is these beatnotes which we use to calibrate the phase factor.

Let us denote the normalized amplitude of the MW calibration tone as αcal, so that the tone itself is
expressed as αcale

−iνcalt. As per appendix section C.3, the second order optical sidebands due to this
tone will have amplitudes (neglecting the uninteresting π/2 phases) acal,` = aOLOα`αcal for the sideband
at a frequency νcon,` + νcal and acal,u = aOLOαuα

∗
cal for the sideband at a frequency νcon,u − νcal. After

reflection and detection, these sidebands produce beatnotes in the photocurrent with respective amplitudes
(excluding real factors which do not change the complex signal phase)

abn,` ∝ aOLOacal,`χc[ωb] = |aOLO|2α`αcalχc[ωr] (D.35)

abn,u ∝ aOLOacal,uχc[ωb] = |aOLO|2αuα
∗
calχc[ωr]. (D.36)
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After exactly the same demodulation step as for the mechanical sidebands, these end up producing
demodulated signals (similar to equations (D.30) and (D.31))

ical,`(t) ∝ a∗dem,`e
−iνdem,`tabn,`e

−i(νcon,`+νcal)t

= |aOLO|2α`α∗cala
∗
dem,`χc[ωb]e−i(νcon,`+νcal−νdem,`)t (D.37)

ical,u(t) ∝ a∗dem,ue
−iνdem,utabn,ue

−i(νcon,u−νcal)t

= |aOLO|2αuαcala
∗
dem,uχc[ωr]e

−i(νcon,u−νcal−νdem,u)t (D.38)

for the lower and the upper control beam sideband respectively. Note that these signals have all the same
microwave amplitudes as the mechanical sideband signals (D.30) and (D.31) (in fact, the expressions
become almost identical if we replace the mechanical motion c(t) by the calibration MW tone αcale

−iνcalt).

If we calculate the product of the two demodulated signals, we obtain

〈ical,`(t)ical,u(t)〉
= |aOLO|4|αcal|2χc[ωb]χc[ωr]

〈
α`a
∗
dem,`αua

∗
dem,u

〉
×

e−i(νcon,`+νcon,u−νdem,`−νdem,u)t, (D.39)

which (up to some real positive prefactors and a known cavity susceptibility) exactly coincides with the
phase factor in the expression (D.32). Thus, we can determine the phase factor by adding a calibration
tone, detecting the second order phase sidebands it produces in the demodulator record, and calculating
the product of these sidebands.

In the experiment we have to be careful to make sure that this procedure does not introduce any additional
laser noise. Hence, we choose to alternate the periods when the calibration tone is on (usually 2 seconds
long), which are used to calibrate the phase, and the periods when it is off (usually 10-20 seconds long),
which are used for the detection of the mechanical motion. Since all of the microwave generators are
locked to the same clock reference, the phase does not fluctuate appreciably in between the calibration
periods. At the same time, the calibration tone is not present during the sensitive mechanical motion
detection, so its extra noise is not an issue.

With all of the phase uncertainty sources taken into account, we are able to reliably measure the microwave
phase factor and determine the correct quadratures of the cross-correlator. The residual phase error obtained
from the fits (as described in section 8.5) is typically less than 20 mrad.

D.10 Additional calibrations

In order to detect and exclude some systematic effects, we were performing additional checks during the main
measurement routine:

• One possible source of error is the frequency dependence of the MW and optical gains on the scale of the
distance between the two motional sidebands δ ≈ 2π · 200 kHz (see subsection 7.1.1), which could lead to
systematic differences in the estimation of the sidebands’ sizes. To account for that, we were periodically
(approximately once every couple of hours) swapping the positions of the sidebands by sightly altering
the MW frequencies of the control beam drives. As an example, the arrangement shown in Figure D.17b
can be flipped via reducing the upper control drive frequency νcon,u by δ and increasing the lower control
drive frequency by the same amount.

