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Quantum optomechanical systems use radiation pressure of light to couple the optical field and

the center-of-mass motion of micromechanical devices. Such systems provide powerful tools for

generating and manipulating quantum mechanical states. In this thesis, a 8.3mm long high finesse

optical cavity coupled to a 1.5mm × 1.5mm × 50 nm stoichiometric silicon nitride membrane is

used as the optomechanical system, placed at 400mK inside a 3He fridge. The major goals of this

research are: laser cooling the 261 kHz membrane vibrational mode to its quantum ground state;

detecting the quantum fluctuation of radiation pressure, known as radiation pressure shot noise;

and generating squeezed light.

The low mechanical frequency in this optomechanical system makes it susceptible to substantial

laser phase noise. This large phase noise limits the lowest phonon number we can reach with laser

cooling, and complicates the detection of mechanical motional state. In this thesis, based on Børkje’s

calculations[1], a clear understanding of laser cooling and heterodyne detection spectra when the

laser classical noise is non-negligible is presented and compared to measured results. Preliminary

laser cooling results down to about 60 phonons are shown, and method to observe radiation pressure

shot noise is discussed. To reduce the laser phase noise, a filter cavity is built and is verified to

have lowered the classical noise by a factor of over 560, paving the way for achieving ground state

cooling and observation of radiation pressure shot noise.

The thesis begins with an overview of optomechanical systems and major efforts to achieve

ground state cooling and observation of radiation pressure shot noise. The necessary theory is then

presented, with a focus on the effects of laser classical noise. Experimental design and measurement

methods are then discussed, highlighting our technical accomplishments by successfully implement-

ing various feedback and feedforward schemes. A chapter is devoted to discussing the measured
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laser classical noise. Then measurements of optomechanical effects and laser cooling down to about

60 phonons are presented. Finally future directions using filtered lasers are discussed.
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Chapter 1

Introduction

1.1 Overview of quantum optomechanics

The mechanical effects of light, known as radiation pressure, were theoretically derived when

Maxwell proposed his famous equations. Radiation pressure was then first experimentally observed

over 100 years ago[2, 3]. However, there were few application of this minute force for a long time.

This changed after the invention of the laser, which enabled high intensity, coherent light sources.

Radiation pressure of a highly focused beam became a tool to trap small particles in the 1970s[4, 5].

It was then used to laser cool the translational motion of individual atoms[6–9], and later led to

the creation of Bose-Einstein condensate (BEC)[10], which is a purely quantum state.

In recent years, developments in micro-fabrication technologies enabled radiation pressure to

be applied to manipulate the motional mode of more macroscopic mechanical devices[11–18]. This

created a new frontier in physics, known as quantum optomechanics. So far, devices have spanned

from hundreds of nanometer to tens of centimeters, but they all intend to use radiation pressure to

generate, detect, and utilize mechanical quantum states. Reaching the mechanical quantum ground

state using laser cooling is an important goal of such efforts. The radiation pressure fluctuation

caused by the quantum fluctuation of light, known as the radiation pressure shot noise (RPSN),

is another important subject, as it sets a limit of the precision in optical interferometric position

measurements. Observing RPSN remains a key first step in further efforts to improve precision
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position measurement. The nonlinear optomechanical interaction between the light field and the

mechanical motion also has the potential to produce nonclassical states of light and mechanical

motion, such as squeezing of light[19, 20], mechanical squeezed state[21], and entanglement between

the light field and the mechanical device[22].

In the following sections, I will first review some basic concepts in optomechanics, and present

an overview of the basic idea and various experimental approaches to laser cooling the mechanical

state. Then I will discuss RPSN with a focus on its relation to quantum limited measurements, and

review different efforts to observe RPSN. Finally I will briefly introduce the optomechanical setup

used in this thesis, and present an outline of the thesis chapters.

1.2 Basic optomechanical effects and laser cooling

As outlined in the pioneering theory works[23, 24], the most basic optomechanical system consists

of an optical cavity where one end-mirror is suspended on a spring, as shown in Figure 1.1(a). When

light circulates inside the cavity, the radiation pressure of light moves the suspended end mirror,

thus coupling the optical and mechanical degrees of freedom parametrically. In essence, the photon

number of the intracavity optical field is coupled to the position of the mechanical device—the

movable end mirror. The suspended end mirror motional mode is a harmonic oscillator. When its

motion is coupled to the radiation pressure, the mechanical susceptibility of the mirror is modified.

This gives rise to two optomechanical effects: a shift in the effective mechanical resonant frequency,

known as the optical spring ; and a change in the effective damping of the mechanical oscillator,

known as the optical damping. Both the frequency shift and the optical damping scale linearly

with the laser power, and depend on the relative detuning of the laser frequency from the cavity

resonance, or equivalently, the mirror position.

For such a non-equilibrium system, according to the fluctuation-dissipation theorem, the me-

chanical mode’s coupling to a thermal bath at temperature T is solely described by its damping

rate. The optomechanical interaction modifies the damping rate, but it does not change the thermal

Brownian drive. This implies a change in the effective temperature of the mechanical mode[25].
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Figure 1.1: (a) Schematic of a typical optomechanical system consisting of an optical cavity with a
movable end-mirror. (b) Sideband picture of laser cooling. The optomechanical coupling creates two
sidebands at the mechanical frequency ±ωm away on the carrier laser field with frequency ωL. The
net cooling is optimized when the cooling sideband at ωL+ωm is enhanced by the cavity resonance.
When ωm is larger than the cavity linewidth κ , in the resolved sideband limit, the cooling sideband
is much stronger than the heating sideband, enabling cooling to the quantum ground state.

To be more quantitative, consider a mechanical mode with mean energy Em, subject to Brownian

noise from the thermal bath at temperature T . Without optomechanics, the mean energy of the

mechanical mode follows

d < Em > /dt = −γm < Em > +γmkBT (1.1)

where γm is the intrinsic mechanical damping rate. The steady state solution of equation (1.1) is

< Em >= kBT (1.2)

given by the temperature T . However, when the laser is introduced, it changes the mechanical

damping rate. If the laser is negatively detuned relative to the cavity, the effective damping rate

γtot is larger than the intrinsic mechanical damping rate γm . Now Equation (1.1) modifies to

d < Em > /dt = −γtot < Em > +γmkBT (1.3)

The new steady state is

< Em >= kBT
γm

γtot
(1.4)
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The effective temperature of the mechanical mode is therefore reduced to

Teff = T
γm

γtot
(1.5)

This classical picture implies that laser cooling can be made arbitrarily large, which is not true once

we consider the complete quantum picture, i.e. the laser’s finite “temperature”.

Since both the optical field and the mechanical motion are described by harmonic oscillators,

we can use the photon-phonon interaction picture to gain greater intuition. As shown in Figure

1.1(b), in frequency space, consider a laser with frequency ωL coupled to the motion of the moving

end mirror with a resonant frequency ωm. Similar to the Raman scatterings, the optomechanical

coupling creates an Anti-Stokes sideband at ωL + ωm and a Stokes sideband at ωL − ωm for the

optical field. The Stokes sideband corresponds to the physical process of creating one extra phonon

by extracting energy from the optical mode, hence heating the mechanical oscillator; while the

latter process corresponds to cooling of the mechanical motion. We can use the cavity resonance to

selectively enhance the cooling process, by putting the anti-Stokes sideband at the cavity resonance

ωc. The Stokes process is also suppressed due to the cavity response roll-off. It is also easy to see that

in order to cool the mechanical motion to ground state, a big asymmetry between the anti-Stokes

and the Stokes sidebands needs to be achieved, this requires the mechanical frequency ωm to be

larger than the cavity linewidth κ . This is known as the “resolved sideband limit”. Calculations[26]

show the lowest achievable effective phonon number when ωm � κ is

nmin = (
κ

4ωm

)2 (1.6)

This nonzero minimum phonon number is limited by RPSN, which always produces a small amount

of mechanical motion.

The cooling also needs to be strong enough to cancel out any thermal excitation caused by

the mechanical device’s coupling with the environment. This requires both high light intensity,

and small mechanical coupling to the surroundings, denoted by a high mechanical quality factor

Q = ωm

γm
, where γm is the mechanical damping rate. To satisfy the resolved sideband limit and the
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low dissipation requirements, we need a combination of high optical finesse F and high mechanical

Q.

In the past few years, various groups have come up with diverse approaches to fulfill these

requirements and achieve laser cooling, here I summarize some of the recent experiments that have

reached or are close to reaching quantum ground state.

1. Optical cavity with a movable end-mirror.

Groups pursuing such setups focus on fabricating end mirrors with both good optical quality

and low mechanical dissipation. The Aspelmeyer group[27] employed a Si3N4 micromechanical

resonator with a multilayer dielectric Bragg mirror deposited on it which works as the movable

end mirror of a Fabry Perot cavity. The effective mass of the movable mirror is m = 43 ng, its

fundamental mechanical frequency is ωm/2π = 945 kHz, with mechanical Q = 30, 000. The cavity

linewidth is κ/2π = 770 kHz, making their setup slightly into the resolved sideband limit. Starting

at T = 5.3K, they were able to cool the mechanical motion down to 30 phonons, using 7mW of

cooling power. This minimum phonon number is limited by the thermal dissipation between the

mechanical oscillator and the thermal environment, as is shown by the relatively low mechanical Q.

2. Whispering gallery mode (WGM) in microtoroids and microspheres.

In these experiments, light is coupled into a silica toroid or sphere through an evanescent field[28],

and bounces inside the device many times through internal reflection. This creates a high Finesse

optical cavity[29, 30]. The light couples to the radial breathing modes of the toroid, and changes the

optical path length. Because of the small size (usually ∼ 10µm) of these devices, their vibrational

modes usually start at 10s of MHz or higher. In recent works by the Kippenberg group[31], they

used a silica microtoroid with cavity linewidth κ/2π = 19MHz, and mechanical frequency ωm/2π =

62MHz, deep inside the resolved sideband limit. Starting from T = 1.65K or thermal phonon

number nth � 560, using a 4He fridge, the effective phonon number was cooled down to 63 with

200µW laser power. Heating caused by optical absorption etc. starts to limit the cooling process.

Later, using a higher optical finesse toroid starting at 600mK in a 4He fridge, they cooled a 70MHz

mechanical mode down to 9 phonons[32]. Most recently, they used a modified microtoroid supported

by spikes to reduce the mechanical damping and the effective mass. Starting at 600mK in a 3He
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fridge, they cooled a 78MHz mechanical mode down to 1.7 phonons[33], limited by the onset of

strong coupling between the optical mode and the mechanical mode.

Similarly, Park et al. [34] used the WGM in an asymmetric microsphere. In their case, the

cavity κ/2π = 26MHz, the mechanical mode ωm/2π = 118.6MHz. Starting from T = 1.4K, the

effective phonon number went down to 37. The minimum phonon number is limited by its low

mechanical quality factor Q = 1540, due to ultrasonic attenuation in silica.

3. Other nanomechanical devices.

Recently, the Painter group [35] has used techniques borrowed from the field of photonic crystals

to engineer a Si nanobeam with periodic patterning added with perturbation at the center. This

creates a co-localized optical and mechanical resonances near the beam center, coupled through

radiation pressure. The mechanical mode frequency is ωm/2π = 3.68GHz. They also created a

phononic bandgap shield on the periphery of the nanobeam to increase the mechanical Q factor.

The optical linewidth is κ/2π = 500MHz. Starting from T = 20K, they were able to laser cool the

mechanical mode to a phonon number of 0.85.

4. Parametric coupling to superconducting microwave resonator.

The optomechanical coupling of a light field with a mechanical device can be easily extended to

include electromagnetic field at microwave frequencies. The Schwab group[36] used a mechanical

resonator formed by stoichiometric SiN and Al, with resonant frequency ωm/2π = 6.3MHz. This

mechanical device is capacitively coupled to a superconducting microwave resonator with resonant

frequency ωsr/2π = 7.5GHz. At T = 145mK, the initial thermal occupation number is nth = 480.

The lowest effective phonon number achieved was neff = 3.8. This minimum was limited by the

microwave resonator thermal occupation. In the measured noise spectra, the anti-correlation of the

mechanical resonator motion and the microwave field creates squashing like inverted peaks. Similar

effects in our system will be discussed later. In another recent experiment by Teufel et al.[37],

a flexural mode of a 48 pg aluminum membrane is parametrically coupled to a superconducting

microwave resonant circuit. With mechanical ωm/2π = 10.56MHz, Q = 3.3 × 105, and cavity

κ/2π = 200 kHz, they achieved a phonon number of 0.34 at 15mK.
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1.3 Quantum limited measurement and radiation pressure

shot noise

RPSN not only sets the limit for laser cooling, as discussed in the previous section, it also limits

the precision of optical interferometric displacement measurements. This is of particular interest to

sensitive measurements such as the Laser Interferometer Gravitational Wave Observatory (LIGO)

project. In this project, a large laser interferometer is built to detect length-changing effects due to

gravitational waves. The signal shows up as a phase difference between the optical lengths of the

two arms in a Michelson interferometer. There are two fundamental quantum noise sources in this

displacement measurement[38]: one is the photon counting noise, due to quantum fluctuations in

the number of photons detected in the output ports; this term is inversely proportional to the light

intensity. The other is the mirror position fluctuation due to RPSN, which is proportional to the

light intensity. The sum of these two quantum noise sources sets the sensitivity, which is minimized

when the contributions are equal. This minimum detection uncertainty is known as the standard

quantum limit (SQL).

Notice the SQL is based on the assumption that the two noise sources are independent. It

is therefore possible to beat the SQL in measurement precision by correlating the two fluctua-

tions using squeezed light[39]. The classical analogy of such quantum noise reduction has been

demonstrated[40]. However, RPSN has not yet been observed experimentally. The observation of

RPSN in an optomechanical system is also closely linked to the quantum nondemolition measure-

ment (QND) of the intracavity photon number[41, 42]. If such a QND measurement is achieved,

then RPSN can be observed from the fluctuations of the intracavity photon number.

RPSN is usually much smaller than the thermal fluctuations of the mechanical oscillator, this

makes it very difficult to observe. This can in principle be overcome by clever correlation schemes.

Verlot et al. demonstrated the classical noise version of such a correlation scheme[43] in a standard

optomechanical cavity. The basic idea is when the cavity is on resonance, the reflected light intensity

contains only information of the intracavity light intensity and not the cavity, whereas the phase

of the output contains information of the cavity displacement, caused by both radiation pressure
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and thermal noise. The correlation of these two terms is therefore averaged to only include the

intracavity photon number, making it a QND measurement of the photon state, and a measurement

of RPSN. Børkje et al.[44] then modified this scheme to look for signatures of RPSN by correlating

outputs of the membrane-in-the-middle cavity, a proof-of-principle experiment was carried out by

Zwickl et al.[45].

1.4 Membrane-in-the-middle setup

The optomechanical system used in our research group consists of a high finesse Fabry Perot cavity

and a silicon nitride (Si3N4 ) membrane in the middle of the optical cavity. Because the optical cavity

is separated from the mechanical device, high optical quality and low mechanical dissipation can

be achieved independently. The mechanical modes in this optomechanical setup are the vibrational

modes of the silicon nitride membrane, with a typical fundamental mode frequency of a few hundred

kHz. These modes have shown high mechanical Q ∼ 106 even at room temperature[46]. The

membrane also has little optical loss[47, 48], so integrating the membrane with an optical cavity

does not degrade the optical quality.

A unique feature of this setup is its ability to change the optomechanical coupling from linear to

quadratic or even quartic in the membrane position[47]. If the membrane is at a node (anti-node) of

the intracavity field, the cavity resonance is changed minimally (maximally). This means the cavity

resonant frequency has a quadratic dependence on the small membrane displacement at a node or

anti-node. At other positions, the cavity resonance is linear with membrane displacement, equivalent

to the standard setup in Figure 1.1(a). Furthermore, if we consider the different transverse modes

of the cavity, some of them cross each other in the cavity dispersion curve. The membrane again

acts as a perturbation to make these crossings avoided. Sankey et al. showed[48] such avoided

crossing can be systematically tuned to create large quadratic or quartic optomechanical couplings,

by adjusting the membrane position and tilt. This makes the membrane-in-the-middle system ideal

for many quantum experiments, such as observation of quantum jump and phonon shot noise, and

creation of a mechanical Schrödinger cat state. But in this thesis, I will focus on the case of linear

9



optomechanical coupling. Earlier, laser cooling by a factor of 40, 000 times from room temperature

was demonstrated[18]. In this thesis, I will describe our efforts toward ground state cooling and

observation of RPSN in a cryogenic environment.

The optomechanical system discussed in this thesis has a mechanical frequency ωm/2π =

261 kHz, and an optical linewidth κ/2π = 115 kHz, slightly inside the resolved sideband limit. At

400mK, the thermal phonon number is nth = 32, 000. The mechanical Q = 5× 106, corresponding

to a mechanical damping rate γm/2π = ωm/(2πQ) = 0.052Hz.

The mechanical frequency in our setup is much lower than all the devices in other laser cooling

experiments mentioned in Section 1.2. This makes our system more susceptible to classical phase

noise on the laser. We model the laser frequency noise spectral density at different frequencies

by[49, 50]

S
φ̇φ̇
[ω] = Γl

2γ2

c

γ2
c
+ ω2

(1.7)

in unit of (s−2
/Hz), where Γl is the laser linewidth in (rad/s), and γ

−1

c
is a finite correlation time.

The frequency noise spectrum can be regarded as white at frequencies below γc,

S
φ̇φ̇
[ω] = 2Γl (1.8)

set by the linewidth Γl. This is the common assumptions used when discussing laser frequency

noise[51]. But at high frequencies (ω � γc) it rolls off as

S
φ̇φ̇
[ω] � 2Γlγ

2

c

ω2
∝ 1/ω2 (1.9)

At a certain frequency ω, the phase fluctuation δφ[ω] is related to the frequency fluctuation δφ̇[ω]

by

δφ̇[ω] = ωδφ[ω] (1.10)

So the phase noise spectral density is expressed by

Sφφ[ω] =
1

ω2
S
φ̇φ̇
[ω] = Γl

2γ2

c

(γ2
c
+ ω2)ω2

(1.11)
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in unit of (rad2
/Hz). At high frequencies, the phase noise rolls off as 1/ω4. Therefore, the phase

noise at our mechanical frequency 261 kHz is considerably larger than the phase noise for other

setups at MHz and GHz frequencies. At 261 kHz, the measured laser phase noise is about 400 times

above the shot noise level for a 1µW beam.

As worked out in detail by Børkje[1], this high phase noise brings two complications to our

experiment: (1) The large noise limits the lowest phonon number we can reach by laser cooling. As

we increase the cooling power, the classical noise also increases, and produces additional mechanical

motion. (2) The phase noise also distorts the measured output optical spectra, and makes it difficult

to resolve RPSN. Because the light phase noise can have constructive or destructive correlation

with the radiation induced mechanical motion, the area under the mechanical peak in the output

spectra is not solely proportional to the mechanical motion. Therefore we cannot reliably estimate

our phonon number from the mechanical peak linewidth and area, as all the other experiments

discussed in Section 1.2 did. The RPSN measurement is also complicated because we need to

carefully distinguish the anti-correlation signature of RPSN from the similar effects caused by phase

noise. A full understanding of the effects of the large laser phase noise and efforts to reduce it will

be the center topic of this thesis.

The rest of this thesis is organized as follows. Chapter 2 describes the theory of laser cooling

and the heterodyne detection scheme used to measure the effective phonon number, RPSN, and

squeezed light, with an emphasis on the modifications of ideal results by the classical laser noise. I

will also discuss how a filter cavity can reduce the laser noise. Chapter 3 describes the designs of

the experiment, and the heterodyne measurement and data analysis methods. Chapter 4 presents

the methods and results of the laser noise measurement. It also demonstrates our ability to reduce

the laser phase noise with a filter cavity, as predicted by theory. Chapter 5 discusses measurements

of optomechanical effects and preliminary laser cooling results using unfiltered lasers. Chapter

6 discusses the future directions of the laser cooling and RPSN experiments with an improved

experimental setup, and the potential to observe squeezed light using this new setup.
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Chapter 2

Basic Theory of Laser Cooling and

Measurement of Mechanical Motion

2.1 Introduction

In this chapter, I will discuss the theoretical framework for understanding laser cooling and hetero-

dyne detection of the mechanical motional state. Before providing a mathematical description, I

will begin with a qualitative discussion.

The membrane motion starts at a very high phonon number, due to the random excitations of

its thermal bath. If we create another thermal link between it and a very “cold” bath (in this case

a laser), at equilibrium the “temperature” of the membrane would be lower. This is the basic idea

behind laser cooling. The better the thermal link between the membrane and the laser, and the

worse the thermal link between the membrane and the environment, the closer the final temperature

is to the laser "temperature". The thermal link to the laser is proportional to the number of photons

interacting with the membrane per unit time. The thermal link with the bath is characterized by

the membrane’s mechanical quality factor Q. A high Q is therefore desirable for the mechanical

device we choose.

The limit of the laser cooling process is set by how "cold" the laser is. Fundamentally, the laser

“temperature” is limited by quantum noise. This, in the resolved sideband limit, is enough to bring
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the membrane to its quantum ground state. However, if there is additional classical noise on the

laser, the effective temperature of the laser is raised, making laser cooling more challenging.

Once the membrane motional state is close to the ground state, various quantum effects can be

explored. One thing we are interested in observing is the radiation pressure shot noise (RPSN). It

is the back-action of the laser on the membrane caused by the quantum noise on the laser. This

signal is usually buried beneath the effects of the larger thermal Langevin force, but at low effective

temperature, we should be able to see it. However, the back-action caused by quantum noise on

the laser is not easily separated from the noise caused by classical laser noise.

The observation of RPSN would pave the way for testing schemes to beat the standard quantum

limit (SQL). Because RPSN also couples the mechanical state of the membrane with the optical

state, it creates relatively broadband squeezed light.

2.2 Basic theory of laser cooling

2.2.1 Equations of motion for the optomechanical system

We first consider the simple case of having one laser interacting with the membrane in the middle

of an optical cavity as depicted in Figure 2.1. The Hamiltonian of this system is

Ĥ = �ωmĉ
†
ĉ+ �(ωc − Aẑ)(â†â− < â

†
â >) + Ĥκ + Ĥγ (2.1)

â and ĉ are the annihilation operators of the intracavity optical field and the mechanical oscillator

respectively, and ẑ = (ĉ† + ĉ) is the normalized position operator for the mechanical oscillator. The

first term describes the isolated mechanical oscillator. The second term describes the intracavity

optical field. The angular frequency of the cavity resonance and the mechanical oscillator are

denoted as ωc and ωm. The optical field is coupled to the mechanical motion through the linear

coupling coefficient defined by A ≡ ∂ωcav

∂ẑ
, the slope of the cavity resonance ωcav(ẑ). The third term

Ĥκ denotes the intracavity field coupling to the optical input and the external vacuum noise bath.

The interaction with vacuum noise bath, using Markov approximations, can be treated heuristically
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Figure 2.1: Schematic of a laser interacting with a cavity with a membrane in the middle. âin,L

includes an input beam and quantum noise. Cavity coupling to the vacuum noise bath through
other loss mechanisms is described by the quantum noise input âin,M. The intracavity field â is
coupled to the membrane motion ẑ through radiation pressure.

as vacuum inputs similar to the optical input[52]. The final term Ĥγ is the mechanical damping.

Based on the Hamiltonian, we write down the equations of motion[53]

˙̂a = −(
κ

2
+ iωc)â− iAâẑ +

√
κLâin,L +

√
κMâin,M +

√
κRâin,R (2.2)

˙̂c = −(
γm

2
+ iωm)ĉ− iA(â†â− < â

†
â >) +

√
γmη̂ (2.3)

where âin,{L,R,M} are the annihilation operators for the optical input and vacuum noise inputs on the

left, right end mirrors and the other loss mechanisms inside the cavity. The various loss mechanisms

inside the cavity include coupling to other optical modes and absorption at the membrane or mirrors.

Correspondingly, κL, κR, and κM denote the energy decay rate of the intracavity field through the

left mirror, the right mirror and the other internal loss mechanisms. They satisfy κ = κL+κM+κR.

For the single-sided cavity we use in this experiment, κR is negligible.

Assume the input optical field, with angular frequency ωp, is from the left side of the cavity. In

rotating frame, âin,L(t) = e
−iωpt(āin(t) + δx(t) + iδy(t) + ζ̂L(t)). āin(t) is the mean field amplitude,

δx, δy are the classical amplitude and phase noise on the laser, ζ̂L is the vacuum noise entering from

the left side. Similarly, the other vacuum noise inputs are included as âin,M(t) = e
−iωptζ̂M(t).

Around the mechanical resonance frequency, we can assume the classical noise terms to be white,
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and define their amplitudes by

< δx(t)δx(t�) >= Cxxδ(t− t
�)

< δy(t)δy(t�) >= Cyyδ(t− t
�)

< δx(t)δy(t�) >= Cxyδ(t− t
�) (2.4)

Cxy reflects the fact that, as will be mentioned in Appendix B, there are mechanisms that might

correlate the laser amplitude and phase noise. The classical nature of this correlation makes it

satisfy Cauchy’s Inequality C
2

xy
≤ CxxCyy. Physically, an optical field with Cxx = 0.25 means the

classical amplitude noise is at the shot noise level, similarly for Cyy and Cxy.