• Another potential source of asymmetry in the measurement scheme is the location of the OLO. So far in
all of the discussions we were assuming that it had lower frequency than both of the control beams, as
shown in, e.g., Figure D.17. This can affect the measurements through interaction of the OLO with the
cavity (which changes its phase differently depending on its position with respect to the cavity), and simply
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through the fact the the lower control beam is closer to the OLO, which means that its corresponding MW
frequency is lower than for the upper control beam. This difference can result in systematic uncertainty
if combined with, e.g., errors in the calibration of the phase modulator drive (appendix D.7). Similarly
to the previous effect, we correct for this by occasional (approximately once an hour) flipping of the OLO
position with respect to the cavity. This is straightforward to arrange, since the OLO already has copies
of all of the necessary beams (lock, upper and lower control, probe) on the other side due to the symmetry
of the phase modulation (see appendix C.3). Thus, to change the OLO detuning sign, we simply shift its
frequency by ≈ 2νlock = 4180 MHz (to move the lock beam on the other side of the OLO closer to the
cavity resonance), and change the sign of the lock gain to account for the resulting flipped error signal.
The rest of the measurement and the analysis remains the same, with occasional complex conjugates
arising due to the switched OLO side.

• Finally, we perform one more check by taking some of the experimental data in the “unlocked” configura-
tion, i.e., with the laser being fairly far (∼ 20 GHz) detuned from the cavity. Since the phase modulation
is invisible in this situation (as discussed in appendix C.2.3), we do not expect to see any heterodyne
signal. Thus, this measurement lets us ensure that there is no pickup in the MW part of the setup.

Furthermore, this measurement can serve to roughly estimate the amount of the residual laser phase
noise. This estimation is done by comparing the background in the undriven motion measurement in the
“unlocked” configuration to that of the standard measurement. Since tge phase noise does not contribute
in the “unlocked” measurement, the background there only contains the EDFA noise (the classical laser
amplitude noise is very small, so we ignore it in this discussion). At the same time, as demonstrated in
appendix C.2.7, the phase noise does appear in the photocurrent when the laser is reflected off a cavity,
which corresponds to the standard measurement situation. Thus, by comparing the two background, we
can determine the amount of the classical phase noise, or at least place an upper bound on it. In our case
this comparison reveals the amount of classical phase noise corresponding to the shot-noise limited power
(reference to the control beams) of 25 µW. The highest control beam power in the measurements shown
in Figure 8.9 is 10 µW, which corresponds to the ratio of the classical to the shot noise of 0.4. Most of
the measurements were performed at lower powers of ≤ 3 µW, reducing this ratio further to ∼ 0.1. This
amount of classical phase noise leads to over-estimation of the sideband asymmetry[182, 13] by about 0.1,
which possibly contributes to the deviation of the experimental data from the theory prediction in Figure
8.9.
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Name Description Model/Part number Relevant parameters

Main schematic

TL Tunable laser PurePhotonics PPCL200 Output power: < 60 mW; wavelength range: 1550± 20 nm

IQM Optical IQ modulator EOSpace IQ-0DKS-25 Bandwidth: 25 GHz

φM Optical phase modulator EOSpace PM-0K5-10 Bandwidth: 10 GHz

PCnt Polarization controller Oz Optics EPC-400

VOA Variable optical attenuator Oz Optics DD-100-MC Attenuation range: 0÷ 60 dB

EDFA Optical amplifier NuPhoton NP2000 Noise figure: 4 dB; output power: 20 mW

TF Tunable optical filter Oz Optics TF100 Bandwidth: 0.6 nm

TFPC Tunable Fabry-Perot cavity Made in-house Linewidth: 200 MHz, FSR: 1.5 THz

OSW Optical 2× 2 switch JDSU SW22-Z348

Mtap, Rtap Optical 90:10 splitter Thorlabs TW1550R2A2

Ctap Optical 99:1 splitter Thorlabs TW1550R1A2

Circulator Optical circulator Oplink MIOC1550 Polarization insensitive

FPD Fast photodiode Thorlabs DET08CFC Bandwidth: 8 GHz (diode capacitance of 0.3 pF)

PM Optical power meter Thorlabs PM100D + S144C

Filter cavity setup schematic

TFC Tunable filter cavity Micron Optics FFP-TF Bandwidth: 30 MHz; FSR: 15 GHz

PCnt Polarization controller Newport F-POL-IL

Circulator Optical circulator Thorlabs CIR1550PM-APC Polarization maintaining

PD Photodiode Thorlabs PDA10CF Bandwidth: 150 MHz

Table 9.1: List of optical components in the main setup schematic (Figure 5.2) and the filter cavity subsystem (Figure D.1).
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Name/Location Description Model/Part number Relevant parameters

Main schematic

ZILI Lock-In + DAQ system Zurich Instrument UHF LI Frequency range: 0÷ 600 MHz

VNA Vector network analyzer HP 8722D

MWG1, MWG2 Microwave generator Vaunix LabBrick LMS-232D Frequency range: 0.7÷ 2.2 GHz