The quantum noise inputs satisfy

< ζ̂(t)ζ̂†(t�) >= (nc + 1)δ(t− t
�)

< ζ̂
†(t)ζ̂(t�) >= ncδ(t− t

�) (2.5)

nc is the thermal occupation number at cavity resonant frequency ωc. Since �ωc >> kBT , nc =

1

e

�ωc
kBT −1

� kBT

�ωc
� 0. A quantum noise limited laser is therefore “cold”.

For the mechanical oscillator, γm is the decay rate of the oscillation amplitude. It also denotes

the oscillator’s coupling to the thermal bath. γm is linked to the mechanical Q factor as Q = ωm/γm.

The mechanical mode is excited by the thermal Langevin force η̂. This stochastic Brownian noise

is in general non-Markovian[54]. But at high Q, only a narrow frequency range around ωm will

contribute to the Brownian motion, we can treat the interaction as a Markovian process, and the

thermal bath satisfies[52, 55]

< η̂(t)η̂†(t�) >= (nth + 1)δ(t− t
�)

< η̂
†(t)η̂(t�) >= nthδ(t− t

�) (2.6)

where nth = 1

e

�ωm
kBT −1

� kBT

�ωm
is the average phonon number of the motional state determined by the

15



thermal bath.

The above definitions can also be expressed in Fourier space as

< η̂[ω]η̂†[−ω] >= nth + 1

< η̂
†[ω]η̂[−ω] >= nth

< ζ̂[ω]ζ̂†[−ω] >= 1

< ζ̂
†[ω]ζ̂[−ω] >= 0

< δx[ω]δx[−ω] >= Cxx

< δy[ω]δy[−ω] >= Cyy

< δx[ω]δy[−ω] >=< δy[ω]δx[−ω] >= Cxy (2.7)

For the optical powers we are dealing in this thesis, the amplitude of the laser beam is always large

compared to the fluctuations or modulations on it. We can therefore use the linearized quantum

noise description. In the rotating frame, we can write the intracavity field as â(t) = e
−iωpt(ā+ d̂(t)),

where ā is the mean field amplitude and d̂(t) the fluctuations. To the first order in the fluctuations,

the intracavity field and motional state fluctuations satisfy:

˙̂
d = −(

κ

2
− i∆)d̂− iαẑ +

√
κL(δx+ iδy + ζ̂L) +

√
κMζ̂M (2.8)

˙̂c = −(
γm

2
+ iωm)ĉ− i(α∗

d̂+ αd̂
†) +

√
γmη̂ (2.9)

Here we define detuning ∆ = ωp − ωc, and effective coupling α = Aā. It is also straightforward

to get ā =
√
κL

κ/2−i∆
āin. This means the phase of the intracavity field is shifted from that of the input

field by φ = arctan(2∆
κ
). In all our following discussions, we will be referencing phases against the

input field, i.e. assuming āin to be real. We could therefore write the intracavity field as ā = e
iφ|ā|.
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2.2.2 Optical resonant frequency shift and optical damping

In Fourier space, the solutions to the linearized equations and their conjugates are

d̂[ω] =

ˆ
dt e

iωt
d̂(t) = χc[ω](ξ̂[ω]− iαẑ[ω]) (2.10)

d̂
†[ω] =

ˆ
dt e

iωt
d̂
†(t) = χ

∗
c
[−ω](ξ̂†[ω] + iα

∗
ẑ[ω]) (2.11)

ĉ[ω] =

ˆ
dt e

iωt
ĉ(t)

= χm[ω][
√
γmη̂[ω]− i(α∗

χc[ω]ξ̂[ω] + αχ
∗
c
[−ω]ξ̂†[ω])− |α|2(χc[ω]− χ

∗
c
[−ω])ẑ[ω]] (2.12)

ĉ
†[ω] =

ˆ
dt e

iωt
ĉ
†(t)

= χ
∗
m
[−ω][

√
γmη̂

†[ω] + i(α∗
χc[ω]ξ̂[ω] + αχ

∗
c
[−ω]ξ̂†[ω]) + |α|2(χc[ω]− χ

∗
c
[−ω])ẑ[ω]] (2.13)

where we define ξ̂ =
√
κL(δx+ iδy+ ζ̂L)+

√
κMζ̂M as the effective noise source, χc[ω] = [κ/2− i(ω+

∆)]−1 the cavity susceptibility. And χm[ω] = [γm/2− i(ω − ωm)]−1 is the mechanical susceptibility.

Also notice ĉ
†[ω] �= (ĉ[ω])†.

It is easier to solve for ẑ[ω] = ĉ[ω] + ĉ
†[ω]. Note

χ
∗−1

m
[−ω]− χ

−1

m
[ω] = −2iωm (2.14)

We get

ẑ[ω] =
1

N [ω]
[
√
γm(χ

∗−1

m
[−ω]η̂[ω] + χ

−1

m
[ω]η̂†[ω])− 2ωm(α

∗
χc[ω]ξ̂[ω] + αχ

∗
c
[−ω]ξ̂†[ω])] (2.15)

The first term inside the square bracket of ẑ expression comes from the thermal drive. The second

term denotes the additional drive created by optomechanical effects. The optical field not only

provides new drive force terms, it also alters the effective mechanical susceptibility. The denominator
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in Equation (2.15) is:

N [ω] = χ
−1

m
[ω]χ∗−1

m
[−ω] + 2ωmΣ[ω] (2.16)

Σ[ω] = −i|α|2(χc[ω]− χ
∗
c
[−ω]) (2.17)

We can compare Equation (2.15) to a driven simple harmonic oscillator:

ẑo[ω] =
1

χ−1
m
[ω]χ∗−1

m
[−ω]

√
γm(χ

∗−1

m
[−ω]η̂[ω] + χ

−1

m
[ω]η̂†[ω]) (2.18)

In the limit of weak coupling, i.e. the total damping γ̃m � κ, the mechanical oscillator only responds

to frequencies around its resonance. So we compare the η̂[ω] drive terms in Equations (2.15) and

(2.18) explicitly around ω = ωm. The denominator in the simple harmonic oscillator case is

χ
−1

m
[ω] = γm/2− i(ω − ωm)

In the optomechanical case, the denominator around ω = ωm is

χ
∗
m
[−ω]N [ω] ≈ γm/2− i(ω − ωm) + iΣ[ωm] = γ̃m/2− i(ω − ω̃m) ≡ χ

−1

eff
[ω] (2.19)

We realize that Σ[ω] can be seen as the optomechanical "self-energy", and the effective mechanical

resonant frequency and damping rate are

ω̃m = ωm + δωm (2.20)

γ̃m = γm + γopt (2.21)

δωm = Re(Σ([ω]) = 2∆|χm(ω)|2|χm(−ω)|2|α|2[(κ/2)2 − ω
2

m
+∆2] (2.22)

γopt = −2Im(Σ[ωm]) = −4∆|χm[ω]|2|χm[−ω]|2|α|2κωm (2.23)

Once again, these equations are valid in the weak-coupling limit γm + γopt � κ, which is the case

for our experiment.

18



2.2.3 Laser cooling of effective phonon number

To understand the "thermal" effects of the laser better, we can write down the expression for

Sĉ†ĉ[ω] ≡< ĉ
†[ω]ĉ[−ω] >=

´
+∞
−∞ dte

iωτ
< ĉ

†(t)ĉ(t+ τ) >, which provides us the effective phonon

number when integrating over the whole frequency space[26]. The second step in the this equation

is given by the Wiener-Khinchin theorem[52]. Notice since ĉ is a quantum operator, we do not

expect Sĉ†ĉ[ω] = Sĉ†ĉ[−ω] as in the case of a classical signal.

Putting Equation (2.15) back into Equations (2.12) and (2.13), we can solve for ĉ
†[ω] and ĉ[ω]:

ĉ
†[ω] =

χ
∗
m
[−ω]

N [ω]
{−Λ[ω]N [ω] + 2ωmΣ[ω]Λ[ω]

+
√
γm[(η̂

†[ω]N [ω] + iΣ[ω](χ∗−1

m
[−ω]η̂[ω] + χ

−1

m
[ω]η̂†[ω])]} (2.24)

ĉ[ω] =
χm[ω]

N [ω]
{Λ[ω]N [ω]− 2ωmΣ[ω]Λ[ω]

+
√
γm[η̂[ω]N [ω]− iΣ[ω](χ∗−1

m
[−ω]η̂[ω] + χ

−1

m
[ω]η̂†[ω]]} (2.25)

where we have defined

Λ[ω] = −i(α∗
χc[ω]ξ̂[ω] + αχ

∗
c
[−ω]ξ̂†[ω]) (2.26)

which includes all the optical drive terms.

The expressions could then be simplified by using the relations

N [ω]− 2ωmΣ[ω] = χ
−1

m
[ω]χ∗−1

m
[−ω] (2.27)

N [−ω] = N
∗[ω] (2.28)

Σ[−ω] = Σ∗[ω] (2.29)
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We get

Sĉ†ĉ[ω] =< ĉ
†[ω]ĉ[−ω] >=

|χm[−ω]|2

|N [ω]|2 (−|χ−1

m
[ω]|2|χ−1

m
[−ω]|2 < Λ[ω]Λ[−ω] >

+ γm|χ−1

m
[−ω]|2|Σ[ω]|2 < η̂[ω]η̂†[−ω] > +γm|N [ω] + iχ

−1

m
[ω]Σ[ω]|2 < η̂

†([ω]η̂[−ω] >) (2.30)

The optical drive terms give us

< Λ[ω]Λ[−ω] >= −|α|2 < [e−iϕ
χc[ω](

√
κL(δx[ω] + iδy[ω] + ζ̂L[ω]) +

√
κMζ̂M[ω])

+ e
iϕ
χ
∗
c
[−ω](

√
κL(δx[ω]− iδy[ω] + ζ̂

†
L
[ω]) +

√
κMζ̂

†
M
[ω])]

[e−iϕ
χc[−ω](

√
κL(δx[−ω] + iδy[−ω] + ζ̂L[−ω]) +

√
κMζ̂M[−ω])

+ e
iϕ
χ
∗
c
[ω](

√
κL(δx[−ω]− iδy[−ω] + ζ̂

†
L
[−ω]) +

√
κMζ̂

†
M
[−ω])] > (2.31)

We then define

B±[ω] = e
−iφ

χc[ω]± e
iφ
χ
∗
c
[−ω] (2.32)

Physically they are measures of how much classical amplitude and phase noise contribute to various

optomechanical effects. B± depend on the cavity detuning ∆. When the laser is right on resonance

with the cavity, B−[ω] = 0, meaning the optomechanics is not susceptible to laser phase noise at

all. We are interested in the optomechanical effects at ω = ±ωm. So in Figure 2.2, we plot |B+[ωm]|

and |B−[ωm]| as a function of cavity detuning ∆, using experimental parameters. As shown by the

curves, both amplitude noise and phase noise have maximal effects around ∆ = −ωm.

Notice B+[−ω] = B
∗
+
[ω], B−[−ω] = −B

∗
−[ω], we can rewrite the optomechanical part as:

Sĉ†ĉ[ω]|opt =
|χ−1

m
[ω]|2

|N [ω]|2 |α|2[κL(|B+[ω]|2Cxx + |B−[ω]|2Cyy + 2Im(B+[ω]B
∗
−[ω])Cxy)

+ κ(|χc([ω]|2 < ζ̂[ω]ζ̂†[−ω] > +|χc[−ω]|2 < ζ̂
†[ω]ζ̂[−ω] >)] (2.33)

The thermal drive terms can also be simplified using the following relation derived from Equa-
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Figure 2.2: Theoretical plot of |B±[ωm]| as a function of cavity detuning ∆/2π. The blue curve is
|B+[ωm]|, a measure of the classical amplitude noise’s contributes to optomechanical effects. The
green curve is |B−[ωm]|, a measure of the contribution from classical phase noise. The parameters
used are κ/2π = 119 kHz, κL = 0.165κ, ωm = 261 kHz. Both functions reach maximum near
∆ = −ωm = −261 kHz.

tions (2.14), (2.19) and (2.27):

N [ω] + iχ
−1

m
[ω]Σ[ω] = χ

−1

m
[ω]χ∗−1

m
[−ω] + 2ωmΣ[ω] + iχ

−1

m
[ω]Σ[ω]

= χ
−1

m
[ω]χ∗−1

m
[−ω] + i(χ∗−1

m
[−ω]− χ

−1

m
[ω])Σ[ω] + iχ

−1

m
[ω]Σ[ω]

= χ
∗−1

m
[−ω]χ−1

eff
[ω] (2.34)
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Therefore

Sĉ†ĉ[ω] =
1

|N [ω]|2{γm|Σ[ω]|
2
< η̂[ω]η̂†[−ω] > +γm|χ−1

eff
[ω]|2 < η̂

†[ω]η̂[−ω] >

+ |χ−1

m
[ω]|2|α|2[κL(|B+[ω]|2Cxx + |B−[ω]|2Cyy + 2Im(B+[ω]B

∗
−[ω])Cxy)

+ κ(|χc([ω]|2 < ζ̂[ω]ζ̂†[−ω] > +|χc[−ω]|2 < ζ̂
†[ω]ζ̂[−ω] >)]}

� |χeff [−ω]|2{γmnth + |α|2[κL(|B+[ω]|2Cxx + |B−[ω]|2Cyy + 2Im(B+[ω]B
∗
−[ω])Cxy)

+ κ|χc([ω]|2 < ζ̂[ω]ζ̂†[−ω] >]} (2.35)

The first term is the thermal drive, the second is the classical noise contribution, and the third term

is the quantum noise contribution.

The effective phonon number is then calculated by integrating Sĉ†ĉ[ω] over all frequencies. From

Equation (2.19) and its conjugate, the mechanical oscillator only responds to frequencies close to

ω = ±ω̃m. Therefore the integration has two significant terms, corresponding to the two mechanisms

in which optical field contributes to the phonon number: one is at ω = ωm in the optical field

spectrum < d̂
†[ω]d̂[−ω]>, and contributes to Sĉ†ĉ[ω = ω̃m]. This corresponds to taking a photon

from the cavity resonance, extracting energy �ωm from the mechanical oscillator, and creating a

photon �ωm above cavity resonance, thus cooling the mechanical motion. The other is at ω = −ωm

in optical field spectrum < d̂
†[ω]d̂[−ω]>, and contributes to Sĉ†ĉ[ω = −ω̃m] , corresponding to the

heating process. In the final expression, we see the only significant term is Sĉ†ĉ[ω = −ω̃m] for a

high Q oscillator. Physically, this means the lowest achievable phonon number is limited by the

optomechanical heating terms.

Integrating (2.35), we get

neff =
1

2π

ˆ
+∞

−∞
Sĉ†ĉ[ω]dω

=
1

2π
(2πγ̃m){γmnth + |α|2[κL(|B+[−ω̃m]|2Cxx + |B−[−ω̃m]|2Cyy

+ 2Im(B+[−ω̃m]B
∗
−[−ω̃m])Cxy) + κ|χc([−ω̃m]|2]} (2.36)
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Equation (2.36) leads to the main expression in laser cooling:

neff =
γmnth + γoptnopt

γ̃m
(2.37)

where

γoptnopt = |α|2[κL(|B+[ω̃m]|2Cxx + |B−[ω̃m]|2Cyy + 2Im(B+[ω̃m]B
∗
−[ω̃m])Cxy) + κ|χc[−ω̃m]|2] (2.38)

In the resolved sideband limit, by detuning the laser to ∆ = −ωm from the cavity resonance, the

cooling process is maximally amplified by the cavity resonance, and the heating process is heavily

suppressed as it is far detuned from the cavity resonance. Under this optimal cooling condition, in

the limiting case where there is negligible classical noise, the lowest phonon number achievable is

( κ

4ωm
)2. This is less than 1 in the resolved sideband limit. The above formulae is the most important

basis for efforts to reach the quantum ground state of a mechanical oscillator by resolved sideband

laser cooling.

In reality, the laser always has some classical noise, particularly classical phase noise. Naively,

we would expect the criteria for getting to the ground state be that the classical noise be lower

than the quantum noise. However, the classical noise terms contribute differently from the quantum

noise term:

Consider the optimal cooling case ∆ = −ωm, we see the coefficient for classical phase noise

contribution has a leading term 1

(κ/2)2
whereas the quantum noise contribution only has a term

that goes as 1

(κ/2)2+(2ωm)2
� 1

(2ωm)2
. If the classical phase noise has the same magnitude as the

quantum phase noise, the effective phonon number gets a boost by a factor of (2ωm/κ)2 more from

the classical noise. This makes the condition for achieving ground state cooling more stringent than

merely having the classical noise below shot noise level.

As can be seen in (2.35), this difference comes from the fact that < ζ̂
†[ω]ζ̂[−ω] >= 0. Physically,

if we want to create a phonon, with classical noise we could have two processes: either first creating

one photon then destroy another photon, or first destroying one then creating another, at ±ωm away.

However, for quantum noise, we can only have the first-create-then-destroy process, corresponding
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to < ζ̂[ω]ζ̂†[−ω] >, because there is no photon to be annihilated in the first place.

As a side note, the limit of laser cooling when there is large classical phase noise, as calculated

from Equation (2.38), is in agreement with the results of Ref[50].

2.3 Heterodyne detection scheme

Once the mechanical motion is cooled to a low phonon number state, the detection can be done

by using the heterodyne scheme as shown in Figure 2.3. Besides the cooling beam described in the

previous section, we now have one signal beam at frequency ωs that is locked to the cavity, and has

information about the membrane motion encoded in the quadratures of the beam. A much stronger

beam at frequency ωLO = ωs−ωIF, ωIF below the signal beam, serves as the local oscillator (LO) of

the heterodyne scheme. These two beams are combined before entering the cavity. When the signal

beam is locked to the cavity and interacts with the membrane, the LO beam is far off resonance,

so it bounces off the cavity directly. The two beams then land on a photodiode in the reflected

beam path together. A beating signal at ωIF is generated, with motional sidebands at mechanical

frequency ±ωm.

Figure 2.3: Schematic of heterodyne detection setup. The cavity with membrane in the middle has

three inputs: a cooling beam âin,p for laser cooling the membrane motion, a signal beam âin,s for

locking to the cavity and detection, and an LO beam âin,LO as the local oscillator for the heterodyne

detection. The reflected beams from the cavity are directed to a reflected photodiode (PD).
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2.3.1 Basic theoretical framework

To understand the heterodyne spectrum quantitatively, similar to the last section, we write down

the cooling input beam as âin,p(t) = e
−iωpt(āp(t)+δxp(t)+iδyp(t)+ ζ̂L,p(t)), signal input as âin,s(t) =

e
−iωst(āin,s(t) + δxs(t) + iδys(t) + ζ̂L,s(t)), and LO input as ain,LO(t) = e

−iωLOt(āin,LO(t) + δxLO(t) +

iδyLO(t) + ζ̂L,LO(t)). Again, we define the cooling and signal beam detunings as ∆p = ωp − ωc and

∆s = ωs − ωc, and similarly χc,{p,s}, αp,s, d̂p,s, and ξ̂p,s etc.

Notice here we assigned vacuum noise terms at the different input ports for each beam. As

mentioned in Section 2.2.1, the vacuum noise is the sum of the intracavity field’s coupling to all

vacuum modes in the environment, and has a white spectrum over all frequencies. In reality, the

intracavity field only interacts with vacuum modes in a small bandwidth (set by cavity decay rate

κ) around the cavity resonance. In our case, the three inputs are well separated in frequency, we

can therefore assign vacuum noise terms to the three inputs separately.

The expressions are now modified as:

d̂p[ω] = χc,p[ω](ξ̂p[ω]− iαpẑ[ω]) (2.39)

d̂s[ω] = χc,s[ω](ξ̂s[ω]− iαsẑ[ω]) (2.40)

ẑ[ω] =
1

N [ω]
[
√
γm(χ

−1∗
m

[−ω]η̂[ω] + χ
−1

m
[ω]η̂†[ω])

− 2ωm(α
∗
s
χc,s[ω]ξ̂s[ω] + αχ

∗
c,s
[−ω]ξ̂†

s
[ω] + α

∗
p
χc,p[ω]ξ̂p[ω] + αχ

∗
c,p
[−ω]ξ̂†

p
[ω])] (2.41)

The signal beam also contributes to change in the effective mechanical linewidth, the resonant

frequency, and the net effective phonon number

neff =
γmnth + γopt,pnopt,p + γopt,snopt,s

γ̃m
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again with

γopt,{s,p}nopt,{s,p} = |α{s,p}|2[κL(|B+,{s,p}[ωm]|2Cxx,{s,p} + |B−,{s,p}[ωm]|2Cyy,{s,p}

+ 2Im(B+,{s,p}[ω]B
∗
−,{s,p}[ωm])Cxy,{s,p}) + κ|χc,{s,p}[−ωm]|2] (2.42)

As discussed in Chapter 3, the cooling beam and the signal beam come from two different lasers

9GHz away from each other in frequency, so it is safe to assume that their classical noises are

uncorrelated. In that case, the effect of the cooling laser noise only shows up in determining neff .

Therefore for the discussion of how correlations of laser classical noises modify the heterodyne

spectrum, we only need to consider classical noises from the signal and LO beams.

Consider the heterodyne detection process of Figure 2.3. In our setup, the signal beam and the

LO beam are generated by the same laser source, shifted in frequency by an AOM ωLO = ωs − ωIF.

We could therefore write down the LO beam as âin,LO(t) =
√
pâin,s(t)eiωIFt+θ(t), where p is the ratio

of LO beam power to signal beam power, we maintain p >> 1 in our measurements. θ(t) is the

phase difference between the LO beam and the signal beam accumulated before entering the cavity.

From input-output theory[53], the reflected signal beam is expressed as

ârefl,s(t) =
√
κLâs(t)− âin,s(t) = e

−iωst(ārefl,s + d̂refl,s(t)) (2.43)

In Fourier space we have

d̂refl,s[ω] =
√
κLd̂s[ω]− δxs[ω]− iδys[ω]− ζ̂L,s[ω]

= [(κLχc,s[ω]−1)(δxs[ω]+iδys[ω])−i
√
κLαχc,s[ω]ẑ[ω]+(κLχc,s[ω]−1)ξ̂L,s[ω]+

√
κLκMχc,s[ω]ξ̂M,s[ω]]

(2.44)

The mechanical motion information is thus contained in both d̂s[ω] and d̂refl,s[ω]. For the directly

reflected LO field, the output is the same as the input:

ârefl,LO(t) = −âin,LO(t) (2.45)
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d̂refl,LO(t) = −d̂in,LO(t) = −√
p(δxs(t) + iδys(t)) (2.46)

From Equations (2.43)-(2.46), we get

ârefl(t) = e
−iωst(ārefl(t) + d̂refl(t)) (2.47)

where the carrier is

ārefl(t) = −āin,s(ρ+
√
pe

iωIFt+θ(t)) (2.48)

and the fluctuating part is

d̂refl(t) = d̂refl,s(t) +
√
pd̂refl,LO(t)e

iωIFt+θ(t) (2.49)

In the above expressions, for future convenience, we changed the definition of d̂refl,LO(t) by scaling

it down by a factor of √p. So now we have d̂refl,LO(t) = −(δxs(t) + iδys(t)). The cavity filtering of

the signal beam amplitude is

ρ = 1− κL

κ/2− i∆
(2.50)

The reflected signal beam and the directly reflected LO beam combine to produce ârefl(t) = ârefl,s(t)+

ârefl,LO(t). This combined beam creates a photocurrent i(t) = σGeN(t) on the detector, where

N(t) = â
†
refl

(t)ârefl(t) is the photon number landing on the photodiode, σ the photodiode quantum

efficiency, and G is the gain. The Fourier transform of the photocurrent, within a measurement

window T is i[ω] = 1√
T

´
T/2

−T/2
dt e

iωt
i(t). The power spectrum of the photodiode current is

S[ω] = |i[ω]|2 = 1√
T

T/2ˆ

−T/2

dt e
−iωt

i(t)
1√
T

T/2ˆ

−T/2

dt
�
e
iωt�

i(t�)

=
1

T

T/2ˆ

−T/2

dt

T/2ˆ

−T/2

dt
�
e
iω(t�−t)

i(t)i(t�)

=
1

T

ˆ
T/2

−T/2

dt

ˆ
+∞

−∞
dτe

iωτ
i(t)i(t+ τ) (2.51)
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As discussed in Ref[56], the correlation could be separated into two parts. The first term is the time-

ordered correlation of two photon counting, which is of interest to us. The second term comes from

the self correlation of photon counting. This can be understood by visualizing the photo-detection

events as creating photoelectric pulses of nonzero duration τd. The photodetector bandwidth is

proportional to τ
−1

d
. In the correlation expression of Equation (2.51), for τ < τd, a single photo-

detection happened during t to t+ τ will contribute to both i(t) and i(t+ τ). This self correlation

of a single photon counting event will add a nonzero contribution to S[ω]. This is the shot noise of

the heterodyne detection. Note this shot noise has nothing to do with the quantum noise going into

the cavity. For simplicity, we approximate the photodiode as having infinite bandwidth, τd = 0,

and the self correlation happens only for τ = 0:

i(t)i(t+ τ) = G
2
e
2[σ2

<: N(t)N(t+ τ) :> +σ <: N(t) :> δ(τ)] (2.52)

Putting in (2.47)-(2.49), we could expand N(t) up to first order as

N(t) = a
†
refl

(t)arefl(t)

= [−āin,s(ρ
∗ +

√
pe

−iωIFt−θ(t)) + d̂
†
refl,s

(t) +
√
pd̂

†
refl,LO

(t)e−iωIFt−θ(t)]

×[−āin,s(ρ+
√
pe

iωIFt+θ(t)) + d̂refl,s(t) +
√
pd̂refl,LO(t)e

iωIFt+θ(t)]

= ā
2

in,s
(|ρ|2 + p+ 2Re(ρ

√
pe

−iωIFt−θ(t)))−√
pāin,s(ρd̂

†
refl,LO

(t) + d̂refl,s(t))e
−iωIFt−θ(t)

−√
pāin,s(d̂

†
refl,s

(t) + ρ
∗
d̂refl,LO(t))e

iωIFt+θ(t)

� pā
2

in,s
−√

pāin,s(ρd̂
†
refl,LO

(t) + d̂refl,s(t))e
−iωIFt−θ(t) −√

pāin,s(d̂
†
refl,s

(t) + ρ
∗
d̂refl,LO(t))e

iωIFt+θ(t)

(2.53)

This is the same result if we instead have a noiseless LO beam âLO(t) = −√
pāin,se

iωIFt+θ(t) beating

with an effective reflected field âout(t) = āout(t)+ d̂out(t). The mean amplitude of this effective field

is

āout(t) = −āin,s(t) (2.54)
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and the fluctuation part is given by

d̂out(t) = d̂refl,s(t) + ρd̂
†
refl,LO

(t) (2.55)

We perform the time-ordered, normal-ordered calculation. For simplicity, here we treat the LO

beam phase θ as a constant over the time scale we care about.

<: N(t)N(t+ τ) :>= p
2
ā
4

in,s

+ pā
2

in,s
e
−iωIFt−θ+iωIF(t+τ)+θ

<: d̂out(t)d̂
†
out(t+ τ) :>

+ pā
2

in,s
e
iωIFt+θ−iωIF(t+τ)−θ

<: d̂†out(t)d̂out(t+ τ) :>

+ pā
2

in,s
e
−iωIFt−θ−iωIF(t+τ)−θ

<: d̂out(t)d̂out(t+ τ) :>

+ pā
2

in,s
e
iωIFt+θ+iωIF(t+τ)+θ

<: d̂†out(t)d̂
†
out(t+ τ) :> (2.56)

Expanding (2.56) using (2.55), we get

<: N(t)N(t+ τ) :>= p
2
ā
4

in,s

+ pā
2

in,s
e
−iωIFt−θ+iωIF(t+τ)+θ(|ρ|2 <: d̂†

refl,LO
(t)d̂refl,LO(t+ τ) :> + <: d̂refl,s(t)d̂

†
refl,s

(t+ τ) :>

+ ρ <: d̂†
refl,LO

(t)d̂†
refl,s

(t+ τ) :> +ρ
∗
<: d̂refl,s(t)d̂refl,LO(t+ τ) :>)

+ pā
2

in,s
e
iωIFt+θ−iωIF(t+τ)−θ(|ρ|2 <: d̂refl,LO(t)d̂

†
refl,LO

(t+ τ) :> + <: d̂†
refl,s

(t)d̂refl,s(t+ τ) :>

+ ρ <: d̂†
refl,s

(t)d̂†
refl,LO

(t+ τ) :>) + ρ
∗
<: d̂refl,LO(t)d̂refl,s(t+ τ) :>

+ pā
2

in,s
e
−iωIFt−θ−iωIF(t+τ)−θ(ρ2 <: d̂†

refl,LO
(t)d̂†

refl,LO
(t+ τ) :> + <: d̂refl,s(t)d̂refl,s(t+ τ) :>

+ ρ <: d̂†
refl,LO

(t)d̂refl,s(t+ τ) :> +ρ <: d̂refl,s(t)d̂
†
refl,LO

(t+ τ) :>)

+ pā
2

in,s
e
iωIFt+θ+iωIF(t+τ)+θ(ρ∗2 <: d̂refl,LO(t)d̂refl,LO(t+ τ) :> + <: d̂†

refl,s
(t)d̂†

refl,s
(t+ τ) :>

+ ρ
∗
<: d̂†

refl,s
(t)d̂refl,LO(t+ τ) :> +ρ

∗
<: d̂refl,LO(t)d̂

†
refl,s

(t+ τ) :>) (2.57)

For a quantum operator d̂, the time ordering and normal ordering will rearrange the operators as
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< d
†(t)d†(t+ τ)d(t+ τ)d(t) >. Following this rule, the different terms in (2.56) become

< : d̂†
refl,LO

(t)d̂refl,LO(t+ τ) :>=< d̂
†
refl,LO

(t)d̂refl,LO(t+ τ) >

< : d̂refl,s(t)d̂
†
refl,s

(t+ τ) :>=< d̂
†
refl,s

(t+ τ)d̂refl,s(t) >

< : d̂†
refl,LO

(t)d̂†
refl,s

(t+ τ) :>=< d̂
†
refl,LO

(t)d̂†
refl,s

(t+ τ) >

< : d̂refl,s(t)d̂refl,LO(t+ τ) :>=< d̂refl,LO(t+ τ)d̂refl,s(t) > etc. (2.58)

Therefore

<: N(t)N(t+ τ) :>= p
2
ā
4

in,s

+ e
iωIFτpā

2

in,s
(|ρ|2 < d̂

†
refl,LO

(t)d̂refl,LO(t+ τ) > + < d̂
†
refl,s

(t+ τ)d̂refl,s(t) >

+ ρ < d̂
†
refl,LO

(t)d̂†
refl,s

(t+ τ) > +ρ
∗
< d̂refl,LO(t+ τ)d̂refl,s(t) >)

+ e
−iωIFτpā

2

in,s
(|ρ|2 < d̂

†
refl,LO

(t+ τ)d̂refl,LO(t) > + < d̂
†
refl,s

(t)d̂refl,s(t+ τ) >

+ ρ < d̂
†
refl,s

(t)d̂†
refl,LO

(t+ τ) > +ρ
∗
< d̂refl,s(t+ τ)d̂refl,LO(t) >)

+ e
−2iωIFt−iωIFτ−2iθ

pā
2

in,s
(ρ2 < d̂

†
refl,LO

(t)d̂†
refl,LO

(t+ τ) > + < d̂refl,s(t+ τ)d̂refl,s(t) >

+ ρ < d̂
†
refl,LO

(t)d̂refl,s(t+ τ) > +ρ < d̂
†
refl,LO

(t+ τ)d̂†
refl,s

(t) >)

+ e
2iωIFt+iωIFτ+2iθ

pā
2

in,s
(ρ∗2 < d̂refl,LO(t+ τ)d̂refl,LO(t) > + < d̂

†
refl,s

(t)d̂†
refl,s

(t+ τ) >

+ ρ
∗
< d̂

†
refl,s

(t)d̂refl,LO(t+ τ) > +ρ
∗
< d̂

†
refl,s

(t+ τ)d̂refl,LO(t) >) (2.59)

The shot noise term is

<: N(t) :>= ā
2

in,s
(|ρ|2 + p+ 2Re(ρ

√
pe

−iωIFt−θ(t))) � pā
2

in,s
(2.60)
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2.3.2 Power spectra of mechanical sidebands

Inserting Equations (2.59) and (2.60) into (2.51) and (2.52), and dropping the e
±2iωIFt terms, we

obtain the heterodyne power spectrum

S[ω] = G
2
e
2
σp|āin,s|2(1 + σS

d̂outd̂
†
out

[ω + ωIF] + S
d̂
†
out

d̂out
[ω − ωIF]) (2.61)

where

S
d̂outd̂

†
out

[ω] =

ˆ
dτ e

iωτ
<: d̂out(t)d̂

†
out(t+ τ) :>

=

ˆ
dτ e

iωτ (|ρ|2 < d̂
†
refl,LO

(0)d̂refl,LO(τ) > + < d̂
†
refl,s

(τ)d̂refl,s(0) >

+ ρ < d̂
†
refl,LO

(0)d̂†
refl,s

(τ) > +ρ
∗
< d̂refl,LO(τ)d̂refl,s(0) >)

= |ρ|2 < d̂
†
refl,LO

[−ω]d̂refl,LO[ω] > + < d̂
†
refl,s

[ω]d̂refl,s[−ω] >

+ ρ < d̂
†
refl,LO

[−ω]d̂†
refl,s

[ω] > +ρ
∗
< d̂refl,LO[ω]d̂refl,s[−ω] > (2.62)

and

S
d̂
†
out

d̂out
[ω] =

ˆ
dτ e

iωτ
<: d̂†out(t)d̂out(t+ τ) :>

= |ρ|2 < d̂
†
refl,LO

[ω]d̂refl,LO[−ω] > + < d̂
†
refl,s

[−ω]d̂refl,s[ω] >

+ ρ < d̂
†
refl,s

[−ω]d̂†
refl,LO

[ω] > +ρ
∗
< d̂refl,s[ω]d̂refl,LO[−ω] > (2.63)

In our setup, we are looking at photocurrent components around ω = ωIF, so only S
d̂
†
out

d̂out
[ω−ωIF]

is of interest. The upper and lower mechanical sidebands arise at frequencies around ωIF ± �ωm. As

can be seen in the N(t) expression (2.53), two interfering terms contribute to S[ω]: the reflected

signal beam carrier beating with fluctuations of the LO beam, and the LO beam carrier beating

with fluctuations of the signal beam. Both terms contribute to the background in S[ω], but since

the LO beam does not have any motional information, only the second term and its interference

with the first term lead to the mechanical sidebands.
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As mentioned in Section 2.2.3, the upper (lower) sideband in the output optical field spectrum

S
d̂
†
out

d̂out
[ω] corresponds to the processes of cooling (heating) the mechanical motion by shifting the

photon frequency up (down) �ωm. When there is no classical noise on the laser, from Fermi’s

Golden Rule, the probability of the cooling (heating) process is proportional to neff (neff + 1)[26].

The heterodyne sideband power spectra should then have Lorentzian peaks with center frequency

and linewidth determined by Equations (2.20)-(2.23). The height of the upper (lower) sideband

should be proportional to neff (neff + 1).

When there is classical noise, as seen in Equation (2.15), it modifies the oscillator position ẑ. So

we get additional terms in S
d̂
†
out

d̂out
[ω] from correlations of classical noise terms (in the background)

and the classical noise contained in ẑ (modifying the peaks). The in-phase correlation contributes

to the motional Lorentzian peak, the out-of-phase correlation creates an anti-Lorentzian shape. The

power spectra of the mechanical sidebands therefore have Fano shapes.

Another conclusion: there is no information about RPSN in the heterodyne power spectra. The

reason for this is that the normal ordering of the operators eliminates all nonzero quantum noise

terms in the form of < ζ̂[ω]ζ̂†[−ω] >. As will be explained in the next subsection, to study RPSN,

we must look at the cross-correlation.

Now we look at the heterodyne power spectra quantitatively. We define ω = δω + ωIF. From

Equation (2.59), we can calculate S[δω] around the lower (red) sideband ω � −ωm + ωIF

Srr[δω] = G
2
e
2
σp|āin,s|2[brr +

srr

(γ̃m/2)2 + (δω + ω̃m)2
+

arr(δω + ω̃m)

(γ̃m/2)2 + (δω + ω̃m)2
] (2.64)

The spectrum consists of the background, a Lorentzian peak centered at the sideband frequency,

with a width determined by effective mechanical linewidth. It also contains an anti-Lorentzian part

with the same center frequency and halfwidth. To calculate these terms explicitly, we rewrite the

Equations (2.44) and (2.46) here for convenience:

d̂refl,LO[δω] = −(δxs[δω] + iδys[δω])
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d̂refl,s[δω] = [(κLχc,s[δω]− 1)(δxs[δω] + iδys[δω])

− i
√
κLαχc,s[δω]ẑ[δω] + (κLχc,s[δω]− 1)ξ̂L[δω] +

√
κLκMχc,s[δω]ξ̂M[δω]]

d̂
†
refl,s

[δω] = [(κLχ
∗
c,s
[−δω]− 1)(δxs[δω]− iδys[δω])

+ i
√
κLα

∗
χ
∗
c,s
[−δω]ẑ[δω] + (κLχ

∗
c,s
[−δω]− 1)ξ̂†

L
[δω] +

√
κLκMχ

∗
c,s
[−δω]ξ̂†

M
[δω]] (2.65)

The background includes the detection shot noise, the classical noise part of the two beating terms

mentioned earlier, and the interference between those two beating signals. Since δω � −ωm, we

could treat χc,s[δω] � χc,s[−ωm].

|ρ|2 < d̂
†
refl,LO

[δω]d̂refl,LO[−δω] >= |ρ|2(Cxx + Cyy) (2.66)

< d̂
†
refl,s

[−δω]d̂refl,s[δω] >|classical−classical= |κLχc,s[−ωm]− 1|2(Cxx + Cyy) (2.67)

ρ < d̂
†
refl,LO

[−δω]d̂†
refl,s

[δω] >|classical−classical

= ρ < −(δxs[δω]− iδys[δω])(κLχ
∗
c,s
[δω]− 1)(δxs[−δω]− iδys[−δω]) >

= −ρ(κLχ
∗
c,s
[−ωm]− 1)(Cxx + 2iCxy − Cyy) (2.68)

ρ
∗
< d̂refl,LO[δω]d̂refl,s[−δω] >|classical−classical

= ρ
∗
< −(δxs[−δω] + iδys[−δω])(κLχc,s[δω]− 1)(δxs[δω] + iδys[δω]) >

= −ρ
∗(κLχc,s[−ωm]− 1)(Cxx + 2iCxy − Cyy) (2.69)

Therefore the background term is

brr = 1+σ[(|ρ|2+|κLχc,s[−ωm]−1|2)(Cxx+Cyy)−2Re[ρ∗(κLχc,s[−ωm]−1)])(Cxx+2iCxy−Cyy)] (2.70)
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For the Fano terms, as mentioned above, we look at three contributions:

1. Correlation between the position ẑ and itself: z − z correlation

< d̂
†
refl,s

[−δω]d̂refl,s[δω] > |z−z = κL|α|2|χc,s[δω]|2 < ẑ[−δω]ẑ[δω] >

= κL|α|2|χc,s[δω]|2γ̃m[|χeff,s[−δω]|2(neff + 1) + χc,s[δω]|2|χeff,s[δω]|2neff ]

� κL|α|2|χc,s[δω]|2|χeff,s[−δω]|2γ̃m(neff + 1)

=
κL|α|2|χc,s[−ωm]|2γ̃m(neff + 1)

(γ̃m/2)2 + (δω + ω̃m)2
(2.71)

2. Correlation between the position ẑ and classical noise in the reflected signal beam: z−classical

correlation

< d̂
†
refl,s

[−δω]d̂refl,s[δω] > |z−classical

=< (κLχ
∗
c,s
[δω]− 1)(δxs[−δω]− iδys[−δω])(−i

√
κLαχc,s[δω]ẑ[δω]) >

+ < (i
√
κLα

∗
χ
∗
c,s
[δω]ẑ[−δω]κLχc,s[δω]− 1)(δxs[δω] + iδys[δω]) >

= (κL|χc,s[δω]|2 − χc,s[δω])|α|2κL(B+[δω]Cxx − iB+[δω]Cxy − iB−[δω]Cxy − B−[δω]Cyy)e
iφ

2iωm

N [δω]

+(κL|χc,s[δω]|2−χ
∗
c,s
[δω])|α|2κL(B+[−δω]Cxx+iB+[−δω]Cxy+iB−[−δω]Cxy−B−[−δω]Cyy)e

−iφ
−2iωm

N [−δω]

(2.72)

From Equation (2.19), we know when δω � −ωm

N [−δω] = χ
∗−1

m
[δω]χ−1

eff
[−δω] � −2iωm[γ̃m/2 + i(δω + ω̃m)] (2.73)

N [δω] = N [−δω]∗ = 2iωm[γ̃m/2− i(δω + ω̃m)] (2.74)

The Lorentzian peak from this correlation is

2Re[(κL|χc,s[δω]|2−χ
∗
c,s
[δω])|α|2κL(B+[−δω]Cxx+iB+[−δω]Cxy+iB−[−δω]Cxy−B−[−δω]Cyy)e

−iφ]

× γ̃m/2

(γ̃m/2)2 + (δω + ω̃m)2
(2.75)
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The anti-Lorentzian peak is

2Im[(κL|χc,s[δω]|2−χ
∗
c,s
[δω])|α|2κL(B+[−δω]Cxx+iB+[−δω]Cxy+iB−[−δω]Cxy−B−[−δω]Cyy)e

−iφ]

× δω + ω̃m

(γ̃m/2)2 + (δω + ω̃m)2
(2.76)

3. Correlation between the position ẑ and classical noise in the reflected LO beam: z− classical

correlation

ρ < d̂
†
refl,LO

[δω]d̂†
refl,s

[−δω] > |z−classical

= ρ < −(δxs[δω]− iδys[δω])(i
√
κLα

∗
χ
∗
c,s
[δω]ẑ[−δω] >

= −ρ|α|2κLe
−iφ

χ
∗
c,s
[δω](B+[−δω]Cxx − iB+[−δω]Cxy + iB−[−δω]Cxy +B−[−δω]Cyy)e

−iφ
−2iωm

N [−δω]

(2.77)

ρ
∗
< d̂refl,LO[−δω]d̂refl,s[δω] > |z−classical

= ρ
∗
< −(δxs[−δω] + iδys[−δω])(−i

√
κLαχc,s[δω]ẑ[δω] >

= −ρ
∗|α|2κLe

iφ
χc,s[δω](B+[δω]Cxx + iB+[δω]Cxy + iB−[δω]Cxy − B−[δω]Cyy)e

−iφ
2iωm

N [δω]
(2.78)

The Lorentzian peak from this correlation is

2Re[−ρ|α|2κLe
−iφ

χ
∗
c,s
[δω](B+[−δω]Cxx − iB+[−δω]Cxy + iB−[−δω]Cxy +B−[−δω]Cyy)e

−iφ]

× γ̃m/2

(γ̃m/2)2 + (δω + ω̃m)2
(2.79)

The anti-Lorentzian peak is

2Im[−ρ|α|2κLe
−iφ

χ
∗
c,s
[δω](B+[−δω]Cxx − iB+[−δω]Cxy + iB−[−δω]Cxy +B−[−δω]Cyy)e

−iφ]

× γ̃m/2

(γ̃m/2)2 + (δω + ω̃m)2
(2.80)
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Combining all three terms, and treating B±[ω] and χc,s[ω] as constants replaced by δω = −ωm.

We get the final expression for the Lorentzian coefficient:

srr = σκL|αs|2γ̃m[|χc,s[−ωm]|2(neff + 1) + Re(Bmod[ωm])] (2.81)

The anti-Lorentzian coefficient is

arr = 2σκL|αs|2Im(Bmod[ωm]) (2.82)

where Bmod[ω] is defined as:

Bmod[ω] = κL|χC[−ω]|2e−iφ[(Cxx + iCxy)B+[ω] + (iCxy − Cyy)B−[ω]]

− χ
∗
c,s
[−ω]e−iφ[(CxxB+[ω] + iCxyB−[ω])(1 + ρ) + (iCxyB+[ω]− CyyB−[ω])(1− ρ)] (2.83)

Similarly, the upper (blue) sideband around ω � ωm + ωIF can be written as

Sbb[δω] = G
2
e
2
σp|āin,s|2[bbb +

sbb

(γ̃m/2)2 + (δω − ω̃m)2
+

abb(δω − ω̃m)

(γ̃m/2)2 + (δω − ω̃m)2
] (2.84)

with

bbb = 1+σ[(|ρ|2+ |κLχc,s[ωm]−1|2)(Cxx+Cyy)−2Re[ρ∗(κLχc,s[ωm]−1)](Cxx+2iCxy−Cyy)] (2.85)

sbb = σκL|αs|2γ̃m[|χc,s[ωm]|2neff − Re(Bmod[−ωm])] (2.86)

abb = −2σκL|αs|2Im(Bmod[−ωm]) (2.87)

When there is no classical noise on the laser, Bmod = 0. The upper and lower sidebands are

then purely Lorentzians with heights proportional to neff and neff +1, in agreement with predictions

from Fermi’s Golden Rule. The classical noise terms change the heights of the Lorentzian peaks,

and add anti-Lorentzian components to the sidebands.
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2.3.3 Cross-correlation spectrum of mechanical sidebands

Besides the auto-correlation of the photocurrent at the upper and lower mechanical sidebands, we

can also look at the cross-correlation of the two sidebands, this amounts to calculating

Srb[ω] = i
∗[ω]i[ω − 2ωIF] =

1

2T

ˆ
dt e

−2iωIFt

ˆ
dτe

−iωτ (i(t)i(t+ τ) + i(t+ τ)i(t))

=
1

2T

ˆ
dt e

−2iωIFt

ˆ
dτ(e−iωτ + e

iωτ−2iωIFτ )i(t)i(t+ τ) (2.88)

From Equation (2.59), we get from the e
2iωIFt term

Srb[ω] =
1

2
G

2
e
2
σpā

2

in,s
e
2iθ(S

d̂
†
out

d̂
†
out

[ω − ωIF] + S
d̂
†
out

d̂
†
out

[−(ω − ωIF)]) (2.89)

where

S
d̂
†
outd̂

†
out
[ω] = ρ

∗2
< d̂refl,LO[−ω]d̂refl,LO[ω] > + < d̂

†
refl,s

[ω]d̂†
refl,s

[−ω] >

+ ρ
∗
< d̂

†
refl,s

[ω]d̂refl,LO[−ω] > +ρ
∗
< d̂

†
refl,s

[−ω]d̂refl,LO[ω] > (2.90)

The factor of 1

2
in Equation (2.89) is a normalization factor to make it consistent with the definitions

of Srr and Sbb.

For ω = δω + ωIF ≈ ωm + ωIF, again the cross-correlation spectrum consists of a background

term, a Lorentzian peak and an anti-Lorentzian part. The background in S
d̂
†
outd̂

†
out
[δω] comes from

ρ
∗2

< d̂refl,LO[−δω]d̂refl,LO[δω] >= ρ
∗2(Cxx + 2iCxy − Cyy) (2.91)

< d̂
†
refl,s

[δω]d̂†
refl,s

[−δω] >|classical−classical

= (κLχ
∗
c,s
[−δω]− 1) < (δxs[δω]− iδys[δω])(κLχ

∗
c,s
[δω]− 1)(δxs[−δω]− iδys[−δω]) >

= (κLχ
∗
c,s
[−ωm]− 1)(κLχ

∗
c,s
[−ω]− 1)(Cxx − 2iCxy − Cyy) (2.92)
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ρ
∗
< d̂

†
refl,s

[δω]d̂refl,LO[−δω] >|classical−classical

= −ρ
∗
< (κLχ

∗
c,s
[−δω]− 1)(δxs[δω]− iδys[δω])(δxs[−δω] + iδys[−δω]) >

= −ρ
∗(κLχ

∗
c,s
[−ωm]− 1)(Cxx + Cyy) (2.93)

ρ
∗
< d̂

†
refl,s

[−δω]d̂refl,LO[δω] >|classical−classical

= −ρ
∗
< (κLχ

∗
c,s
[δω]− 1)(δxs[−δω]− iδys[−δω])(δxs[δω] + iδys[δω]) >

= −ρ
∗(κLχ

∗
c,s
[ωm]− 1)(Cxx + Cyy) (2.94)

Similarly, we get the same results for S
d̂
†
out

d̂
†
out

[−δω].