MWG3 Microwave generator Agilent N9310A Frequency range: < 3 GHz

SA Spectrum analyzer Rigol DSA1030A Frequency range: < 3 GHz

FPGA DSP module NI PXI-7854R

Reflection FPD amplifier Low-noise MW amplifier
chain

Minicircuits (ZX60-P105LN+) +
2× (ZX60-V62+)

First amplifier NF: 2 dB; total gain: ∼ 45 dB

4× 1 combiner, 1× 3 splitter Power splitter/combiner Minicircuits ZB4PD-462W-S+ Frequency range: 0.38÷ 4.6 GHz

φM drive amplifier Low-noise MW amplifier Minicircuits ZX60-H242+ NF: 2.5 dB; output power: 23 dBm

φcal tone combiner MW directional coupler ZNDC-18-2G-S+ Coupling: 18 dB; frequency range: 0.8 ÷
2.0 GHz

φM drive SA tap MW directional coupler ZFDC-10-182-S+ Coupling: 10 dB; frequency range: 0.1 ÷
1.8 GHz

MWSW MW switch Minicircuits MSP2TA-18-12+

VCO Voltage-controlled oscillator Minicircuits ZX95-3555+ Frequency range: 2.8÷ 3.5 GHz

VCO amplifier High-power MW amplifier Minicircuits ZHL-42W+ Output power: 30 dBm

IQM 0◦ − 90◦ splitter MW 90◦ hybrid Minicircuits ZAPDQ-4-S Frequency range: 2÷ 4.2 GHz

MWG1 splitter Power splitter Two 2-way MW splitters (Mini-
circuits ZAPD-20-S+)

Frequency range: 700÷ 2000 MHz

Filter cavity setup schematic

AWG Function generator Agilent 33220A

Mixer Low-frequency mixer Minicircuits ZP-3+ LO frequency range: 0.15÷ 400 MHz

Bias tee Low-frequency MW bias tee Minicircuits ZFBT-4R2GW+ Cutoff frequency: 0.1 MHz

µC Micro-controller Arduino Uno + in-house
ADC/DAC board

Feedback delay: ∼ 1 ms

Table 9.2: List of electronic components in the main setup schematic (Figure 5.2) and the filter cavity subsystem (Figure D.1).
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Name/Location Description Model/Part number Relevant parameters

Mixer circuit

LO 90◦ splitter High-frequency 90◦ hybrid Minicircuits ZX10Q-2-27-S+ Frequency range: 1700÷ 2700 MHz

IF 90◦ splitter Low-frequency 90◦ hybrid Minicircuits ZX10Q-2-3-S+ Frequency range: 220÷ 470 MHz

RF combiner Power splitter/combiner Minicircuits ZAPD-20-S+ Frequency range: 700÷ 2000 MHz

Mixers MW mixer Minicircuits ZEM-M2TMH+ Frequency range: 10÷ 2400 MHz

RF output filter Bandpass filter Minicircuits (VHF-2000+) + (VLF-
2250+)

Frequency range: 2000÷ 2600 MHz

IQM circuit

VMWA Variable MW attenuator Minicircuits ZX73-2500M-S+ Frequency range: 0÷ 2500 MHz

Bias tee Low-frequency MW bias tee Minicircuits ZFBT-4R2GW+ Cutoff frequency: 0.1 MHz

Amplifier Low-noise MW amplifier chain Minicircuits (ZX60-6013E-S+) +
(ZX60-V63+) + 2× (ZX60-V62+)

Frequency range: 50÷6000 MHz; first am-
plifier NF: 3.5 dB; total gain: 60 dB

Splitter Power splitter Minicircuits ZN2PD2-63-N+ Frequency range: 350÷ 6000 MHz

High-pass filter High-pass filter Minicircuits VHF-4600+ Cutoff frequency: 4600 MHz

Low-pass filter Low-pass filter Minicircuits VLF-3000+ Cutoff frequency: 3600 MHz

Top MWPD MW power detector Minicircuits ZX47-55LN-S+ Frequency range: 10÷ 8000 MHz

Bottom MWPD MW power detector Minicircuits ZX47-40LN-S+ Frequency range: 10÷ 8000 MHz

Table 9.3: List of electronic components in the mixer circuit (Figure D.6a) and the IQM stabilization circuit (Figure D.5).
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