The Fano terms can also be calculated in a similar fashion:

1. z − z correlation. From S
d̂
†
out

d̂
†
out

[δω] :

< d̂
†
refl,s

[δω]d̂†
refl,s

[−δω] >|z−z= −χ
∗
c,s
[ωm]χ

∗
c,s
[−ωm] < ẑ[−δω]ẑ[δω] >

= −κLα
∗2
s
χ
∗
c,s
[ωm]χ

∗
c,s
[−ωm]γ̃m[|χeff,s[−δω]|2(neff + 1) + |χeff,s[δω]|2neff ]

� −κLα
∗2
s
χ
∗
c,s
[ωm]χ

∗
c,s
[−ωm]γ̃m|χeff,s[ωm]|2neff (2.95)

From S
d̂†d̂† [−δω]:

< d̂
†
refl,s

[−δω]d̂†
refl,s

[δω] >|z−z= −χ
∗
c,s
[ωm]χ

∗
c,s
[−ωm] < ẑ[δω]ẑ[−δω] >

= −κLα
∗2
s
χ
∗
c,s
[ωm]χ

∗
c,s
[−ωm]γ̃m[|χeff,s[δω]|2(neff + 1) + |χeff,s[−δω]|2neff ]

� −κLα
∗2
s
χ
∗
c,s
[ωm]χ

∗
c,s
[−ωm]γ̃m|χeff,s[ωm]|2(neff + 1) (2.96)

Adding together and taking in the 1

2
factor from Equation (2.89), we get

−κLα
∗2
s
χ
∗
c,s
[−ωm]χ

∗
c,s
[ωm]

γ̃m(neff + 1/2)

(γ̃m/2)2 + (δω − ω̃m)2
(2.97)
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2. z − classical correlation. From S
d̂
†
out

d̂
†
out

[δω] :

< d̂
†
refl,s

[δω]d̂†
refl,s

[−δω] >|z−classical

=< (κLχ
∗
c,s
[−δω]− 1)(δxs[δω]− iδys[δω])(i

√
κLα

∗
χ
∗
c,s
[δω]ẑ[−δω]) >

+ < (i
√
κLα

∗
χ
∗
c,s
[−δω]ẑ[δω](κLχ

∗
c,s
[δω]− 1)(δxs[−δω]− iδys[−δω]) >

= −(κLχ
∗
c,s
[−ωm]χ

∗
c,s
[ωm]− χ

∗
c,s
[ωm])α

∗2
s
κL

× (B+[−ωm]Cxx − iB+[−ωm]Cxy + iB−[−ωm]Cxy +B−[−ωm]Cyy)e
iφ

2iωm

N [−δω]

+ (κLχ
∗
c,s
[−ωm]χ

∗
c,s
[ωm]− χ

∗
c,s
[ωm])α

∗2
s
κL

× (B+[ωm]Cxx − iB+[ωm]Cxy + iB−[ωm]Cxy +B−[ωm]Cyy)e
iφ
−2iωm

N [δω]
(2.98)

ρ
∗
< d̂

†
refl,s

[δω]d̂refl,LO[−δω] > |z−classical

= ρ
∗
< (i

√
κLα

∗
χ
∗
c,s
[−δω]ẑ[δω](−δxs[−δω]− iδys[−δω]) >

= −ρ
∗
α
∗2
s
κLe

iφ
χ
∗
c,s
[−ωm]

× (B+[ωm]Cxx + iB+[ωm]Cxy + iB−[ωm]Cxy − B−[ωm]Cyy)e
iφ
−2iωm

N [δω]
(2.99)

ρ
∗
< d̂

†
refl,s

[−δω]d̂refl,LO[δω] > |z−classical

= ρ
∗
< (i

√
κLα

∗
χ
∗
c,s
[δω]ẑ[−δω](−δxs[δω]− iδys[δω]) >

= ρ
∗
α
∗2
s
κLe

iφ
χ
∗
c,s
[ωm]

× (B+[−ωm]Cxx + iB+[−ωm]Cxy + iB−[−ωm]Cxy − B−[−ωm]Cyy)e
iφ

2iωm

N [−δω]
(2.100)
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Similarly, from S
d̂
†
out

d̂
†
out

[−δω]:

< d̂
†
refl,s

[−δω]d̂†
refl,s

[δω] >|z−classical

= (κLχ
∗
c,s
[−ωm]χ

∗
c,s
[ωm]− χ

∗
c,s
[−ωm])|α|2κL

× (B+[ωm]Cxx − iB+[ωm]Cxy + iB−[ωm]Cxy +B−[ωm]Cyy)e
−iφ

−2iωm

N [δω]

− (κLχ
∗
c,s
[−ωm]χ

∗
c,s
[ωm]− χ

∗
c,s
[ωm])|α|2κL

× (B+[−ωm]Cxx − iB+[−ωm]Cxy + iB−[−ωm]Cxy +B−[−ωm]Cyy)e
−iφ

2iωm

N [−δω]
(2.101)

the two other terms repeat Equations (2.97) and (2.98).

We combine (2.96)-(2.99), and take in the 1

2
factor in Srb[ω]. Notice when δω � ωm

N [δω] = χ
∗−1

m
[−δω]χ−1

eff
[δω] � −2iωm[γ̃m/2− i(δω − ω̃m)] (2.102)

N [−δω] = N [δω]∗ = 2iωm[γ̃m/2 + i(δω − ω̃m)] (2.103)

Their contribution to the Lorentzian peak is

κLγ̃m

2

Dmod[ωm]−Dmod[−ωm]

(γ̃m/2)2 + (δω − ω̃m)2
(2.104)

and the contribution to the anti-Lorentzian part is

iκL(δω − ω̃m)
Dmod[ωm] +Dmod[−ωm]

(γ̃m/2)2 + (δω − ω̃m)2
(2.105)

where we define

Dmod[ω] = κLχ
∗
c,s
[ωm]χ

∗
c,s
[−ωm]e

iφ[(Cxx − iCxy)B+[ω] + (iCxy + Cyy)B−[ω]]

− χ
∗
c,s
[−ωm]e

iφ[(CxxB+[ω] + iCxyB−[ω])(1 + ρ
∗)− (iCxyB+[ω]− CyyB−[ω])(1− ρ

∗)] (2.106)

3. Beside the correlation of position ẑ with the classical noise, there is also a nonzero correlation
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between the position ẑ and the quantum noise. This z− quantum correlation is the effect of RPSN.

From S
d̂
†
out

d̂
†
out

[δω] :

< d̂
†
refl,s

[δω]d̂†
refl,s

[−δω] >|z−quantum

=< (i
√
κLα

∗
χ
∗
c,s
[−δω]ẑ[δω])[(κLχ

∗
c,s
[δω]− 1)ξ̂†

L
[−δω] +

√
κLκMχ

∗
c,s
[δω]ξ̂†

M
[−δω]] >

=
√
κLα

∗
χ
∗
c,s
[−δω] <

−i2ωm

N [δω]
α
∗
χc,s[δω](

√
κLξ̂L[δω] +

√
κMξ̂M[δω])

× [(κLχ
∗
c,s
[δω]− 1)ξ̂†

L
[−δω] +

√
κLκMχ

∗
c,s
[δω]ξ̂†

M
[−δω]] >

= κLα
∗2
χ
∗
c,s
[−δω]χc,s[δω]

−i2ωm

N [δω]
[(κLχ

∗
c,s
[δω]− 1) < ξ̂L[δω]ξ̂

†
L
[δω] > +κMχ

∗
c,s
[δω] < ξ̂M[δω]ξ̂

†
M
[δω] >]

= κLα
∗2
χ
∗
c,s
[−δω]χc,s[δω]

−i2ωm

N [δω]
(κχ∗

c,s
[δω]− 1) (2.107)

From S
d̂
†
outd̂

†
out
[−δω] :

< d̂
†
refl,s

[−δω]d̂†
refl,s

[δω] >|z−quantum

=< (i
√
κLα

∗
χ
∗
c,s
[δω]ẑ[−δω])[(κLχ

∗
c,s
[δω]− 1)ξ̂†

L
[−δω] +

√
κLκMχ

∗
c,s
[δω]ξ̂†

M
[−δω]] >

= −
√
κLα

∗
χ
∗
c,s
[δω] <

i2ωm

N [−δω]
α
∗
χc,s[−δω](

√
κLξ̂L[−δω] +

√
κMξ̂M[−δω])

× [(κLχ
∗
c,s
[−δω]− 1)ξ̂†

L
[δω] +

√
κLκMχ

∗
c,s
[δω]ξ̂†

M
[δω]] >

= −κLα
∗2
χ
∗
c,s
[δω]χc,s[−δω]

i2ωm

N [−δω]
[(κLχ

∗
c,s
[−δω]−1) < ξ̂L[−δω]ξ̂†

L
[δω] > +κMχ

∗
c,s
[−δω] < ξ̂M[δω]ξ̂

†
M
[δω] >]

= −κLα
∗2
χ
∗
c,s
[δω]χc,s[−δω]

i2ωm

N [−δω]
(κχ∗

c,s
[−δω]− 1) (2.108)

To simplify (2.103) and (2.104), we use the relation

κχ
∗
c,s
[ω]− 1 =

κ

κ/2 + i(ω +∆)
− 1 =

κ/2− i(ω +∆)

κ/2 + i(ω +∆)
= χ

−1

c,s
[ω]χ∗

c,s
[ω] (2.109)

41



The sum of the two z − quantum correlation terms becomes

κLα
∗2
χ
∗
c,s
[−δω]χc,s[δω]

−i2ωm

N [δω]
χ
−1

c,s
[δω]χ∗

c,s
[δω]− κLα

∗2
χ
∗
c,s
[−δω]χc,s[δω]

−i2ωm

N [δω]
χ
−1

c,s
[δω]χ∗

c,s
[δω]

= iκLα
∗2
χ
∗
c,s
[−δω]χ∗

c,s
[δω]

2(δω − ω̃m)

(γ̃m/2)2 + (δω − ω̃m)2

Gathering all the terms together, the cross-correlation spectrum is

Srb[δω] = (Ge)2σp|āin,s|2e2iθ[brb +
srb

(γ̃m/2)2 + (δω − ω̃m)2
+

arb(δω − ω̃m)

(γ̃m/2)2 + (δω − ω̃m)2
] (2.110)

with

brb = σ[ρ∗2(Cxx + 2iCxy − Cyy) + (κLχ
∗
c,s
[ωm]− 1)(κLχ

∗
c,s
[−ωm]− 1)(Cxx − 2iCxy − Cyy)

− ρ
∗(κLχ

∗
c,s
[ωm] + κLχ

∗
c,s
[−ωm]− 2)(Cxx + Cyy)] (2.111)

srb = σκLα
∗2
s
γ̃m{−χ

∗
c,s
[ωm]χ

∗
c,s
[−ωm](neff + 1/2) + 1/2Dmod,−[ωm]} (2.112)

arb = iσκLα
∗2
s
(χ∗

c,s
[ωm]χ

∗
c,s
[−ωm] +Dmod,+[ωm]) (2.113)

The classical noise coefficients are defined by

Dmod,±[ω] = Dmod[ω]±Dmod[−ω] (2.114)

Dmod[ω] = κLχ
∗
c,s
[ωm]χ

∗
c,s
[−ωm]e

iφ[(Cxx − iCxy)B+[ω] + (iCxy + Cyy)B−[ω]]

− χ
∗
c,s
[−ωm]e

iφ[(CxxB+[ω] + iCxyB−[ω])(1 + ρ
∗)− (iCxyB+[ω]− CyyB−[ω])(1− ρ

∗)]

When the classical noise terms are small compared to the shot noise level, the anti-symmetric

part is non-zero and is completely produced by RPSN. This is similar to the cross-correlation scheme
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proposed in Ref[44] to observe RPSN. In that paper, Børkje et al. pointed out that the signature

of RPSN is the anti-symmetry of the correlation around mechanical resonance, as is seen here. It

was also pointed out that at finite detuning, it is difficult to separate the effects of classical noise

from that of RPSN, as can be seen in arb expression. Having the signal beam classical noise close

to the shot noise level is necessary for clear observation of RPSN.

Notice the coefficients of the thermal term and the RPSN term are proportional to −χ
∗
c,s
[ωm]χ∗

c,s
[−ωm]

and iχ
∗
c,s
[ωm]χ∗

c,s
[−ωm] respectively. When the signal beam classical noise is small, we can apply a

phase θ to rotate Srb[δω]. By choosing θ = − arg(χ∗
c,s
[ωm]χ∗

c,s
[−ωm]), the symmetric part of eiθSrb is

completely real, whereas the anti-symmetric part is completely imaginary. At this point, a non-zero,

purely-imaginary anti-symmetric term is the evidence that we have observed RPSN.

Even when classical noise is not completely negligible, we can differentiate the effects of classical

noise from that of RPSN by measuring Srb and varying the signal beam power. Looking at arb, the

RPSN term χ
∗
c,s
[ωm]χ∗

c,s
[−ωm] does not depend on signal beam power whereas Dmod,+[ωm] is linear

with signal beam power.

2.4 Spectrum of squeezing

At low phonon number, the nonlinear radiation pressure back-action creates squeezed light. The

squeezing is characterized by the time-ordered, normal-ordered quantity of the output field quadrature[19,

57]

S
out

ϕ
[ω] = 1 + 4

ˆ
+∞

−∞
dte

iωt
<: ∆X̂out,ϕ(0)∆X̂out,ϕ(t) :> (2.115)

where the output field quadrature is defined as

∆X̂out,ϕ(t) =
1

2
[d̂out(t)e

−iϕ + d̂
†
out(t)e

iϕ]

=
1

2
[e−iϕ(d̂refl,s(t) + ρd̂

†
refl,LO

(t)) + e
iϕ(d̂†

refl,s
(t) + ρd̂refl,LO(t)] (2.116)

If the classical noise is negligible, the output field expressed by Equations (2.54) and (2.55) simplifies

to âout(t) = ârefl,s(t), and ∆X̂out,ϕ(t) =
1

2
[e−iϕ

d̂refl,s(t) + e
iϕ
d̂
†
refl,s

(t)].
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If at a frequency ω, a certain phase angle ϕ would provide a minimum of Sout

ϕ
[ω] < 1, this would

be the signature of observing a squeezed state. We could use the heterodyne spectra to calculate

the squeezing spectrum of the reflected light. From the previous section, we see

Srr[−ω + ωIF] + Sbb[ω + ωIF] + 2Re(e2i(ϕ+θ)
Srb[ω + ωIF])

= 2(Ge)2σp|āin|2(1 + 4σ

ˆ
+∞

−∞
dte

iωt
<: ∆X̂out,ϕ(0)∆X̂out,ϕ(t) :>) (2.117)

Squeezing is inevitably compromised by the detection efficiency, as shown by the extra σ in (2.117).

Inserting heterodyne spectra results from the previous section, we get when ω � ωm:

S
out

ϕ
[ω] =

1

2
[brr + bbb + 2Re(e2i(ϕ+θ)

brb)

+
srr + sbb + 2Re(e2i(ϕ+θ)

srb)

(γ̃m/2)2 + (ω − ω̃m)2
+

−arr + abb + 2Re(e2i(ϕ+θ)
arb)

(γ̃m/2)2 + (ω − ω̃m)2
(ω − ω̃m)] (2.118)

at each detuning ∆s and frequency ω, we can vary the quadrature angle ϕ and find the optimal

squeezing min(Sout

ϕ
[ω]).

To understand how the squeezing happens, we look at the analytical expression of Sout

ϕ
[ω] when

laser classical noise is small and the effective phonon number is small. We take the approximation

Cxx,s = Cxy,s = Cyy,s = 0 and get the simplified forms of Equations (2.70, 2.81-2.82, 2.85-2.87,

2.111-2.113):

brr

= 1 + σ[(|ρ|2 + |κLχc,s[−ωm]− 1|2)(Cxx + Cyy)− 2Re[ρ∗(κLχc,s[−ωm]− 1)])(Cxx + 2iCxy − Cyy)]

� 1 (2.119)
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bbb

= 1 + σ[(|ρ|2 + |κLχc,s[ωm]− 1|2)(Cxx + Cyy)− 2Re[ρ∗(κLχc,s[ωm]− 1)])(Cxx + 2iCxy − Cyy)]

� 1 (2.120)

srr = σκL|αs|2γ̃m[|χc,s[−ωm]|2(neff + 1) + Re(Bmod[ωm])]

� σκL|αs|2γ̃m[|χc,s[−ωm]|2(neff + 1) (2.121)

sbb = σκL|αs|2γ̃m[|χc,s[ωm]|2neff − Re(Bmod[−ωm])]

� σκL|αs|2γ̃m[|χc,s[ωm]|2neff (2.122)

arr = 2σκL|αs|2Im(Bmod[ωm]) � 0 (2.123)

abb = −2σκL|αs|2Im(Bmod[−ωm]) � 0 (2.124)

brb = σ[ρ∗2(Cxx + 2iCxy − Cyy) + (κLχ
∗
c,s
[ωm]− 1)(κLχ

∗
c,s
[−ωm]− 1)(Cxx − 2iCxy − Cyy)

− ρ
∗(κLχ

∗
c,s
[ωm] + κLχ

∗
c,s
[−ωm]− 2)(Cxx + Cyy)] � 0 (2.125)

srb = σκLα
∗2
s
γ̃m{−χ

∗
c,s
[ωm]χ

∗
c,s
[−ωm](neff + 1/2) + 1/2Dmod,−[ωm]}

� −σκL|αs|2e−2iφ
γ̃mχ

∗
c,s
[ωm]χ

∗
c,s
[−ωm](neff + 1/2) (2.126)

arb = iσκLα
∗2
s
(χ∗

c,s
[ωm]χ

∗
c,s
[−ωm] +Dmod,+[ωm])

� iσκL|αs|2e−2iφ
γ̃mχ

∗
c,s
[ωm]χ

∗
c,s
[−ωm] (2.127)
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We can then rewrite Equation (2.118) as

S
out

ϕ
[ω] = 1 + σκL|αs|2{γ̃m[|χc,s[−ωm]|2(neff + 1) + [|χc,s[ωm]|2neff

− 2Re[e2i(ϕ+θ−φ)
χ
∗
c,s
[ωm]χ

∗
c,s
[−ωm](neff + 1/2)]

+ 2Re[e2i(ϕ−θ)
χ
∗
c,s
[ωm]χ

∗
c,s
[−ωm]i(ω − ω̃m)]}

1

(γ̃m/2)2 + (ω − ω̃m)2
(2.128)

In the limiting case of neff � 0, Equation (2.128) can be further simplified to

S
out

ϕ
[ω] = 1 + σκL|αs|2{γ̃m[|χc,s[−ωm]|2 − Re(e2i(ϕ+θ−φ)

χ
∗
c,s
[ωm]χ

∗
c,s
[−ωm])]

+ 2Re[e2i(ϕ+θ−φ)
iχ

∗
c,s
[ωm]χ

∗
c,s
[−ωm]](ω − ω̃m)}

1

(γ̃m/2)2 + (ω − ω̃m)2
(2.129)

Here we discuss the analytical expression of Equation (2.129) in two cases.

(1) Small detuning, ∆s � 0

Because ω � ωm, we get in the resolved sideband limit

χc,s[±ωm] = [κ/2− i(±ωm +∆)]−1 � [κ/2∓ iωm]
−1 � (∓iωm)

−1

We can then rewrite Equation (2.129) as

S
out

ϕ
[ω] � 1 + σκL|αs|2{γ̃m[

1

ω2
m

− Re(e2iϕ
�
)
1

ω2
m

]

+ 2Re(ieiϕ
�
)
1

ω2
m

(ω − ω̃m)}
1

(γ̃m/2)2 + (ω − ω̃m)2
(2.130)

where ϕ
� = ϕ+ θ − φ+ 1

2
arg(χ∗

c,s
[ωm]χ∗

c,s
[−ωm]). For the RPSN term, which is the second term in

the curly bracket, its anti-symmetric function (ω−ω̃m)

(γ̃m/2)2+(ω−ω̃m)2
gets extrema when ω − ω̃m = ±γ̃m/2.
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Equation (2.129) can therefore be further simplified to

S
out

ϕ
[ω] � 1 + σκL|αs|2

1

ω2
m

γ̃m[1− cos(2ϕ�)± sin(2ϕ�)]
1

(γ̃m/2)2 + (γ̃m/2)2
(2.131)

The optimal squeezing is then

min(Sout

ϕ
[ω]) = 1− 2(

√
2− 1)σκL|αs|2

ω2
m
γ̃m

< 1 (2.132)

(2) Optimal detuning for cooling, ∆s � −ωm

In this case, because ω � ωm,

χc,s[−ωm] = [κ/2− i(ω +∆)]−1 � [κ/2− i(ω − ωm)]
−1 � (−2iωm)

−1

and

χc,s[ωm] � (κ/2)−1

Equation (2.129) becomes

S
out

ϕ
[ω] � 1 + σκL|αs|2{γ̃m[

1

4ω2
m

− cos(2ϕ�)
1

κωm

]

+ 2 sin(2ϕ�)
1

κωm

(ω − ω̃m)}
1

(γ̃m/2)2 + (ω − ω̃m)2
(2.133)

Again when ω − ω̃m = ±γ̃m/2, we get

S
out

ϕ
[ω] � 1 + σκL|αs|2γ̃m[

1

4ω2
m

− cos(2ϕ�)
1

κωm

± sin(2ϕ�)
1

κωm

]
1

(γ̃m/2)2 + (γ̃m/2)2

The optimal squeezing then becomes

min(Sout

ϕ
[ω]) = 1 +

σκL|αs|2

2ω2
m
γ̃m

− 2(
√
2− 1)σκL|αs|2

κωmγ̃m
(2.134)

In the resolved sideband limit, ωm > κ, so min(Sout

ϕ
[ω]) < 1.
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2.5 Laser noise reduction by a filter cavity

As shown by Equation (2.36), excessive laser classical noise around the mechanical resonant fre-

quency ω = ±ωm will limit the minimum phonon number we can achieve. In order to reduce the

classical noise, we can pass the laser through a filter cavity, with a linewidth κf substantially lower

than the frequency we are interested in, ωm. The classical amplitude and phase noises at ω = ±ωm

are then passively filtered by a factor of (2ωm

κf

)2 if the cavity is locked on resonance with the laser.

The details of this passive filtering can be worked out using the cavity equation of motion.

Consider an input ain(t) = e
−iω0t(āin + δxin(t) + iδyin(t)). This creates an intracavity field

a(t) = e
−iω0t[ā + δa(t)]. Here we neglected the quantum noise. Similar to Equation (2.10), in the

rotating wave frame and in Fourier space, we solve for the intra-cavity noise annihilation operator

δa[ω] and get

δa[ω] = χc,f [ω]δain[ω] =

√
κL(δxin[ω] + iδyin[ω])

κf/2− i(∆+ ω)
(2.135)

Assuming the cavity is symmetric on the two sides, κL = κR = κ1, The DC amplitude of

transmitted beam is ātrans =
κ1āin

κf/2−i∆
. The transmitted field operator is

δatran[ω] = κRa[ω] =
κ1(δxin[ω] + iδyin[ω])

κf/2− i(∆+ ω)
(2.136)

The transmitted classical amplitude noise is

δxtran[ω] =
δatran[ω] + δa

†
tran[ω]

2

=
κ1

2
[δxin[ω](

1

κf/2− i(∆+ ω)
+

1

κf/2 + i(∆− ω)
)+iδyin[ω](

1

κf/2− i(∆+ ω)
− 1

κf/2 + i(∆− ω)
)]

(2.137)
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The transmitted classical phase noise is

δytran[ω] =
i(δa†tran[ω]− δatran[ω])

2

=
κ1

2
[δyin[ω](

1

κf/2− i(∆+ ω)
+

1

κf/2 + i(∆− ω)
)−iδxin[ω](

1

κf/2− i(∆+ ω)
− 1

κf/2 + i(∆− ω)
)]

(2.138)

Assuming input classical amplitude noise and phase noise are uncorrelated, the transmitted

amplitude noise is

Cxx,tran[ω] =< δxtran[ω]δxtran[−ω] >

=
1

4
κ
2

1
Cxx,in(

1

(κf/2)2 + (∆+ ω)2
+

1

(κf/2)2 + (∆− ω)2
+

2[((κf/2)2 − (∆2 − ω
2)]

[(κf/2)2 − (∆2 − ω2)]2 + κ
2

f
∆2

)

+
1

4
κ
2

1
Cyy,in(

1

(κf/2)2 + (∆+ ω)2
+

1

(κf/2)2 + (∆− ω)2
− 2[((κf/2)2 − (∆2 − ω

2)]

[(κf/2)2 − (∆2 − ω2)]2 + κ
2

f
∆2

) (2.139)

The transmitted phase noise is

Cyy,tran[ω] =< δytran[ω]δytran[−ω] >

=
1

4
κ
2

1
Cyy,in(

1

(κf/2)2 + (∆+ ω)2
+

1

(κf/2)2 + (∆− ω)2
+

2[((κf/2)2 − (∆2 − ω
2)]

[(κf/2)2 − (∆2 − ω2)]2 + κ
2

f
∆2

)

+
1

4
κ
2

1
Cxx,in(

1

(κf/2)2 + (∆+ ω)2
+

1

(κf/2)2 + (∆− ω)2
− 2[((κf/2)2 − (∆2 − ω

2)]

[(κf/2)2 − (∆2 − ω2)]2 + κ
2

f
∆2

) (2.140)

For the simple case of on resonance ∆ = 0, Ptrans = Pin

κ2
1

(κf/2)
2 , Cxx,tran[ω] = κ2

1

(κf/2)
2+ω2Cxx,in[ω],

Cyy,tran[ω] =
κ2
1

(κf/2)
2+ω2Cyy,in[ω]. Therefore at ω = ±ωm, the classical noise is filtered by a factor of

(κf/2)
2+ω2

m

(κf/2)
2 . When ωm � κf/2, the classical noise terms are filtered by (2ωm

κf

)2.

It is hard to maintain zero detuning in reality. At finite detuning, a part of the input amplitude

noise contribute to the output phase noise and input phase noise contributes to the output amplitude
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noise. At small finite detuning ∆, from Equation (2.139) we get

Cxx,tran[ω] �
κ
2

1

(κf/2)2 + ω2
Cxx,in[ω] +

κ
2

1
∆2

[(κf/2)2 + ω2]2
Cyy,in[ω] (2.141)

and similarly for Cyy,tran. We can view this as adding ∆2

(κf/2)
2+ω2Cyy,in and ∆2

(κf/2)
2+ω2Cxx,in to the

input amplitude noise Cxx,in and phase noise Cyy,in.
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Chapter 3

Experimental Design

3.1 Membrane in the middle setup

3.1.1 Mechanical properties of Si3N4 membrane

The mechanical device of our optomechanical system is a commercially available stoichiometric

Si3N4 membrane from Norcada Inc. The SiN membrane is 1.5mm × 1.5mm × 50 nm in size, with

an effective mass m = 96.8 ng. Its fundamental vibrational mode frequency is ωm/2π = 261 kHz.

The mechanical Q factor at 400mK is around 5×106, this gives it an intrinsic mechanical linewidth

γm/2π = 0.052Hz. A typical mechanical ringdown of this mechanical mode is shown in Figure 3.1.

More details about models to understand the membrane’s vibrational eigenmodes and its nonlinear

behaviors are given in Appendix A.

3.1.2 Optical properties of the cavity

The experimental cavity we use is a length L = 3.39 cm single-sided cavity with one end-mirror

spec’d to be 10 times more transmissive than the other one at 1064 nm. Due to the optical loss

at the membrane, the cavity finesse varies depending on where the membrane is relative to the

intracavity electric field[47, 48]. At the spot we use for measurements, the cavity finesse is around

F = 37, 000, as shown in the optical ringdown measurement of Figure 3.2.

The coupling efficiency of the cavity is measured by the reflection dip, as detailed in Section
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Figure 3.1: Membrane mechanical ringdown measured with a lock-in amplifier. Blue dots are data,
the red curve is a theoretical fit. The membrane is driven on resonance. Once the drive is turned
off, the amplitude of the vibration at the mechanical resonance decays exponentially. The 6.351 s
ringdown time corresponds to a mechanical linewidth γm/2π = 0.050Hz, and a mechanical Q factor
of 5.21× 106.

3.6. Derived from Equation (2.50), the reflected dip as a percentage of the far off-resonance power

R provides a measure of the front cavity mirror κL

κL =
(1−

√
R)

2
κ (3.1)

The measured reflection dip is 55%. This implies κL = 0.165κ.

The cavity also exhibits birefringence, which means each cavity spatial mode is split into two

polarization eigenmodes. The frequency split between the two polarizations is close to the me-

chanical resonant frequency. To make sure we are always cooling the membrane motion, the laser

should only excite the lower polarization mode, so that even if there is a small upper polarization

component in the cavity input, its frequency is far negatively detuned from the cavity resonant.
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Figure 3.2: Cavity optical ringdown recorded by a DAQ card. Blue dots are real data, the red curve
is theoretical fit. Reflected power decays exponentially when the beam is blocked. The exponential
ringdown time constant is τ = 1.404µs, corresponding to a cavity linewidth κ/2π = 113 kHz. For
a cavity length L = 3.39 cm, this corresponds to a finesse F = (c/2L)/κ = 39100.

3.1.3 Optomechanical coupling of the membrane-in-the-middle cavity

The coupling between the membrane and the cavity is determined by the membrane reflectivity rd

at 1064 nm and the membrane position in the cavity. The resonant frequency ωcav of the combined

cavity as a function of membrane distance from the center x is described by[47]

ωcav = 2
c

2L
arccos[rd cos(

4πx

λ
)] (3.2)

where L = 0.034m is the cavity length, λ = 1064 nm is the optical wavelength.

When the membrane is 100% reflective, rd = 1, Equation (3.1) becomes

ωcav =
2π c

2L

λ/4
x =

FSR

λ/4
x (3.3)

where FSR = 2π c

2L
is the free spectral range of the optical cavity. This is consistent with the cavity

resonance of a L/2 long single-sided cavity with a movable end-mirror.
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Taking a derivative of Equation (3.2), we get the coupling coefficient to be

∂ωcav

∂x
= 2rd

ωopt

L

1�
1− [rd cos(

4πx

λ
)]2

sin(
4πx

λ
) (3.4)

where ωopt =
2πc

λ
is the optical circular frequency. When the membrane is at a node or anti-node of

the intracavity electrical field, the slope is 0, and we get pure quadratic optomechanical coupling.

The maximum linear slope is

(
∂ωcav

∂x
)max = 2rd

ωopt

L
(3.5)

when | sin(4πx
λ
)| = 1 and cos(4πx

λ
) = 0. This is a factor of 2rd attenuated compared to a single-sided

cavity with a movable end-mirror. When the membrane reflectivity is low, Equation (3.4) can also

be approximated by
∂ωcav

∂x
= 2rd

ωopt

L
sin(

4πx

λ
) (3.6)

For the experimental cavity, we measured ∂ωcav

∂x
using the signal beam. When the signal beam

is locked on resonance with the cavity, we move the membrane position by the attocube (a piezo

translation stage) it rests on, and record the change in the signal laser frequency feedback, denoted

by the output of the laser piezo feedback PI controller described in Section 3.3. The attocube

voltage Vatto (before a ×2 amplifier) in terms of actual membrane displacement is converted by

13.3 nm/V. This is calculated from the fact that the membrane moves from a node to an anti-node

(corresponding to λ

4
= 266 nm) when attocube voltage is changed by 20V. The laser piezo PI

output voltage Vaux (before a ×10 amplifier) is converted to laser frequency by 14.2MHz/V. To

measure this, we put phase modulation sidebands at ±15MHz on the signal beam. We then sweep

Vaux and measure the change in Vaux between successive resonances of the signal beam carrier and

its 15MHz sideband.

The measured maximal slope in Vatto/Vaux is (Vatto/Vaux)max = 4.89, corresponding to an actual

coupling

(
∂ωcav

∂x
)max = (Vatto/Vaux)max ×

2π × 14.2MHz/V

13.3 nm/V
= 3.28× 1016 rad/m = 0.630

ωopt

L
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This corresponds to rd = 0.315, similar to what we measured previously in room temperature

setup[47]. We can further convert (∂ωcav

∂x
)max into the linear coupling coefficient A defined in Section

2.2.1:

A ≡ (
∂ωcav

∂ẑ
)max = (

∂ωcav

∂x
)max

�
�

2mωm

= 19.0 rad/(m× s)

3.2 Overview of the optical setup

A common practice in optomechanical experiments is to split one laser output for both the cooling

beam and the detection beam[27, 33, 35]. However, once we consider the classical noise on the

lasers, because the noises on the two beams are correlated, complicated behavior similar to electro-

magnetically induced transparency (EIT) can happen[58–60]. It is therefore advantageous to use

two separate lasers, as their classical noises should be largely uncorrelated.

The basic optical setup is laid out as in Figure 3.3. Two lasers are used. The signal laser is

separated in the heterodyne and PDH lock setup to generate a signal beam and an LO beam for

heterodyne detection of the mechanical motional state. This is done by using an acousto-optic

modulator (AOM) to shift the signal beam 80MHz up from the LO beam. Phase modulated

sidebands at ±15MHz are also added onto the signal beam by an electro-optic modulator (EOM).

This is used to generate the Pound-Drever-Hall (PDH) error signal[61] to lock the signal laser to

the experiment cavity.

The cooling laser is used to laser cool the vibrational mode of the membrane. In Figure 3.3, I

also included a filter cavity that can be used to reduce the classical phase noise from the cooling

laser. I will discuss its design in Section 3.5, and demonstrate the filtering effects in Chapter 4. As

will be discussed in Chapter 6, the filter cavity is an important improvement for future experiments.

But it is not used in the laser cooling measurements presented in this thesis.

The two lasers are locked at 9GHz apart by the cooling laser lock. Another AOM is used to

control the power and detuning of the cooling beam. The different frequency components being

sent to the experimental cavity is shown in Figure 3.4.

The experimental cavity with the Si3N4 membrane in the middle is kept in a 3He fridge, and is
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at 400mK during measurement, monitored by a thermometer attached to the setup. Signals are

collected at the reference photodiode and the reflected photodiode. The reference photodiode is used

to track the change in the LO phase due to beam path changes. The reflected photodiode collects

the 15MHz beat signal for PDH locking, and 80MHz beat signal for the heterodyne measurement.

Figure 3.3: Overview of the measurement setup. Cooling filter cavity: reduces phase noise from
the cooling laser. Heterodyne and PDH lock setup: generates a signal beam and an LO beam
for heterodyne detection. The signal beam is locked to the experiment cavity using PDH locking.
Cooling laser lock: locks the cooling laser to the signal laser. Reference PD: measures the phase of
LO beam. Reflected PD: collect heterodyne signal and PDH signal. FP: fiberport. Half waveplate
(HWP), quarter waveplate (QWP), and calcite polarizer (CP): used for matching polarization to
fiber.

3.3 Heterodyne detection and PDH lock setup

A detailed schematic of the signal and LO beams for locking and heterodyne detection are set up

as shown in Fig 3.5. A New Focus 4001 EOM adds phase modulation (PM) at 15MHz to the signal

beam. These PM sidebands are used to generate PDH error signal at the experimental cavity. The
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Figure 3.4: Frequency components of signal, LO and cooling beams

EOM uses a lithium niobate crystal, which provides far IR cutoff. It comes with a resonant tank

circuit that amplifies the drive at 15MHz. With the tank circuit, the voltage required to produce

a π phase shift is V1/2 = 16V at 1064 nm. To minimize the parasitic amplitude modulation (AM)

created by EOM, we use a calcite polarizer to match the EOM input polarization to the crystal

e-axis polarization. We also use the New Focus EOM mount to make sure the beam path matches

with the crystal propagation axis. To observe the unwanted AM, we put a polarizer after the

EOM, and rotate its polarization to find maximized AM peak in the FFT mode of oscilloscope. To

minimize the AM, we iteratively adjust the input polarization, EOM orientation, and rotate the

output polarizer for maximized AM peak, until it diminishes.

The signal beam with its PM sidebands goes to the experimental cavity. When the signal beam

is close to cavity resonance, the reflected signal beam is added with a detuning-dependent phase

shift. The two PM sidebands, being far off cavity resonance, are directly reflected without additional

phase shift. On the reflected photodiode, the beating between the signal beam and its sidebands

create a 15MHz sinusoid, with the detuning-dependent phase shift imprinted on its amplitude. The

demodulated 15MHz beat thus produces the PDH error signal.

Three different locking schemes are used together to stably lock the signal beam near cavity

resonance. The whole error signal is fed back to the piezo on the signal laser. The error signal first

go through a proportional-integral (PI) controller. The ±10V output is then amplified by a low

noise op-amp. Its output then goes through a 32 kΩ resistor to the laser piezo. This 32 kΩ resistor
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Figure 3.5: Schematic of the heterodyne and PDH lock setup. The signal beam goes through an
EOM to generate the 15MHz phase sidebands for PDH locking. It then goes through an AOM
(Gooch&Housego R46080-1-1.06). The +1 order output of the AOM is 80MHz shifted from the
LO beam. Two Thorlabs PAF-X-7C fiberports (FP) transfer the beams to and from this setup. A
half waveplate (HWP1) is put before a polarizing beamsplitter (PBS) to adjust the power ratio of
the signal and LO beams. Another half waveplate (HWP2) matches the polarization of the calcite
polarizer (CP), which is oriented for vertical polarization to minimize amplitude modulation at the
EOM. A pair of f = 200mm lenses (LS) focus the beam for EOM aperture. Another two pairs
of half waveplates and quarter waveplates (QWP) match the preferred polarization of the fiber. A
beamsplitter recombines the signal and LO beams before they go to the output fiberport.

combined with the 2.2 nF piezo capacitance to create a 2.2 kHz low pass filter. Besides the laser

piezo feedback, the very low frequency (< 200Hz) component of the PDH error signal is fed back to

the Attocube piezo stack which the cavity rests on. To cancel out the long term slow temperature

drift, we also send the feedback output to the signal laser temperature control, which only responds

at sub-Hz frequencies.
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3.4 Cooling beam locking

In order to avoid the correlation between laser noises around ωm, we lock the cooling laser 2 free

spectral ranges (∼ 9GHz) away from the signal laser, so they address two different longitudinal

modes of the experimental cavity. We choose the frequency difference to be 2 free spectral ranges so

the cavity dispersion curves of the two longitudinal modes have roughly the same shape as a function

of membrane position. The details of the cooling beam lock setup are shown in Fig 3.6. A small

part of the outputs of the two lasers are combined at a fast photodiode with 12GHz bandwidth.

The beat signal is then mixed down from around 9GHz to tens of MHz using a Rohde-Schwarz

(RS) SMB100A signal generator. Here we used a Minicircuits ZX05-153MH mixer. The mixed

down signal is then amplified by a Minicircuits ZHL-3A amplifier.

In order to create an error signal, we split the beam into two using a Minicircuits ZCS-2 splitter.

We then create an interference scheme. In one path, the signal goes through directly. Half of the

signal is split to be used for monitoring the beat frequency. In the other path, the signal goes

through a component to create a frequency dependent phase shift. This frequency dependent phase

shift could be created by using a very long BNC cable[62]. Here, we use a first order Butterworth

low pass filter (Minicircuits BLP-1.9) to create this phase shift. At frequencies below the 3 dB point

(1.9MHz), the magnitude is maximally flat and is still very close to the input magnitude. But

the phase already starts to roll off. The two paths are recombined at a Minicircuits ZP-3 mixer to

create a frequency dependent error signal. This error signal then goes through a 160 kHz low pass

filter to filter out high frequency noise. It then goes through a PI controller with 10 kHz PI corner.

The PI output goes through a 1MΩ resistor, into the cooling laser piezo. This 1MΩ resistor and

the 2.3 nF piezo capacitance create a 69Hz low pass filter.

The PI corner and the resistor are chosen to maximize feedback gain at low frequencies. Most of

the noise we are trying to cancel is below 1 kHz. Part of this noise is from low frequency vibrations

in the free-running laser. But a larger part of the low frequency noise comes from the vibrations

of the experimental cavity. Such vibrations are caused by the membrane mount, and has a large

number of resonances from 20Hz to several hundred Hz. When the signal laser is locked to the
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Figure 3.6: Cooling beam lock electronics. A signal generator provides a ∼ 9GHz local oscillator
to mixes down the photodiode (PD) beat signal to MHz range. This signal, after amplification, is
split into two paths. One of the paths has a 1.9MHz low pass filter to create a frequency dependent
phase shift. The two signals are then combined at a mixer and creates a frequency dependent error
signal. The error signal goes through a 160 kHz low pass filter, a PI controller, an op-amp and
finally a 69Hz low pass filter formed by a 1MHz resistor and the 2.3 nF laser piezo capacitance.

experimental cavity, it follows the jitters in the experimental cavity’s frequency. The cooling laser

piezo, on the other hand, has a relatively flat response up to its first mechanical resonance at

200 kHz. To maximize the feedback at low frequency, we use a 2 pole gain roll-off from a very low

frequency (here we chose 70Hz). The phase is kept above −180◦ to avoid positive feedback. Since

each pole creates a −90◦ phase drop, this is the optimal setting for maximizing low frequency gain.

With this feedback, the two free-running lasers are locked 9GHz apart with a beat linewidth

less than 10Hz. A PSD of the beat signal is shown in Figure 3.7.

During measurement, we first lock the signal beam to the experimental cavity using PDH locking.

Then we turn on the cooling laser feedback to lock the cooling laser to the signal laser. The RS

signal generator frequency is chosen to be close to two free spectral ranges of the cavity. However,

we cannot use RS to fine tune the beat frequency. This is because spikes are generated every time

we change its setting. These spikes destroy the cooling beam lock instantly. So instead, we use an

AOM in the cooling beam path to bring it close to resonance with the cavity from the cooling side.

Since the AOM only has a few MHz bandwidth around 80MHz, we need to choose the RS output

to be close to the desired frequency. To do this, we use the frequency modulation (FM) mode of

the RS. When the RS frequency is close, we should see reflected power dips when the cooling beam

frequency sweeps through resonance. We then adjust the AOM frequency to make the reflected

dips distribute evenly. Finally, we compensate for this shift in AOM frequency from 80MHz by
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Figure 3.7: PSD of mixed down beat signal between free-running signal and cooling lasers. The
two lasers are locked 8.85GHz apart using the cooling laser lock setup. The linewidth is less than
10Hz.

subtracting the same amount in the RS frequency, and turn off the FM.

Now with the RS set at the right frequency, we slowly increase the AOM RF drive frequency

from 79MHz. The cooling beam frequency approaches cavity resonance from the cooling side. We

see a gradual decrease in the reflected DC power. However, we could still see a lot of fluctuation

in the reflected DC power. Again, these fluctuations are caused by the jitters of the membrane

position. Because the cooling beam and the signal beam are addressing two different longitudinal

modes, the slope of the two dispersion curves are slightly different, as shown in Figure 3.8. When

the membrane moves, this slope difference creates a resonant frequency difference. To create a clean

cooling beam with stable detuning, we need to park the membrane at the “sweet spot”, where the

slope in the two longitudinal mode dispersion curves are the same. This position also corresponds

to the maximal frequency difference in the two dispersion curves. When we move the membrane

position and change the AOM frequency to keep the reflected dip constant, the position where the
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Figure 3.8: Schematic of the slope difference between the cooling and signal beam cavity resonance
dispersion curves. The cooling beam is addressing the nth longitudinal mode, the signal beam is
addressing the (n + 2)th longitudinal mode. For comparison, the resonant frequency of the cooling
beam is shifted up by 2 free spectral ranges. The two curves have the same slope at the “sweet
spot” in membrane position. This also corresponds to the position of maximal difference in the two
resonant frequencies.

AOM frequency change switches sign is the “sweet spot”. When the membrane is close to the “sweet

spot”, reflection power fluctuations become sporadic spikes. All these spikes point towards higher

reflected power, or more negative detuning. This is because membrane position fluctuation in either

direction will change the frequency difference between the two dispersion curves in the same way.

The fact that the noise spikes all point towards more negative detuning confirms the cooling beam

is addressing a lower longitudinal mode than the signal beam.

3.5 Cooling beam filter cavity

As described in Section 2.5, a filter cavity can reduce the high frequency classical noise in the

transmitted beam compared to its input. Figure 3.9 shows a detailed schematic of the filter cavity

setup. The filter cavity has a measured optical linewidth κ/2π = 22 kHz. To eliminate the optical

Kerr effect when using high power (input power Pin = 150mW) in air, the filter cavity is put in a

conflat vacuum can and kept at below 10−6 Torr with an ion pump. The filter cavity is locked on

resonance to the cooling laser by a PDH lock. A Conoptics 360-40 EOM is used to create the phase

modulation sidebands. This EOM uses lithium tantalate as the crystal, and has a V1/2 = 400V at

1064 nm.
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Figure 3.9: Cooling filter cavity setup. An EOM produces 15MHz PM sidebands. A photodiode
(PD1) monitors the reflected beam to generate the error signal, another one (PD2) monitors a small
portion of the transmitted beam, after the beam sampler (BSP). A CCD camera is used to verify
the mode coupled. Two lenses (LS1, 2) are used to mode-match the cavity. LS1: f = −100mm.
LS2: f = 200mm. A conflat can keeps the filter cavity in high vacuum environment, pumped by
an ion pump. Both fiberports used are Thorlabs PAF-X-7C with a 1.4mm diameter collimated
output.

A ring piezo from Noliac is attached to one of the filter cavity end mirrors. The piezo response

is 14 nm/V. It is straight forward to send the PDH error signal to this piezo and lock the filter

cavity on resonance with the free-running cooling laser. However, when locked to the signal laser,

the cooling laser is tracking the frequency changes in the experimental cavity, and it becomes much

more difficult for the filter cavity to stay locked to the cooling laser. In order to follow the big

frequency excursions at low frequencies, we improved the feedback performance by Labview FPGA.

We also implement a feedforward scheme. Both of these are described below.

The feedback bandwidth is limited by the first mechanical resonance of the filter cavity, which

is around 8 − 10 kHz. For the first pass, we use a PI controller with 3 kHz PI corner. Its output

goes through a summing amplifier made of OPA445AP op-amp, then a 2 − 7 kΩ potentiometer,

onto the piezo. The piezo capacitance is 491 nF. With the resistor, they create a low pass filter

below 160Hz. When we increase the proportional gain of the PI controller, we see it starts to ring

at 8 kHz, which is the frequency the open-loop transfer function of cavity + feedback crosses -1 in
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the Bode plot.

To extend the feedback bandwidth, we use a Labview FPGA to increase the phase margin[63].

We create a second order transfer function by combining a resonance with an anti-resonance

F (s) =
s
2 + dω1s+ ω

2

1

s2 + dω2s+ ω
2
2

(3.7)

The physical meaning of the parameters ω1, ω2, dω1, and dω2 can be seen more clearly if we take

the transform s = iω. Equation (3.7) becomes

F (ω) =
(ω2

1
− ω

2) + idω1ω

(ω2
2
− ω2) + idω2ω

(3.8)

ω1 and ω2 are the center frequencies of the resonance and anti-resonance, dω1 and dω2 are their

widths respectively. If ω1 < ω2, we get a phase increase at frequencies between ω1/2π and ω2/2π.

Alternatively, if ω1 > ω2, we get a phase “bump” at frequencies between ω1/2π and ω2/2π. The

transfer function we implement has ω1/2π = 10 kHz, dω1/2π = 5kHz, ω2/2π = 20 kHz, and

dω2/2π = 15 kHz.

The analytical transfer function F (ω) is then converted into a discrete transfer function F(z)

using bilinear transform: s → 2

T

z−1

z+1
, where T is the sample time. In this implementation, we choose

T = 2.5µs, close to the maximal processing speed the FPGA allows. The generated discrete transfer

function has the formF(z) = a0+a1z
−1+a2z

−2

b0+b1z
−1+b2z

−2 , with

a0 = 1 +
dω1

2
T + (

ω1

2
T )2

a1 = 2[(
ω1

2
T )2 − 1]

a2 = 1− dω1

2
T + (
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2
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2
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2
T )2

b1 = 2[(
ω2

2
T )2 − 1]
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b2 = 1− dω2

2
T + (

ω2

2
T )2 (3.9)

These numerator and denominator coefficients are then sent to an already compiled FPGA VI

modified from the FPGA VI example for creating notch filter. This updates the filter in real time.

As long as the resulting discrete transfer function can be written in second-order infinite impulse

response (IIR) form, this method can also be used for creating other filters that can update in real

time.

The measured mag-phase response of the FPGA is shown in Figure 3.10. The phase around

10 kHz is lifted up. Putting this FPGA after the PI controller, the feedback ringing point is extended

to 20 kHz, and the maximum proportional gain is increased by a factor of 10.

A feedforward scheme is also used because we have precise information about the upcoming

fluctuation. Most of these fluctuations the filter cavity needs to follow are from the low frequency

membrane motion. The signal laser follows such fluctuations by its PDH lock. The cooling laser

then follows the signal laser using its piezo. Since we know the cooling laser lock signal, we can

anticipate the frequency fluctuations coming into the filter cavity, and cancel them by creating the

same frequency fluctuations using the filter cavity piezo. This requires a perfect match between the

transfer functions of the cooling laser feedback and the filter cavity feedforward in the bandwidth

of interest. This is done as shown in Figure 3.11.

In the cooling laser feedback, as mentioned in the last section, the PI controller output goes

through an op-amp and a 69Hz low pass filter. For the filter cavity feedforward, we send the same

PI output through a Stanford Research SR540 amplifier to invert the signal. The inverted output

then goes to the summing amplifier shared by feedback and a DC offset. Luckily, the amplifiers used

in both circuits have flat response in the frequency range we are interested in (20 − 200Hz). The

feedforward gain is adjusted by voltage dividers made of potentiometers. A 0− 5 kΩ potentiometer

is used for large range adjustment, and another 0 − 5 kΩ potentiometer in series with a 100 kΩ

resistor is used for fine adjustment. The feedforward phase is adjusted by a 2 − 7 kΩ resistor in

front of the 491 nF piezo capacitance. To match the transfer functions, we lock the filter cavity

to a free-running cooling laser. We then use a lock-in amplifier to inject sinusoidal signal to the
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Figure 3.10: Mag-phase plot of the FPGA transfer function measured by lock-in amplifier. The
blue curve shows a flat FPGA response when no transfer function is implemented. The green curve
shows the response when we implement the phase lead on FPGA. When implemented, the phase
edge around 10 kHz is increased by up to 75◦.
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cooling feedback PI controller input at 100Hz, and monitor the 100Hz component of filter cavity

feedback error signal with the lock-in amplifier. We then adjust the feedforward gain and phase

potentiometers to minimize the lock-in reading. We do this iteratively until we get the optimal

feedforward settings. These settings are good over 20− 200Hz.

Figure 3.11: Filter cavity feedforward scheme. The PI controller output in the cooling laser feedback
is sent to the filter cavity piezo for feedforward. The feedforward gain is adjusted by a 0 − 5 kΩ
potentiometer and fine tuned by a 0 − 5 kΩ potentiometer in series with a 100 kΩ resistor. The
feedforward phase is adjusted by a 2− 7 kΩ resistor before the 491 nF piezo capacitance.

Using feedforward and an improved feedback, we are able to lock the filter cavity stably when the

lasers are locked to the experimental cavity. As an illustration of the usefulness of the feedforward

scheme, in Figure 3.12 we plot the PDH error signal of the signal laser feedback and the filter cavity

error signal together. They are on different scales, but we can match many noise peaks below 1 kHz.

The feedforward effectively reduced the noise below 500Hz by at least 2 orders of magnitude.

3.6 Measurement electronics

Signals collected at the reflected and the reference photodiodes are processed by the electronics

shown in Figure 3.13. For the reflected photodiode, we are interested in signals at DC, 15MHz,

and 80MHz. The DC power monitors the cavity coupling and quality of signal beam locking. The

15MHz beat signal creates the PDH error signal for signal beam locking. It also has mechanical
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Figure 3.12: Feedforward cancellation of low frequency noise. The blue curve shows the PDH error
signal of the signal laser feedback when it is locked to the experimental cavity. The green curve
shows the filter cavity PDH error signal when the filter cavity is simultaneously locked to the cooling
laser, which is locked to the experiment cavity and the signal laser. The noise peaks below 1 kHz
in the two plots match each other. The relative flatness of the green curve below 1 kHz compared
to the blue curve is due to feedforward cancellation of low frequency noise from the cooling laser.

motion information imprinted on it at 261 kHz. The 80MHz signal contains beating of the reflected

signal beam and the LO beam, and has motional sidebands on it. It is used to derive the heterodyne

spectra described in Chapter 2. For the reference photodiode, we are interested in the signal at

80MHz , which contains phase and amplitude fluctuations of the LO beam, and is used for correcting

the heterodyne spectra.

The reflected DC power is monitored by an oscilloscope. To measure the cavity coupling, we

sweep the signal laser piezo and measure the reflected DC power on a DAQ card. A Labview VI

synchronizes the frequency sweep with the DAQ card signal. This enables us to optimize the cavity

coupling and make sure the cavity input is in the desired polarization.

The 15MHz signal for the signal beam EOM drive and the mixer local oscillator is generated

68



Figure 3.13: Schematic of the measurement electronics. The reflected photodiode (PD) signal is
separated into its DC and AC parts at a bias T. Its 15MHz component is further separated out by a
low pass filter (LPF) and mixing with a 15MHz local oscillator created by a Rigol signal generator.
The mixed down signal is used as the PDH error signal for the signal laser feedback, and is also sent
to input 2 on the HF2 lock-in amplifier. The reflected signal around 79.5MHz is separated out by
going through a bandpass filter (BPF) and mixed down to 21.3985MHz by a 100.8985MHz local
oscillator created by an HP RF signal generator. The mixed down signal then goes into the HF2
input 1. The 80MHz component of the reference photodiode signal is also mixed down to 20MHz
using the same local oscillator and goes to HF2 input 2.
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by a Rigol DG1022 signal generator. The heterodyne signals are generated and demodulated using

an Zurich Instruments HF2 lock-in amplifier. Because 80MHz is outside the available range of

HF2 outputs, we create a 20MHz output from HF2 and mix it with a 100MHz RF signal from

an HP 8648A signal generator. The mixed output is sent through an 80MHz notch filter to filter

out unwanted frequency components. It is then amplified and sent to the signal beam AOM. The

80MHz signals detected by the reflected photodiode and the reference photodiode are also mixed

down to 20MHz and sent back to HF2 inputs.

As shown in Figure 3.13, the reflected signal is first separated at a bias-T into DC and AC

components. The 15MHz signal is picked off by a 22MHz low pass filter, then amplified by +24 dBm,

and mixed down with the 15MHz local oscillator. The demodulated error signal is filtered at

1.9MHz and sent to a PI controller for feedback. The 80MHz signal is singled out by a bandpass

filter, then mixed down with the 100MHz source to 20MHz, and goes into the HF2 input.

To create a symmetric PDH error signal, we need to adjust the phase of the EOM RF drive.

Instead of using a phase shifter, which adds attenuation and noise, we adjust the Rigol frequency

slightly around 15MHz, and use the BNC cable it runs through to create the phase shift we need.

For the heterodyne setup, the HF2 output is chosen at 21.3985MHz to match the center frequency

of the ECS-21K-7.5A crystal notch filter. The local oscillator for mixing this signal down to 80MHz

is chosen to be 100.8985MHz. This is to make the mixed down frequency at 79.5MHz, the center

of the 3303 notch filter passband. We checked the symmetry of the transfer function of the 3303

notch filter with a network analyzer, this eliminated one potential cause for unwanted asymmetry

in the mechanical sidebands.

The HF2 lock-in amplifier is used for recording laser cooling measurements. The three inputs and

their demodulators are listed in Table 3.1. Demodulators 1 and 2 are in the amplitude modulation

(AM) mode, which means they demodulate inputs at frequencies fDemod1, fDemod1 + fDemod2, and

fDemod1 − fDemod2. The fDemod1 + fDemod2, and fDemod1 − fDemod2 demodulators have the same phase

relation as AM sidebands. Notice because the 20MHz signal for input 1 is produced by mixing the

80MHz heterodyne signal and the 100MHz local oscillator, the upper and lower motional sidebands

are flipped in order. Finally, input 1 is in AC and 50Ω mode. Input 2 is in differential mode.
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HF2 input Demodulator Demodulator frequency Signal
Channel 1+ 1 fDemod1 = 21.3985MHz Reflected heterodyne carrier
Channel 1+ 2 fDemod1 + 261.1 kHz Heterodyne lower motional sideband
Channel 1+ 2 fDemod1 − 261.1 kHz Heterodyne upper motional sideband
Channel 2+ 1 21.3985MHz Reference heterodyne carrier
Channel 2- 3 261.1 kHz Motional signal of PDH error signal

Table 3.1: HF2 lock-in amplifier inputs and settings.

3.7 Heterodyne data analysis

3.7.1 Heterodyne carrier data analysis

The reference heterodyne carrier is created by the beating of two inputs: the signal beam carrier

āin,s and the LO beam carrier āin,LOe
iωIFt+θ(t):

|āin,s + āin,LOe
iωIFt+θ(t)|2 = D.C.terms+ 2āin,sāin,LO cos[ωIFt+ θ(t)] (3.10)

After mixing with the 100MHz local oscillator and going through all the electronics to filter out

unwanted frequencies, we write the 20MHz signal to the lock-in input as

Ireference = Cāin,sāin,LOe
i(2πfDemod1t−θ(t)+θelec) (3.11)

where fDemod1 = 21.3985MHz is the mixed down frequency of the reference heterodyne signal. θelec

is the additional phase caused by electronic components, and C is the real part of the gain of the

electronics.

The demodulator 1 at fDemod1 mixes the time trace with Ae
i(2πfDemod1t+θ1), where θ1 is the initial

phase of the demodulator, and A a constant amplitude. The demodulated reference heterodyne

carrier as a complex time trace Zreference = Xreference(t) + iYreference(t) is given by

Zreference = ACāin,sāin,LOe
i(−θ(t)+θelec−θ1) (3.12)
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The phase of the demodulated reference heterodyne carrier is therefore

θreference = −θ(t) + θelec − θ1 (3.13)

Similarly, we can calculate the phase of the reflected heterodyne carrier. Compared to the

input signal beam, the reflected signal beam is filtered by ρ = 1 − κL

κ/2−i∆
. We therefore write the

demodulated reflected heterodyne carrier as

Zreflected = ACāin,sāin,LOρ
∗
e
i(−θ(t)+θelec1−θ1) (3.14)

The phase of the reflected heterodyne carrier is

θreflected = − arg(ρ)− θ(t) + θelec1 − θ1 (3.15)

Here we denote the electronics phase as θelec1 because the signal goes through a different circuit

from the reference heterodyne signal.

Subtracting Equation (3.15) from (3.13), we get a detuning dependent calibrated phase

θcal = θreflected − θreference = − arg(1− κL

κ/2− i∆
) + (θelec1 − θelec) (3.16)

The electronic phase is a constant offset.

If we plot ρ in phase space, we get a circle as shown in Figure 3.14. It is centered at 1− κL

κ
, with

a radius κL

κ
. Therefore, when we sweep the signal beam frequency through the cavity resonance,

the maximum phase deviation of calibrated phase in (3.16) from the offset (θelec1 − θelec) is

arg(ρ)max = arctan(
κL�

κ2 − κ
2

L

) (3.17)

When the detuning ∆ is small compared to κ/2, the calibrated phase’s deviation from the offset is
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Figure 3.14: Schematic of reflected signal beam phasor ρ.

linear in detuning:

arg(ρ) � 2κL

κ− 2κL

2∆

κ
(3.18)

Equations (3.16)-(3.18) are used to measure the cavity coupling and to figure out the signal beam

detuning.

An example of the sweep measurement is shown in Figure 3.15(a) and (b). We sweep the

signal beam frequency through the cavity resonance. The membrane is sitting at a node in the

intracavity electrical field, this minimizes the cavity resonant frequency fluctuations caused by

membrane position fluctuations. Figure 3.15(a) shows the reflected heterodyne carrier phase θreflected,

the reference carrier phase θreference, and their difference θcal. Figure 3.15(b) shows a zoom-in of θcal

around the cavity resonance, the phase goes over 26◦. From these sweeps, we can also generate the

ρ phasor plot in Figure 3.16. Compared to Figure 3.14, we get κL

κ/2
= 0.34, or κL = 0.17κ. The

ellipticity is most likely caused by the filter on the HF2 lock-in amplifier.
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Figure 3.15: Heterodyne carrier phase when the signal beam is swept through cavity resonance.
(a) The blue curve is the reflected heterodyne carrier phase, the green curve is the reference carrier
phase, the red curve is their difference, the calibrated phase. (b) a zoom-in of the calibrated phase
around the cavity resonance.
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Figure 3.16: Measured reflected signal beam phasor ρ.

3.7.2 Heterodyne power spectrum analysis

Similar to the reflected carrier, the upper and lower sidebands at frequencies ±f (in the vicinity

of f = ω̃m/2π) in the reflected signal can be written as aU[f ]e−i(2πft+θU) and aL[f ]e−i(−2πft+θL)

respectively. Their beat notes with the LO beam are:

|aUe−i(2πft+θU ) + āin,LOe
iωIFt+θ(t)|2 = D.C.terms+ 2aUāin,LO cos[(ωIF + 2πf)t+ θ(t) + θU] (3.19)

|aLe−i(−2πft+θL) + āin,LOe
iωIFt+θ(t)|2 = D.C.terms+ 2aLāin,LO cos[(ωIF − 2πf)t+ θ(t) + θL] (3.20)

Mixing with the 100MHz local oscillator, the resulting 20MHz± f signals at the lock-in inputs are

IU = CUaUāin,LOe
i[(2πfDemod1−2πf)t−θ(t)−θU+θelec,U] (3.21)

IL = CLaLāin,LOe
i[(2πfDemod1+2πf)t−θ(t)−θL+θelec,L] (3.22)

where CU(L) and θelec,U(L) are the gain and phase acquired at the electronics.
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Inputs 2 and 3 are demodulated at (fDemod1±fDemod2)/2π by mixing IU(L) with Ae
i[2π(fDemod1±fDemod2)t+θ2(3)],

where θ2(3) are the initial phases of the demodulators, and A2(3) the gain of the demodulators. The

demodulated complex time traces are

Z2 = A2CLaLāin,LOe
i[2π(f−fDemod2)t−θ(t)−θL+θelec,L−θ2] (3.23)

Z3 = A3CUaUāin,LOe
i[2π(fDemod2−f)t−θ(t)−θU+θelec,U−θ3] (3.24)

The demodulated time traces contain fluctuations in LO beam power and phase. To eliminate these

unwanted fluctuations, we can divide (3.23) and (3.24) by (3.12), the resulting normalized sideband

time traces are

Z
�
2
=

A2CL

AC

aL

āin,s
e
i[2π(f−fDemod2)t−θL+θelec,L−θelec−θ2+θ1] (3.25)

Z
�
3
=

A3CU

AC

aU

āin,s
e
i[2π(fDemod2−f)t−θU+θelec,U−θelec−θ3+θ1] (3.26)

To calculate the heterodyne power spectra defined in Equation (2.51), we take Fourier transforms

of Z �
2

and Z
�
3

and get the sideband PSDs

S2[f ] =
1

∆f
|F{Z �

2
}|2 (3.27)

S3[f ] =
1

∆f
|F{Z �

3
}|2 (3.28)

where ∆f = 2

T
is the frequency step in PSDs, given by the inverse of half the time trace duration

T . For ease of plotting, we flip the upper sideband S3[f ] in frequency. The two PSDs are then fit

together using the functional forms

S2[f ] = b2 +
s2 + a2(f − fc + fDemod2)/fh
1 + [(f − fc + fDemod2)/fh]2

(3.29)

S3[f ] = b3 +
s3 + a3(f − fc + fDemod2)/fh
1 + [(f − fc + fDemod2)/fh]2

(3.30)

fc = ω̃m/2π is the center frequency of the sideband Fano peaks, fh is the halfwidth of the Fano
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peaks. b2 and b3 are proportional to the background brr and bbb in the lower and upper sideband

PSDs. s2 and s3 are proportional to the symmetric coefficients srr and sbb defined by Equations

(2.81) and (2.86). a2 and a3 are proportional to the anti-symmetric coefficients arr and −abb defined

by Equations (2.82) and (2.87). Notice because the upper sideband is flipped in frequency, a3 gets

an opposite sign from abb.

A typical pair of sideband PSDs is shown in Figure 3.17.

3.7.3 Heterodyne cross-correlation spectrum analysis

The heterodyne cross-correlation spectrum is defined in Equation (2.88). To relate it to the demod-

ulated signals, we define ω = δω + ωIF, for the upper sideband δω � ωm. Equation (2.86) can be

rewritten as

Srb[ω] = i
∗[ω]i[ω − 2ωIF] = i

∗[δω + ωIF]i[δω − ωIF] = i
∗[δω + ωIF]i

∗[δω − ωIF] (3.31)

It is the conjugate of the product of the two Fourier transformed sidebands. The last step is valid

because i(t) is a real signal, so its Fourier transform satisfies i[−ω] = i
∗[ω].

Because Srb is a complex quantity, we need to be careful with the phase. There are two factors

we need to account for: (1) the time varying LO beam phase θ(t), and (2) phases from electronics

and demodulators. The LO beam phase θ(t) can be eliminated by normalizing the demodulated

signals using the reference signal, as expressed by Equations (3.25) and (3.26). This amounts to

setting θ = 0. Srb is related to Z
�
2

and Z
�
3

by

Srb[f ] ∝ (aU [f ]e
iθU)

aL[f ]e
iθL))∗ = Arb(|F{Z �

3
}|× |F{Z �

3
}|)eiθrb (3.32)

The constant gain Arb only changes the scale of the spectrum, so we can ignore it. But we need to

correctly calculate the phase

θrb = θelec,L + θelec,U − 2θelec − θ2 − θ3 + 2θ1 (3.33)

77



Figure 3.17: A typical pair of heterodyne sideband PSDs fit to Fano lineshapes simultaneously.
(a) is the lower sideband S2, and (b) is the upper sideband S3. The fit parameters as defined
in (3.29) and (3.30) are: fc = 261.07Hz, fh = 8.81Hz, b2 = 3.249 × 10−14, b3 = 3.431 × 10−14,
s2 = 3.41× 10−13, s3 = 3.59× 10−13, a2 = −8.24× 10−14, a3 = −8.49× 10−14.
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The initial phases of the demodulators are determined by an unknown start time τ by θ1 =

2πfDemod1(t0 − τ) etc., where t0 is the start time of a time trace. Therefore

2θ1 − θ2 − θ3

= 2× 2πfDemod1(t0 − τ)− 2π(fDemod1 + fDemod2)(t0 − τ)− 2π(fDemod1 − fDemod2)(t0 − τ)

= 0 (3.34)

This simplifies Equation (3.33) to

θrb = θelec,L + θelec,U − 2θelec (3.35)

This phase can be calculated by performing a circuit calibration measurement: We use the signal

beam EOM to generate PM sidebands at frequencies ±f , with depth of modulation β � 1.

as = āse
−i[ωst−β sin(2πft+ϕPM)]] � e

−iωstās[1 + i sin(2πft+ ϕPM)]

= e
iωstās[1 +

β

2
e
i(2πft+ϕPM) − β

2
e
−i(2πft+ϕPM)] (3.36)

with ϕPM as the initial phase of the PM tones. A method to verify if the generated modulation is

purely PM is described in Section 4.2.2.1. When the signal beam is far off the cavity resonance,

it reflects directly off the cavity arefl,s = −as. This reflected signal beam beats with the LO beam

aLOe
i([ωIFt+θ(t)], on the photodiode we get the signal

|− as + aLOe
i([ωIFt+θ(t)]|2 =

= D.C.term− aLOe
iωIFtās[1 +

β

2
e
i(2πft+ϕPM) − β

2
e
−i(2πft+ϕPM)] + c.c

= D.C.term− aLOe
iωIFtās[1 +

β

2
e
i(2πft+ϕPM) +

β

2
e
−i2πft−ϕPM−π)] + c.c (3.37)

This photodiode beat signal is mixed down to 20MHz ∓ f and demodulated in the same way

as described in Section 3.7.2. From Equations (3.25) and (3.26), we get the phases of the two

79



demodulated PM peaks are

arg(Z �
2
) = 2π(f − fDemod2)t− ϕPM + θelec,L − θelec − θ2 + θ1 (3.38)

arg(Z �
3
) = 2π(f − fDemod2)t+ ϕPM + π + θelec,U − θelec − θ2 + θ1 (3.39)

Using Equation (3.34), the sum of the two phases is

θCalib = arg(Z �
2
) + arg(Z �

3
) = π + θelec,L + θelec,U − 2θelec (3.40)

We get

θrb = θCalib − π (3.41)

From Equations (3.25) and (3.26), the ratio of the two demodulated PM sideband magnitudes can

also be used to calibrate the gain difference between the two demodulators, if the input sideband

magnitudes are identical.

Gcalib =
|Z �

2
|

|Z �
3
| =

A2CL

A3CU

(3.42)

An example of the circuit phase calibration is shown in Figure 3.18. We inject the PM sidebands at

the signal beam EOM using an Agilent signal generator. The signal generator frequency is manually

swept around fDemod2 = 261.1 kHz. The measured average phase of the two PM sidebands gives

θCalib/2. In Figure 3.18, the phase at frequency f around fDemod2 follows a linear relationship:

θCalib/2 (
◦) = −51.9− 0.00013f (Hz) (3.43)

If the injected sidebands are purely phase modulations, we get

θrb (
◦) = −283.8− 0.00026f (Hz) (3.44)

The heterodyne cross-correlation spectrum defined in (2.110) can be calculated from FFTs of
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Figure 3.18: Fit of measured PM sideband heterodyne phase θCalib/2 as a function of frequency f

around fDemod2 = 261.1 kHz.

the normalized demodulated time traces:

S23[f ] =
1

∆f
(F{Z �

3
}|× |F{Z �

3
})∗eiθCalib−π (3.45)

The real and imaginary parts of S23[f ] can be treated as independent variables, they are fit together

using the functional forms

S23,r[f ] = b23,r +
s23,r + a23,r(f − fc)/fh

1 + [(f − fc)/fh]2
(3.46)

S23,i[f ] = b23,i +
s23,i + a23,i(f − fc)/fh
1 + [(f − fc)/fh]2

(3.47)

and compared to the terms in Equations (2.110)-(2.113), with the LO beam phase θ = 0 in those

formulae.

For the same dataset used to generate Figure 3.17, after correcting the phase using Equation

(3.44), we fit the real and imaginary parts of S23 with Fano lineshapes. The plots are given in

Figure 3.19.

81



Figure 3.19: Fano fits of S23 (a) real and (b) imaginary parts, generated from the same dataset
as Figure 3.17. The fit parameters: fc = 261.07Hz, fh = 9.30Hz, b23,r = −1.355 × 10−14, b23,i =
−2.535× 10−14, s23,r = −1.87× 10−13, s23,i = −2.75× 10−13, a2 = 4.77× 10−14, a3 = 5.06× 10−14.
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Chapter 4

Laser Noise Characterization

As discussed in Section 2.2, to understand our ability to laser cool the membrane’s motion, we need

to characterize the classical noise of the input beams. The classical amplitude noise of a laser beam

can be measured by shining it on a photodiode, while the phase noise is measured using the cavity

as a phase discriminator and using the heterodyne signal.

4.1 Laser amplitude noise measurement

The laser amplitude noise is measured directly at a high power level. We then infer the noise at low

powers used for cooling by scaling the noise with power P . In Figure 4.1, we plot the measured PSD

of the signal beam photodiode signal. P = 142µW is incident on a PDA10CF photodiode. The

photodiode gain is G = 104 V/A, and the responsitivity is R = 0.72A/W. The measured amplitude

noise level is 2.9 × 10−8 V2
/Hz. The shot noise level is 2PRG

2
e = 3.2 × 10−9 V2

/Hz. This implies

the signal laser amplitude noise is 9.0 times above shot noise level at 142µW, Cxx = 9.0/4 = 2.3.

At 1µW, Cxx = 2.3/142 = 0.016.
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Figure 4.1: PSD of the signal laser amplitude noise. 142µW from the signal beam is incident on a

PDA10CF photodiode. The signal is amplified by an SRS 560 amplifier with 103 gain, and measured

by a DAQ card. The blue curve is the dark noise of the detector. The green curve is the measured

amplitude noise PSD. The noise level is 2.9× 10−8 V2
/Hz at 261 kHz. The black dashed line is the

expected shot noise level at 142µW.

The cooling laser amplitude noise is measured in the same way. Shown in Figure 4.2 is the

PSD of the cooling beam photodiode signal. Incident power P = 158µW. The photodiode and

gain settings are the same as in the previous measurement. The measured amplitude noise level is

2.0 × 10−8 V2
/Hz, the shot noise level is 3.65 × 10−9 V2

/Hz. The cooling laser amplitude noise at

158µW is 5.5 times the shot noise level, Cxx = 1.4. At 1µW, Cxx = 0.0089.
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Figure 4.2: PSD of the cooling laser amplitude noise. 158µW from the signal beam is incident

on a PDA10CF photodiode, the signal is amplified by an SRS 560 amplifier with gain= 103, and

measured by a DAQ card. The blue curve is the dark noise of the detector. The green curve is the

measured amplitude noise PSD. The noise level is 2.0× 10−8 V2
/Hz at 261 kHz. The black dashed

line is the expected shot noise level at 158µW.

4.2 Laser phase noise measurement

4.2.1 Measurement method

The phase noise of an optical field cannot be directly measured with a photodiode. But if we

have another optical field as a reference, and beat the two fields using a heterodyne scheme, the

fluctuation in the phase difference between the two fields is imprinted on the beat signal, and can be

detected by a photodiode. If the reference (in other words, the LO) has neglible phase fluctuation

at the frequency of interest, then the fluctuation in the phase difference we measured from the
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heterodyne signal is the phase noise of the optical field. Obviously, this method fails if the phase

fluctuation we want to measure is common to both optical fields. In this second case, we can use

the optical cavity to create difference between the phase fluctuations in the two beams. Here I will

show the details of this method.

In the heterodyne power spectra, we look at the background of the heterodyne power spectra

at frequency ω, as generalized from Equations (2.70) and (2.85):

brr[ω] = 1+σ[(|ρ|2+|κLχc,s[−ω]−1|2)(Cxx+Cyy)−2Re[ρ∗(κLχc,s[−ω]−1)])(Cxx+2iCxy−Cyy)] (4.1)

bbb[ω] = 1+σ[(|ρ|2+ |κLχc,s[ω]−1|2)(Cxx+Cyy)−2Re[ρ∗(κLχc,s[ω]−1)])(Cxx+2iCxy−Cyy)] (4.2)

where the factor 1 is the heterodyne detection shot noise, and σ is the quantum efficiency of the

photodiode. The various terms with the signal beam classical amplitude noise Cxx, phase noise Cyy,

and their cross correlation Cxy contribute to the upper and lower sideband noise floors as a function

of signal beam detuning ∆.

When there is no cavity involved, or equivalently the signal beam is far off the cavity resonance,

∆ = ∞, ρ = 1. Equations (2.70) and (2.85) simplify to

brr = bbb = 1 + 4σCxx (4.3)

The factor of 4 comes from the definitions of Equation (2.4), so that Cxx = 0.25 corresponds to a

classical amplitude noise at the shot noise level. Phase noise does not contribute to the heterodyne

PSDs, because the phase noise is common to both the signal beam and the LO beam, and there is

no relative phase fluctuation between the two beating beams.

However, when the signal beam is close to the cavity resonance, we get the Cyy terms in the

brr, bbb expressions in Equations (4.1) and (4.2). Here the cavity filters the signal beam, and its

phase fluctuation is no longer the same as that of the LO beam. The beating between the part of

the signal phase noise Cyy altered by cavity filtering, expressed by κLχc,s[∓ω] in brr(bb), and the LO

carrier, is the signal we detect in the heterodyne power spectra.
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To be more quantitative, we look at the coefficients of different noise sources’ contributions to

the lower sideband PSD background brr:

1. For phase noise common to both signal and LO beams, denoted as “Common Cyy”, the

coefficient is directly extracted from Equation (4.1) as

|ρ|2 + |κLχc,s[−ω]− 1|2 + 2Re[ρ∗(κLχc,s[−ω]− 1)] (4.4)

Physically, |ρ|2 is the beating between the reflected signal beam carrier and the noise in the promptly

reflected LO beam. |κLχc,s[−ω]−1|2 is the beating between the promptly reflected LO beam carrier

and the noise in the reflected signal beam. This noise in the reflected signal beam can be divided

into two parts, the cavity filtered part κLχc,s[−ω] and the promptly reflected part −1. Finally,

2Re[ρ∗(κLχc,s[−ω]− 1)] is the interference between the two beating terms.

2. For phase noise only on the signal beam, denoted as “Signal Cyy”, the only term is the beating

between the promptly reflected LO beam carrier and the noise in the reflected signal beam. The

coefficient is

|κLχc,s[−ω]− 1|2 (4.5)

3. For amplitude noise common to both signal and LO beams, denoted as “Common Cxx”, the

coefficient is directly derived from Equation (4.1) as

|ρ|2 + |κLχc,s[−ω]− 1|2 − 2Re[ρ∗(κLχc,s[−ω]− 1)] (4.6)

4. For amplitude noise only on the signal beam, denoted as “Signal Cxx”, the coefficient is the

same as for the “Signal Cyy”

|κLχc,s[−ω]− 1|2 (4.7)

5. For the cross noise term on both signal and LO beams, denoted as “Common Cxy” , the

coefficient is directly extracted from Equation (4.1) as

−4Re[iρ∗(κLχc,s[−ω]− 1)] (4.8)
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The cross noise term only on the signal beam, “Signal Cxy”, has no contribution to the spectrum.

Similar expressions can be derived for the upper sideband bbb, by replacing κLχc,s[−ω] with

κLχc,s[ω]. We plot the coefficient of these different coefficients as a function of frequency ω/2π in

Figure 4.3. Here we assume the signal beam is on resonance with the cavity.

Figure 4.3: Srr noise floor coefficients using experiment parameters κ = 119 kHz, κL = 0.165κ, ∆ =
0. At ω/2π = 261 kHz, the coefficients for “Common Cyy”, “Signal Cxx or Cyy”, “Common Cxx”, and
“Common Cxy” are 0.10, 0.97, 2.74, and −0.096.

To measure the signal laser Cyy around 261 kHz , we use a calibrated reference. The method is

listed as follows:

(1) We inject a phase modulation (PM) tone at 263 kHz into the EOM in the signal beam path.

Since this 263 kHz PM only appears in the signal beam, we can see it directly in the beat signal of

the two beams (into a photodiode) on an oscilloscope, and measure its magnitude.

(2) We measure the off resonance and on resonance sideband PSDs. The difference between the

two PSD noise floors is due to the phase noise, as described by the “Common Cyy” expression. The

PM tone also shows up in both PSDs as a peak. We compare the area under the PM tone peak,
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which corresponds to the total power in the PM tone, and scale it to the increased noise floor. This

tells us the magnitude of the classical phase noise. Here the assumption is that the Cyy contribution

is much larger than Cxx or Cxy and thus is the dominant term for the Srr background change, and

we can verify this assumption later.

(3) We calculate the phase shot noise level at the signal beam input power, compare it to the

classical phase noise we inferred from step (2), and get the Cyy value.

4.2.2 Data analysis

4.2.2.1 Signal laser phase noise characterization

We measure the signal laser phase noise with 2.3µW signal beam power and 333µW LO power

going down the 3He fridge. There is a 15% power loss from the entrance of the fridge to the cavity.

The actual input powers are 1.95µW for the signal beam and 283µW for the LO beam.

Injected PM tone To inject a PM tone, a 20Vpp sinusoidal output at 263 kHz from an Agilent

signal generator is sent to a coupler to be added with the 15MHz RF signal sent to the signal beam

EOM. The PM tone is measured by recording the reference photodiode signal on an oscilloscope.

This time trace is demodulated at 80MHz, and filtered to get rid of high frequency noise and

< 1kHz frequency drift. The fast Fourier transform (FFT) of the resulting normalized time trace

plotted in mag-phase is shown in Figure 4.4(a). Its zoom-in for the 263 kHz peak is shown in Figure

4.4(b).

To illustrate the idea of this FFT measurement, we use the same classical picture described

in Section 3.7.3. Consider the signal beam āse
−iωst, with PM sidebands at ±ωPM, and depth of

modulation β � 1. The optical field can be written as

as = āse
−i[ωst−β sin(ωPMt+ϕPM)]] � e

−iωstās[1 + i sin(ωPMt+ ϕPM)]

= e
−iωstās[1 +

β

2
e
i(ωPMt+ϕPM) − β

2
e
−i(ωPMt+ϕPM)] (4.9)
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Figure 4.4: (a) FFT of reference photodiode oscilloscope time trace demodulated at 79.91MHz.
The Fourier transformed data is normalized, notice the center peak at 0 is 1. Big peaks show up
at multiples of 15MHz. (b) Zoom in of the ±260 kHz peaks. The averaged height is 0.0023, the
average phase is −90.7◦. This confirms the injected noise is almost pure phase modulation, with
magnitude 2.3mrad.

When the signal beam beats with the LO beam aLOe
−i(ωs−ωIF)t, on the photodiode we get the signal

|as + aLO|2 = ((as + aLOe
iωIFt)(as + a

∗
LO

e
−iωIFt)

� |aLO|2 + aLOe
iωIF t

ās[1 +
β

2
e
i(ωPMt+ϕPM) − β

2
e
−i(ωPMt+ϕPM)] + c.c (4.10)

Demodulating this signal at ωIF = 80MHz, we get

AaLOās[1 +
β

2
e
i(ωPMt+ϕPM) +

β

2
e
−i(ωPMt+ϕPM±π)]

Taking normalized FFT of this signal, we get a center peak 1, and two sideband peaks at ±ωPM.

The magnitude of the peaks is β

2
, the magnitude of the phase noise, in unit of radians. The average

phase of the two sidebands is (ωPMt+ ϕPM − ωPMt− ϕPM ± π)/2 = ±π/2.

The normalized FFT creates a carrier peak with magnitude 1.0. The peaks around ±260 kHz

are averaged to 2.3× 10−3, with an averaged phase −90.7◦. The measured data therefore confirms

we are injecting a 2.3mrad phase noise tone at +260 kHz.
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Figure 4.5: Signal laser off resonance heterodyne upper and lower sideband PSDs. The upper
sideband PSD (green line) is reversed in frequency to compare with the lower sideband PSD (blue
line). The noise floor is 1.8 × 10−15 V2

/Hz. PM tone peak shows up at 2 kHz. The black dashed
line is the inferred detection shot noise level.

Heterodyne PSDs When the signal beam is off resonance, Srr and Sbb are plotted in Figure 4.5.

The time traces taken are 1 s long, with HF2 settings: 48 dB filter, 7 kHz bandwidth, 28.8 kSample/s.

In Figure 4.5, the original PSDs are coarsened by 10 times, the frequency step is 10Hz. The PM tone

peak shows up at 2 kHz. From equation (4.1), the off resonance PSD noise floor is determined by the

detection shot noise and the classical amplitude noise. In reality, the noise floor is limited by both

photodiode dark noise and heterodyne detection shot noise. The dark noise floor is 1.0×10−15 V2
/Hz.

The off resonance noise floor as shown in Figure 4.5 is 1.8 × 10−15 V2
/Hz. This implies the shot

noise level is about 0.8× 10−15 V2
/Hz.

Srr and Sbb when the signal beam is locked near resonance are shown in Figure 4.6. Sub-

tracting the off resonance noise floor, the average noise floor around the center is Snoisefloor =

1.3 × 10−14 V2
/Hz, the integrated area for the PM tone is APM = 8.6 × 10−9 V2. Since the PM

91



Figure 4.6: Signal laser on resonance heterodyne upper and lower sideband PSDs. The blue curve
is the lower sideband PSD, and the green curve is the upper sideband PSD. The upper sideband
PSD is reversed in frequency to compare with the lower sideband PSD. For the lower sideband,
the noise floor is at 1.4 × 10−14 V2

/Hz. The PM tone peak integrated area is 8.7 × 10−9 V2. For
the upper sideband, the noise floor is at 1.6 × 10−14 V2

/Hz. The PM tone peak integrated area is
8.5 × 10−9 V2. The peak around 0Hz is the motional sideband, the peak around 1 kHz is due to
signal laser phase noise. The black dashed line is the inferred detection shot noise level.

tone is only on the signal beam, whereas the phase noise floor is common to both beams, they

contribute to the heterodyne PSDs with different coefficients as shown in Figure 4.3. Taking this

into consideration, the phase noise floor is

Sφφ = (2.3mrad)2 × Snoisefloor

APM

× 0.97

0.10
= 7.8× 10−11 rad2

/Hz

At 1.95µW, the phase shot noise is 1/n = �ω/P= 9.57 × 10−14 rad2
/Hz. This means the signal

laser phase noise is 820 times above shot noise level in power at 1.95µW, or Cyy = 204 at 1.95µW.

The frequency noise at f = 261 kHz can also be calculated as S
φ̇φ̇

= f
2
Sφφ = 5.4Hz2/Hz.

Finally, the number we get is consistent with our assumption that Cxx, Cxy contributions are

much smaller. As measured independently, we know Cxx < 1 at 1.95µW and Cxy is limited by the
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inequality for classical noise terms Cxx ≤
�

CxxCyy. The ratio between Cyy and Cxx, Cxy coefficients

are 0.03 and 0.96 respectively. Taking these into consideration, Cxx, Cxy contributions are smaller

than 1× 10−16 V2
/Hz on the PSDs.

As a sanity check, we also calculate the heterodyne detection shot noise. The quantum efficiency

of the PDA10CF photodiode used for detection is σ0 = 0.84, counting in the extra 15% loss from

the cavity to the photodiode, the total detection efficiency σ = σ0(1−15%) = 0.71. From Equations

(4.1) and (4.2), the shot noise inferred from the Cyy value is

Snoisefloor/(σCyy × 0.1) = 8.8× 10−16 V2
/Hz

consistent with the difference between the observed off resonance noise floor and the dark noise

floor.

4.2.2.2 Cooling laser phase noise characterization

Similarly, we measure the cooling laser phase noise by sending its output to the signal HD and PDH

setup. At the Helium fridge entrance, the cooling “signal beam” is 1.9µW and the “LO beam” is

535µW. Counting the 15% power loss, the actual input powers are 1.62µW for “signal beam” and

455µW for “LO beam”.

The Agilent signal generator sends a 20Vpp sinusoidal output at 263 kHz to the “signal beam”

EOM. This creates the PM tone at 263 kHz. Its magnitude is measured with the reference pho-

todiode, the FFT of the demodulated time trace is shown in Figure 4.7. The measured PM tone

magnitude is 2.2mrad.

The off resonance noise floor at the center is 2.3 × 10−15 V2
/Hz, as shown in Figure 4.8. The

detection dark noise is still 1.0 × 10−15 V2
/Hz. The detection shot noise is therefore expected to

be 1.3 × 10−15 V2
/Hz. The near resonance power spectra are shown in Figure 4.9. The average

PM tone integrated area APM = 1.1× 10−8 V2. After subtracting the off resonance noise floor, the
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Figure 4.7: FFT of reference photodiode oscilloscope time trace demodulated at 79.91MHz, zoomed
in at the ±260 kHz peaks. The averaged height is 0.0022, the averaged phase is −87.9◦. This
confirms the injected noise is almost pure phase modulation, with magnitude 2.2mrad.

average noise floor at the center is Snoisefloor = 1.08× 10−14 V2
/Hz. The phase noise floor is

Sφφ = (2.2mrad)2 × Snoisefloor

APM

× 0.973

0.10
= 4.5× 10−11 rad2

/Hz

At 1.62µW, the phase shot noise is 1.15 × 10−13 rad2
/Hz. Therefore the cooling laser phase noise

at 1.62µW is 460 times above shot noise level, or Cyy = 98 at 1.62µW. The cooling laser frequency

noise at f = 261 kHz is S
φ̇φ̇

= f
2
Sφφ = 3.1Hz2/Hz.

Notice the noise floor around 261 kHz is not flat, but varies over nearly an order of magnitude

from −2 kHz to +5kHz. This is different from the assumption of flat classical noise used in the

effective phonon number expression (2.42). However, for the measurements described in this thesis,

the mechanical linewidths are relatively small ( ≤ 200Hz). Over such small frequency range, we

can still treat the classical cooling laser noise as flat and use Equation (2.42). On the other hand,
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Figure 4.8: Cooling laser off resonance heterodyne upper and lower sideband PSDs. The blue curve
is the lower sideband PSD, and the green curve is the upper sideband PSD. The upper sideband
PSD is reversed in frequency to compare with the lower sideband PSD. The noise floor around 0Hz
is 2.3 × 10−15 V2

/Hz. The noise floor roll-off is due to the 7 kHz low pass filters in the HF2. The
black dashed line is the inferred detection shot noise level.

because the cooling laser noise does not alter the heterodyne spectra, the heterodyne detection

theory described in Section 2.3 is not affected.

As a sanity check, we look at the inferred shot noise level. The measured Cyy implies the shot

noise level is

Snoisefloor/(σCyy × 0.10) = 1.4× 10−15 V2
/Hz

in agreement with the difference in measured off resonance PSD noise floor and dark noise floor.

According to Equations (2.61) and (2.81), the dark noise is proportional to the LO beam power pā2
in,s

.

In the previous section, the signal beam detection shot noise was inferred to be 8.8× 10−16 V2
/Hz.

Scaled by the LO beam powers in the two measurements, the expected cooling detection shot noise

95



Figure 4.9: Cooling laser on resonance heterodyne upper and lower sideband PSDs. The blue curve
is the lower sideband PSD, and the green curve is the upper sideband PSD. The upper sideband
PSD is reversed in frequency to compare with the lower sideband PSD. For the lower sideband, the
noise floor around 0Hz at 1.3× 10−14 V2

/Hz. The PM tone peak integrated area is 1.1× 10−8 V2.
For the upper sideband, the noise floor at 1.2 × 10−14 V2

/Hz. The PM tone peak integrated area
is 1.07 × 10−9 V2. The peak around 0 kHz is the motional sideband. The overall roll-off at higher
frequencies is due to the 7 kHz low pass filters in the HF2. The black dashed line is the inferred
detection shot noise level.

level is

8.8× 10−16 V2
/Hz× 535µW

333µW
= 1.4× 10−15 V2

/Hz

consistent with our measured value.

4.3 Filtered cooling laser phase noise characterization

As shown in the previous section, both lasers have excessive phase noise around the mechanical

resonant frequency ωm/2π = 261 kHz, limiting the minimum phonon number we can reach. As

mentioned in Section 3.5, a filter cavity is built and can be inserted into the cooling beam path.
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Here we show the filter cavity described indeed filters the cooling laser noise as predicted by theory.

For the laser cooling data presented in this thesis, the filter cavity is not employed, but it will be a

useful improvement for future experiments.

4.3.1 Theoretical predictions of filter cavity performance

The filter cavity linewidth is κf/2π = 22 kHz. According to Equation (2.140), we expect the classical

noise at ωm/2π = 261 kHz to be filtered by a factor of (2ωm

κf

)2 = 563 in a single pass. Because the

filter cavity is not locked perfectly on resonance, we also need to consider the added transmitted

amplitude noise caused by input phase noise. In reality, when locked to the experimental cavity,

the filter cavity transmitted power average fluctuation is less than 5%, implying a detuning less

than 2 kHz. Using Equation (2.141), the equivalent input amplitude noise caused by phase noise at

1µW is less than

∆2

(κf/2)2 + ω2
Cyy,in =

(2 kHz)2

(11 kHz)2 + (261 kHz)2
× 61 = 0.0036

small compared to Cxx,in = 0.0089. The equivalent input phase noise caused by amplitude noise is

negligible. Therefore there is no need to worry about the added noise due to the cavity detuning.

4.3.2 Measurements of filter cavity performance

The filtered cooling beam phase noise is measured by dividing it into two beams. One passes

through an EOM and serves as the “signal beam”. The other goes through an AOM and is shifted

in frequency to produce the “LO beam”. The phase noise can then be measured using the same

methods mentioned above. Since the phase noise is expected to be greatly reduced, we increase

the “signal beam” power by 10 times. sending its output to the signal HD and PDH setup. At the

Helium fridge entrance, the “signal beam” is 20.6µW and the LO beam is 302µW. Counting the

15% power loss, the actual input powers are 17.5µW for the signal beam and 257µW for the LO

beam.
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Figure 4.10: Heterodyne lower sideband PSD of filtered cooling laser. The green curve is the off

resonance power spectrum. The blue curve is the on resonance power spectrum. The PM tone

peak integrated area is 2.6× 10−9 V2. Around 0Hz, the noise floor change from off resonance to on

resonance is about 1×10−16 V2
/Hz. The broad peak around 0 kHz is the mechanical sideband. The

other noise peaks are likely due to frequency fluctuations caused by an imperfect lock. The overall

roll-off is due to the HF2 7 kHz low pass filters. The black dashed line is the inferred detection shot

noise level.

A 0.2Vpp sinusoidal output at 263 kHz is sent to a Thorlabs EO-PM-NR-C2 EOM to create the

PM tone. The measured PM tone magnitude is 0.45mrad. The PM tone magnitude is different

from those used in Section 4.2.2 because a different EOM is used here. The PSD of the lower

sideband is plotted in Figure 4.10. The PM tone integrated area APM = 2.6 × 10−9 V2. The off

resonance noise floor is 1.7 × 10−15 V2
/Hz. This implies a shot noise level of 0.7 × 10−15 V2

/Hz.

Because the phase noise is no longer significantly higher than the dark noise floor, it is difficult to

extract a precise noise floor change near the motional peak around 0Hz. But we could estimate the
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noise floor change due to phase noise is about Snoisefloor = 1 × 10−16 V2
/Hz. The phase noise level

is then

Sφφ = (0.45mrad)2 × Snoisefloor

APM

× 0.973

0.10
= 7× 10−14 rad2

/Hz

At 17.5µW, the phase shot noise is 1.06 × 10−14 rad2
/Hz. Therefore the cooling laser phase noise

at 17.5µW is about 7 times above shot noise level, or Cyy = 1.8 at 17.5µW. The cooling laser

frequency noise at f = 261 kHz is S
φ̇φ̇

= f
2
Sφφ = 0.005Hz2/Hz. Compared to the unfiltered cooling

beam, the phase noise or frequency noise at 261 kHz is about 590 times smaller, in agreement with

the theoretical prediction of 563 times reduction in Section 2.5.

The inferred shot noise level from Cyy is

Snoisefloor/(σCyy × 0.10) = 8× 10−16 V2
/Hz

also in agreement with the measured value.

4.4 Summary

Finally, the classical noise levels of the signal laser, the unfiltered cooling laser, and the filtered

cooling laser are summarized in Table 4.1.

The measured signal and cooling laser frequency noise at 261 kHz are 5.4Hz2/Hz and 3.1Hz2/Hz

respectively. According to Equation (1.8), if we assume a white frequency noise spectrum, the

inferred linewidths are 2.7Hz and 1.6Hz. This is much smaller than the laser linewidth Γl/2π <

1 kHz specified by the laser manufacturer. However, the measured results are consistent with the

spec’d 1 kHz linewidth if the correlation bandwidth γc/2π � 12 kHz in Equation (1.7).

Phase noise Frequency noise Cyy at 1µW Cxx at 1µW

Signal laser 7.8× 10−11 rad2
/Hz 5.4Hz2/Hz 105 0.016

Unfiltered cooling laser 4.5× 10−11 rad2
/Hz 3.1Hz2/Hz 61 0.0089

Filtered cooling laser 7× 10−14 rad2
/Hz 0.005Hz2/Hz 0.1 2× 10−5

Table 4.1: Summary of classical phase and amplitude noise at 261 kHz of the signal laser, unfiltered
cooling laser, and filtered cooling laser.
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Chapter 5

Preliminary laser cooling results and

discussions

In this Chapter, I will first present optomechanical measurements when the cooling beam detuning

is varied. Then I will look at laser cooling. A section is devoted to discuss how the measured laser

phase noises limit the minimum phonon number achievable and change the heterodyne spectra.

Finally, preliminary laser cooling results varying the cooling beam power and the signal beam

detuning are presented.

5.1 Optomechanics as a function of cooling beam detuning

First we look at the frequency shift and linewidth change of the mechanical resonance when we vary

the cooling beam detuning at a constant power. The signal beam is locked near the experimental

cavity resonance. Its input power is Pin,s = 2.00µW, counting 15% loss from the fridge entrance to

the cavity. The cooling beam is then brought close to resonance with a different cavity longitudinal

mode, using the cooling beam lock described in Section 3.4. The cooling beam detuning is tuned

by changing the RF drive frequency of an AOM in its beam path.

At a certain cooling beam detuning, we measure the sideband heterodyne PSDs. As described

by Equations (3.29) and (3.30), we can fit the two PSDs simultaneously and extract the Fano peak

center frequency fc and halfwidth fh. A pair of sideband PSDs from the dataset is shown in Figure
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Figure 5.1: Fit of sideband heterodyne PSDs. (a) upper sideband, (b) lower sideband. The blue
diamonds are data points, the red curves are the Fano peak fits using Equations (3.29) and (3.30).
From the fits, we extract the center frequency fc = 261123.8Hz, peak halfwidth fh = 24.497Hz.

5.1.

Physically, fc is the effective mechanical resonant frequency ω̃m/2π, fh is related to the effective

mechanical damping rate γ̃m by fh = γ̃m/4π. For the parameters in this experiment, change in fh is

mostly caused by the cooling beam optical damping γopt,p. We can compare the measured fc and fh

with theory given by Equations (2.20)-(2.23). Plotted in Figure 5.1(a) and (b), Parameters used in

the fit curves are: cavity coupling A = 19.0 rad/(m× s), resonant frequency ωm/2π = 261.153 kHz,

cavity decay rate κ/2π = 119 kHz, measured cooling power Pin,p = 2.00µW. The only fit parameters

are: cavity coupling κL/κ = 0.193, corresponding to a reflection dip R = 38%, consistent with our

measured reflection dip R � 40%; intrinsic mechanical resonant frequency ωm/2π = 261.153 kHz;

and offset in cooling beam detuning relative to an arbitrary setpoint ∆0 = 52331.8 kHz. In the

linewidth fit, the contribution from the inherent mechanical linewidth γm and the signal beam

induced δγm,s are negligible.

5.2 Laser cooling limited by classical laser noise

Next we look at laser cooling with unfiltered lasers. As presented in Chapter 4, both lasers have

excessive classical phase noise around ωm/2π = 261 kHz. Using the theory developed in Chapter 2,

we can model how the classical noise limits our laser cooling capability and alters the heterodyne

spectra.
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Figure 5.2: Fit of (a) Fano peak frequency shift and (b) Fano peak linewidth in the heterodyne
sideband PSDs as a function of cooling beam detuning. The blue dots are data extracted from
sideband heterodyne PSD fits. The red curves are the theory fits. Parameters used in the red
curves are: cavity decay rate κ/2π = 119 kHz; cooling power Pin,p = 2.35µW before 15% power
loss; cavity coupling A = 19.0 rad/(m× s). The fit variables are: intrinsic mechanical resonant
frequency ωm/2π = 261.153 kHz; cavity coupling κL/κ = 0.193; and an offset in the cooling beam
detuning from an arbitrary setpoint ∆0/2π = 52331.8 kHz.

Using Equation (2.36), we plot neff as a function of cooling power in Figure 5.3, including the

measured classical noise of both lasers. Here the signal beam input power is Pin,s = 2µW. From

Table 4.1, at Pin,s = 1µW , the classical noise terms are Cxx,s = 0.016, Cyy,s = 105. The signal beam

detuning is ∆s/2π = −10 kHz. The cooling laser classical noise terms are Cxx,p = 0.0089, Cyy,p = 61

at cooling input power Pin,p = 1µW. The cooling detuning is ∆p/2π = −260 kHz for optimal

cooling. The minimum phonon number we could achieve is neff = 30. Since the cooling beam

detuning maximizes its classical noise contribution to the effective phonon number, as shown in

Figure 2.2, the minimum phonon number is largely limited by the cooling phase noise.

Even though the signal beam classical noise has little influence on the laser cooling, it modifies

the heterodyne spectra. As shown in Equations (2.81)-(2.82) and (2.86)-(2.87), in the heterodyne

power spectra, the symmetric parts of the lower and upper sidebands srr and sbb contain the effective

phonon number. When there is no classical noise,

srr ∝ |χc,s[−ωm]|2(neff + 1)

sbb ∝ |χc,s[ωm]|2neff
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Figure 5.3: Theoretical plot of effective phonon number as a function of cooling beam input power,
including all laser classical noise. The signal beam is 2µW at −10 kHz detuning. The cooling beam
is at −260 kHz detuning. The classical noise of the two lasers at 1µW are: for the signal beam,
Cxx,s = 0.016, Cyy,s = 105; for the cooling beam, Cxx,p = 0.0089, Cyy,p = 61. The lowest achievable
phonon number is 30.

When there is classical noise, these terms change to

srr ∝ |χc,s[−ωm]|2(neff + 1) + Re(Bmod[ωm])

sbb ∝ |χc,s[ωm]|2neff − Re(Bmod[−ωm])

We can define

ns,rr ≡ Re(Bmod[ωm])/|χc,s[−ωm]|2 (5.1)

ns,bb ≡ −Re(Bmod[−ωm])/|χc,s[ωm]|2 (5.2)

as the equivalent phonon numbers the signal beam classical noise added in the symmetric parts of

the heterodyne power spectra. Similarly, we can define the equivalent phonon numbers the signal
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Figure 5.4: Theoretical plot of equivalent phonon numbers ns,rr, ns,bb, na,rr, and na,bb created by
signal laser classical noise in the (a) lower and (b) upper sideband heterodyne power spectra. The
blue curves are for the symmetric terms, and the green curves are for the anti-symmetric terms.
The parameters used in the plots are: signal beam input power is 2µW, Cxx,s = 0.016, Cyy,s = 105
at 1µW.

beam classical noise added in the anti-symmetric parts of the heterodyne power spectra,

na,rr ≡ Im(Bmod[ωm])/|χc,s[−ωm]|2 (5.3)

na,bb ≡ Im(Bmod[−ωm])/|χc,s[ωm]|2 (5.4)

Using the same parameters as in Figure 5.3, Pin,p = 2µW, Cxx,s = 0.016, Cyy,s = 105 at 1µW,

we plot ns,rr, ns,bb, na,rr, and na,bb at different signal beam detunings in Figure 5.4. At reasonable

∆s/2π ∼ −10 kHz, these equivalent phonon numbers are ∼ 101. When ∆s = 0, they are small

because the phase noise contributions are zero and the amplitude noise terms are small. However,

in reality it is difficult to maintain a constant very small ∆s.

For small neff < 1, one way to verify the phonon number is to use the asymmetry of the

heterodyne sideband PSDs. If there is no classical noise, the ratio of the lower to upper sideband

heights is srr

sbb
= |χc,s[−ωm]|2(neff+1)

|χc,s[ωm]|2neff

� 1. However, when there is large classical noise, the large ns,rr,

ns,bb terms make it difficult to use this method. To observe neff < 1 accurately, we need to reduce

the signal laser classical noise.
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5.3 Laser cooling as a function of cooling beam power

Next we look at laser cooling when we increase the cooling beam power. The signal beam is locked

to the experimental cavity at small detunings. The cooling beam is locked to the signal beam with

a constant frequency offset. This offset is chosen so the cooling beam detuning is close to optimal

(∆p/2π ∼ −260 kHz). The cooling power is then adjusted by changing the RF drive power to the

AOM in the cooling beam path.

5.3.1 Classical noise measurement

In this measurement, we noticed the HF2 output contained extra white noise. When the HF2

output mixes with the 100MHz signal to produce the RF drive for the signal beam AOM, the HF2

output noise creates additional amplitude noise on the signal beam. It also modifies the signal laser

phase noise through the laser piezo feedback. So we need to remeasure the signal beam noise.

Using the methods detailed in Chapter 4, the classical noise terms of the signal laser are mea-

sured. The signal beam power is 1.95µW. The injected PM tones are the same as used in Section

4.2.2.1. The measured PM tone amplitude is 2.2mrad. Shown in Figure 5.5 are the sideband

heterodyne PSDs off resonance and near resonance. The PM peaks at 2 kHz in the PSDs have an

average area of APM = 6.3 × 10−9 V2. The average noise floor after subtracting the dark noise is

2.5 × 10−14 V2
/Hz. This is substantially higher than the noise floor shown in Figure 4.5, due to

additional amplitude noise in the signal beam. In Figure 5.6 we plot the on resonance sideband

heterodyne PSDs. The average noise floor is 3.9 × 10−14 V2
/Hz. The difference between the two

noise floors is 1.4 × 10−14 V2
/Hz. This is due to the signal beam phase noise common on both

beams.

Using the coefficients listed in Figure 4.3, the phase noise level is

Sφφ = (2.2mrad)2 × 1.4× 10−14 V2
/Hz

APM

× 0.97

0.10
= 1.1× 10−10 rad2

/Hz

The shot noise level at 1.95µW is 9.57 × 10−14 rad2
/Hz. So the measured phase noise level corre-

sponds to Cyy = 280 at 1.95µW.
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Figure 5.5: Off resonance upper and lower sideband heterodyne PSDs. The blue curve is for the
lower sideband, the green curve is for the upper sideband. The upper sideband PSD is reversed in
frequency to compare with the lower sideband PSD. The average noise floor is 2.7× 10−14 V2

/Hz.

Figure 5.6: On resonance upper and lower sideband heterodyne PSDs. The blue curve is for the
lower sideband, the green curve is for the upper sideband. The upper sideband PSD is reversed in
frequency to compare with the lower sideband PSD. The average noise floor is 4.1× 10−14 V2

/Hz.
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We can also calculate the additional amplitude noise in the signal beam. Since it is only on the

signal beam, the coefficient off resonance is 1. We get the amplitude noise level

C
(1)

xx
= Cyy ×

2.5× 10−14 V2
/Hz

1.4× 10−14 V2/Hz
× 0.10

1.0
= 49

at 1.95µW. The large C
(1)

xx also means we could have a large Cxy limited by Cauchy’s inequality.

But such an assumption does not agree with our laser cooling data, as described in the next section.

5.3.2 Thermometry based on heterodyne PSDs

Using the measured heterodyne sideband PSDs, we can infer the effective phonon number. To do

this, we first use the measured sideband background ratio to extract the signal beam detuning ∆s.

Then the ratio of the sideband Lorentzian peak heights is used to extract neff . The extracted ∆s

and neff are functions of the signal laser noise terms. As will be shown, using the measured signal

laser noise values and Cxy = 0 , the inferred neff match with theoretical predictions using the same

parameters. The inferred ∆s also agrees with the measured heterodyne carrier phase as described in

Section 3.7.1. Finally, the detuning parameters used in these fits are also consistent with measured

optical damping.

5.3.2.1 Extracting signal beam detuning from PSD background ratio

Since we do not have a direct measurement of ∆s, we infer its value as follows. Modifying Equations

(2.70) and (2.85) to include the extra signal beam amplitude noise C(1)

xx added by the HF2, at known

signal beam power, the ratio between the sideband PSD backgrounds

bbb

brr
=

1 + σ[A1(∆s)Cxx + A2(∆s)C
(1)

xx + A3(∆s)Cyy + A4(∆s)Cxy]

1 + σ[A�
1
(∆s)Cxx + A

�
2
(∆s)C

(1)

xx + A
�
3
(∆s)Cyy + A

�
4
(∆s)Cxy]

(5.5)

is solely a function of signal beam detuning ∆s. Here A1(∆s) = |ρ|2+|κLχc,s[ωm]−1|2−2Re[ρ∗(κLχc,s[ωm]−

1)], A2(∆s) = |κLχc,s[ωm]−1|2 etc. are the coefficients of classical noise terms as given by Equations

(4.4)-(4.8).
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Figure 5.7: Theoretical plot of bbb

brr
as a function of ∆s/2π. The signal beam classical noise terms

used in this plot are Cxx = 0.031, C(1)

xx = 49, Cyy = 280, and Cxy = 0 at 1.95µW.

From optical ringdown measurements we get κ/2π = 119 kHz. From the reflection dip R = 0.55,

we get κL = 0.165κ. In Figure 5.7, we plot the theoretical bbb

brr
as a function of ∆s/2π. For the plot,

we use the measured values of signal beam classical noise: Cxx = 0.031, C(1)

xx = 49, and Cyy = 280

at 1.95µW. The signal beam power is Pin,s = 2.04µW. The resulted curve can be approximately

fit linearly
bbb

brr
= 1.030− 3.674× 10−6∆s/2π (Hz) (5.6)

We infer ∆s by comparing the measured bbb

brr
to this theory curve. The result is plotted in Figure

5.8. The signal beam detuning has a roughly linear relation with the cooling power Pin,p:

∆s/2π (Hz) = −2424× Pin,p(µW)− 29962 (5.7)

We will use this linear fit to generate the theory curves in Figure 5.8 and Figure 5.9.

Another way to infer ∆s is by using the calibrated heterodyne carrier phase θcal, defined by

Equation (3.16). From Equation (3.18), when ∆s < κ/2, θcal is approximately linear to ∆s. In

Figure 5.9, we plot the extracted bbb

brr
against the average θcal at each cooling power setting. They
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Figure 5.8: Inferred signal beam detuning ∆s/2π as a function of cooling power Pin,p. At each Pin,p,
∆s/2π value is inferred from the bbb

brr
value extracted from the fitted heterodyne PSDs.

follow a linear relationship. θcal spans over 9◦ in the data, roughly from −115.3◦ to −106.4◦. From

Equation (3.18), this corresponds to about 20 kHz change in signal beam detuning. On the other

hand, from Figure 5.7, bbb

brr
spans over 0.065, corresponding to 18 kHz in signal beam detuning

change. This agreement confirms the correctness of the bbb

brr
method.

5.3.2.2 Extracting effective phonon number from PSD Lorentzian peak ratio

From Equations (2.81) and (2.86), the Lorentzian peak height ratio

sbb

srr
=

σκL|αs|2γ̃m[|χc,s[ωm]|2neff − Re(Bmod[−ωm])

σκL|αs|2γ̃m[|χc,s[−ωm]|2(neff + 1) + Re(Bmod[ωm])

=
|χc,s[ωm]|2neff − Re(Bmod[−ωm])

|χc,s[−ωm]|2(neff + 1) + Re(Bmod[ωm])
(5.8)

From Equation (5.2) we can solve for the phonon number

neff =
Re(Bmod[−ωm]) + Re(Bmod[ωm])

sbb

srr
+ |χc,s[−ωm]|2 sbbsrr

|χc,s[ωm]|2 − |χc,s[−ωm]|2 sbbsrr

(5.9)

109



Figure 5.9: Measured background ratio bbb

brr
vs measured calibrated heterodyne carrier phase θcal.

The fit is bbb

brr
= 1.98 + 0.0072θcal(◦).

Once we know ∆s from bbb

brr
, we can solve for neff from sbb

srr
. Again, in this measurement, to include

the extra signal beam noise C
(1)

xx , the classical noise term Bmod[ω] is modified to

Bmod[ω] = κL|χc,s[−ω]|2e−iφ[(Cxx + C
(1)

xx
+ iCxy)B+[ω] + (iCxy − Cyy)B−[ω]]

− χ
∗
c,s
[−ω]e−iφ[(CxxB+[ω] + iCxyB−[ω])(1 + ρ) + (iCxyB+[ω]− CyyB−[ω])(1− ρ) + C

(1)

xx
B+[ω]]

(5.10)

From measured sideband PSDs, brr, bbb, srr and sbb are extracted. Using Equation (5.2), ∆s is

inferred from the measured bbb

brr
. We then calculate neff using ∆s and the other measured parameters,

and compare it to theory. In Figure 5.10, we plot the inferred neff as a function of cooling power Pin,p.

This is compared to the theoretical neff vs Pin,p curve calculated from Equation (2.37), including

all the measured classical noise. The signal beam detuning is assumed to follow Equation (5.3).

For comparison, a theory curve assuming no classical noise on the two lasers is also included in the

plot. Parameters used in plotting Figure 5.10 are all measured independently, they are summarized

in Table 5.1.

As a sanity check, we fit the optical damping data simultaneously. In Figure 5.11, we plot the
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Figure 5.10: Plot of effective phonon number inferred from heterodyne PSDs as a function of
cooling power. The black diamonds are neff inferred from measured sbb

srr
. The error bars only

contain propagated uncertainties of sbb and srr in the PSD Fano fits. The blue curve is the theory
including all measured classical noise. The green curve is the the theory without any classical noise.
Parameters used for the plots are listed in Table 5.1.

Fano peak halfwidth fh extracted from heterodyne PSDs. The data is compared to a theory curve

containing both the cooling beam optical damping γopt,p and the signal beam optical damping γopt,s.

The theory curve is derived using the same set of parameters as the neff analysis.

In Figures 5.10 and 5.11, both the phonon number and the optical damping are consistent with

theory over a large cooling power range, using independently measured laser classical noise and

cavity parameters. This confirms that we were able to cool the membrane vibrational mode from

32, 000 phonons down to about 65 phonons. Also notice the big difference between the phonon

number inferred from the complete theory (the blue curve in Figure 5.10) and the number inferred

naively from measured mechanical linewidths (the green curve in Figure 5.10). When the classical

noise is large, we cannot use the mechanical linewidth to infer the phonon occupancy.

In both plots, at very low cooling power, the data deviate from theory predictions using ∆s in-

ferred from bbb

brr
and θcal. Instead, they are consistent with smaller ∆s. These data points correspond
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Figure 5.11: Plot of measured Fano peak halfwidth fh as a function of cooling beam power. The
blue dots are fh extracted from heterodyne PSDs. The error bars only include uncertainties of fh
in the PSD Fano fits. The green curve is the theory including optical damping from both the signal
beam and the cooling beam. Parameters used for the plot are the same as in Figure 5.10.

113



Figure 5.12: (a) Cavity temperature change when the signal beam is locked to the cavity and the
LO beams is turned on. (b) Mechanical frequency shift as a function of cavity temperature. The
cavity temperature is monitored by a sensor attached to the cavity. The mechanical frequency
is extracted from sideband heterodyne PSDs. Both curves are measured with signal beam input
Pin,s = 1.95µW, LO beam input Pin,LO = 298µW and no cooling beam.

to the rise in cavity temperature at the beginning of the measurement. As shown in Figure 5.12(a),

the cavity temperature rises when the strong LO beam is turned on, and saturates after about

20 minutes. A known effect of this temperature increase is the shift in mechanical resonant fre-

quency, shown in Figure 5.12(b). Notice when the temperature changed by 0.07K, the mechanical

frequency shifted by over 30Hz. For comparison, in Figure 5.13 we plot the measured mechanical

resonant frequency of the fundamental mode of a lower stress Norcada 1mm× 1mm× 50 nm Si3N4

membrane, as a function of fridge temperature. Even though this membrane has a lower stress and

thus lower fundamental mode resonant frequency than the one used in our experiment, we expect

their temperature dependences of resonant frequency to be similar. The frequency shift per unit

temperature change in Figure 5.13 is much smaller than what we observed in Figure 5.12(b), hint-

ing that the frequency shift in Figure 5.12(b) was caused not only by real temperature dependence

of the membrane frequency, but also changing optomechanics. We therefore suspect the cavity

temperature change shown in Figure 5.12(a) caused changes in cavity parameters, and led to the

observed deviations.
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Figure 5.13: Measured mechanical frequency shift as a function of fridge temperature for a low stress
1mm × 1mm × 50 nm Si3N4 membrane. The fundamental vibrational mode’s resonant frequency
is around 118.98 kHz. The mechanical frequency is measured by a lock-in amplifier for mechanical
ringdown measurements, the fridge temperature is measured by a thermometer near the membrane.
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5.4 Laser cooling as a function of signal beam detuning

Finally, we look at laser cooling when we change the signal beam detuning ∆s. The signal beam

is locked to the experimental cavity, the detuning is adjusted by the input offset of its feedback PI

controller. Its power is Pin,s = 1.95µW.. The cooling beam is locked to the signal beam with a

constant frequency offset ∆p −∆s ∼ −230 kHz× 2π.

First, we look at optomechanics. At each ∆s, we take data at several cooling powers. The center

frequency fc of the sideband PSD Fano peaks changes linearly with cooling power Pin,p. The slope

of these linear relations dfc

dPin,p
can be extracted as a function of ∆s. From Equation (2.22), we know

the mechanical frequency shift is linear with the cooling power, and the slope dfc

dPin,p
as a function of

cooling beam detuning is given by

dfc

dPin,p

=
∆|χm,p(ω)|2|χm,p(−ω)|2 A2

2mωmωp
[(κ/2)2 − ω

2

m
+∆2]κL

π[(κ
2
)2 +∆2

p
]

(5.11)

Similar to Section 5.3.2.1, we get ∆s from bbb

brr
and θcal, using the signal laser noise measured in

Section 4.2.2.1, and measured cavity parameters: κ/2π = 119 kHz, κL = 0.165κ; coupling A =

19.0 rad/(m× s). The dfc

dPin,p
vs ∆s/2π curve is fit with one variable: the fixed offset between

the cooling beam and the signal beam. As shown in Figure 5.14, the best fit is produced when

∆p −∆s = −233 kHz× 2π, consistent with our measured settings.

We then fit the phonon number neff as a function of ∆s for a fixed cooling power Pin,p = 2.30µW,

as shown in Figure 5.15. We use the cooling classical noise measured in Section 4.2.2.2. The

mechanical Q = 4.0× 106 from ringdown measurements. In Figure 5.15, the error bars only include

srr, sbb uncertainties from the Fano fits of sideband PSDs. With the measurement parameters, neff

is sensitive to small changes in sbb

srr
, and the uncertainties are large.
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Figure 5.14: Plot of dfc

dPin,p
as a function of signal beam detuning ∆s/2π. The signal beam detunings

are inferred from bbb

brr
and θcal using measured parameters.
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Figure 5.15: Plot of effective phonon number inferred from heterodyne PSDs as a function of signal
beam detuning. The cooling power is fixed at Pin,p = 2.30µW. The black dots are produced
using measured parameters and ∆p−∆s = −233 kHz×2π. The error bars only contain propagated
uncertainties of srr and sbb in the PSD Fano fits. The blue curve is the theory including all measured
classical noise. The green curve is the the theory without any classical noise.
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Chapter 6

Future directions and conclusions

6.1 Future directions

In Chapter 5, we showed laser cooling results down to about 60 phonons. In order to further cool

the membrane’s motion to its ground state, we need to reduce the cooling laser noise. Using the

filter cavity described in Section 3.5, we were able to lower the classical noise at 261 kHz by about

560 times, as demonstrated in Section 4.2.3. To further lower the classical noise, we can pass the

cooling beam through the filter cavity twice. On the other hand, our ability to resolve the motional

sidebands in heterodyne PSDs is also limited by the signal beam phase noise. The high classical

phase noise floor makes it difficult to resolve small Fano peaks in the PSDs. There are also several

phase noise peaks around the mechanical frequency, making it difficult to fit the mechanical Fano

peaks in heterodyne PSDs. The dark noise floor of the heterodyne detection, limited by photodiode

dark noise, is also going to make it more difficult to resolve small phonon number and to observe

squeezed light. Finally, in the laser cooling measurements of Section 5.3, we do not have a direct

measurement of the signal beam detuning. This increases the uncertainty in data analysis.

To solve these problems, three improvements are underway:

1. Use the signal laser only for locking to the experimental cavity, and use the double-pass

filtered cooling beam to perform both cooling and detection.

2. Improve the photodiode signal to noise ratio around 80MHz by using a different diode and
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building a resonant circuit, this will lower the heterodyne dark noise floor.

3. Measure the laser detuning more accurately. This is done by putting an EOM in the detection

beam (which is also the cooling beam in our new setup) path and creating a sweeping PM sideband

on the cooling beam. The cavity response is then measured by demodulating the heterodyne

signal at the sideband frequency. When the PM sideband is swept across the experimental cavity

resonance, we get a Lorentzian peak centered at the cooling beam detuning |∆p| in the demodulated

signal. The peak width is the experimental cavity linewidth κ. An additional feature of this

sideband response is the Optomechanically Induced Transparency[33, 35, 58–60] phenomenon when

the sideband detuning equals ωm. Here the two-photon interaction of the cooling beam carrier and

its sideband is on resonance with the mechanical oscillator, and creates a sharp hole-burning feature

in the demodulated spectrum, providing information about the total mechanical damping.

The reduced laser noise and improved detection capability should enable us to observe ground

state cooling and RPSN, and to carry out other interesting quantum experiments. In the next

subsections, I will show the theory predictions of laser cooling and squeezing performance using the

new setup.

6.1.1 Laser cooling with filtered lasers

In Figure 6.1, we plot the effective phonon number as a function of cooling power again. Here we

include three cases: no filtering, filtering the cooling laser by passing it through the filter cavity

once, and passing the cooling beam through the filter cavity twice. The signal beam is unfiltered in

all three cases. In all three cases, the signal beam input power is 2µW, with −10 kHz detuning. The

cooling beam detuning is ∆p/2π = −260 kHz. As shown by the green curve, with single pass, we

can reach close to ground state at about 50µW cooling input power. With a cooling beam filtered

twice, we can reach below 1 phonon at 40µW and get to neff < 0.1 with 1mW cooling power.

For the heterodyne spectra, the theory in Chapter 2 is still valid, the only difference is we need

to replace those signal beam parameters with their corresponding cooling beam parameters. To see

how much the cooling beam classical noise alters the heterodyne spectra in the new setup, in Figure

6.2 we plot the equivalent phonon numbers ns,rr, ns,bb, na,rr, and na,bb in the sideband heterodyne
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Figure 6.1: Theoretical plot of effective phonon number as a function of cooling beam input power.
The blue curve includes all laser classical noise. The green curve has the cooling laser filtered
by the filter cavity once. The red curve has the cooling laser filtered twice. In all three curves,
the signal beam input power is 2µW, with −10 kHz detuning. The cooling beam detuning is
∆p/2π = −260 kHz. The classical noise of the signal beam at 1µW is Cxx,s = 0.016, Cyy,s = 105
for all three curves. The cooling beam classical noise terms at 1µW are: for the blue curve,
Cxx,p = 0.0089, Cyy,p = 61; for the green curve, Cxx,p = 0.0089/563, Cyy,p = 61/563; for the red
curve, Cxx,p = 0.0089/(563)2, Cyy,p = 61/(563)2.

121



Figure 6.2: Theoretical plot of equivalent phonon numbers ns,rr, na,rr,ns,bb, and na,bb created by
signal laser classical noise in the (a) lower and (b) upper sideband heterodyne power spectra around
∆p/2π = −260 kHz. The blue curves are for the symmetric terms, and the green curves are for the
anti-symmetric terms. The parameters used in the plots are: cooling beam power Pin,p = 100µW;
the filtered classical noise terms are Cxx,p = 0.0089/(563)2, Cyy,p = 61/(563)2 at 1µW.

PSDs defined by Equations (5.1)-(5.4) when the cooling beam detuning is around −260 kHz and

the cooling beam power is 100µW. All these terms are much smaller than the expected neff at

the correspdonding settings as plotted in Figure 6.1. So we could directly use the asymmetry of

sideband Lorentzian peaks to calculate neff = |χc,s[−ωm]|2
|χc,s[ωm]|2 srr

sbb
−|χc,s[−ωm]|2 , simplified from Equation (5.9).

Similarly, the classical noise terms in the cross correlation spectrum Srb should also be negligible.

In this case, the non-negligible anti-symmetric part in Srb should be caused by RPSN.

6.1.2 Spectrum of squeezing

As discussed in Section 2.4, the squeezing in the reflected light can be inferred from the heterodyne

spectra when ω ∼ ωm by Equation (2.118):

S
out

ϕ
[ω] =

1

2
[brr + bbb + 2Re(e2i(ϕ+θ)

brb)

+
srr + sbb + 2Re(e2i(ϕ+θ)

srb)

(γ̃m/2)2 + (ω − ω̃m)2
+

−arr + abb + 2Re(e2i(ϕ+θ)
arb)

(γ̃m/2)2 + (ω − ω̃m)2
(ω − ω̃m)]
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The only difference is now the cooling beam is also used for detection, so all signal beam parameters

in Equation (2.118) are replaced with those of the cooling beam.

In Figure 6.3, for a cooling beam with input power Pin,p = 1mW, at each cooling beam detuning

∆p and frequency ω, we plot min(Sout

ϕ
[ω]) when the quadrature phase ϕ is varied. The unfiltered

signal beam power is 1µW, with detuning ∆s/2π = −10 kHz. As seen in the previous subsection,

its influence on the phonon number is negligible. We also assume detection efficiency σ = 0.71. This

is calculated from the quantum efficiency of the PDA10CF photodiode used in the current setup,

and the 15% power loss from the cavity to the photodiode. These numbers could improve with the

new photodiode, and with improved optical alignment. According to Figure 6.3, we should be able

to observe 5% squeezing with reasonable parameters.

As a sanity check, we compare Figure 6.3 to the analytical expressions of min(Sout

ϕ
[ω]) in Section

2.4. Using the above listed parameters, when ∆p = −ωm, the effective phonon number is neff =

0.066 � 1. So we can use the analytical approximation of Equation (2.134). Putting in the numbers,

we get for ∆p = −ωm and ω � ωm,

min(Sout

ϕ
[ω]) � 1 +

σκL|αs|2

2ω2
m
γ̃m

− 2(
√
2− 1)σκL|αs|2

κωmγ̃m
= 0.992

in agreement with the results we get in Figure 6.3. On the other hand, when ∆p approaches 0, neff

gets larger, so the small neff assumption for the analytical approximation of Equation (2.132) no

longer holds. Therefore we cannot use Equation (2.132) to compare with Figure 6.3.

6.2 Conclusion

In the past several decades, the application of radiation pressure to individual atoms and small

particles have greatly improved human understanding and access to quantum mechanical effects.

More recently, by applying radiation pressure to interact with the center-of-mass motion of various

micromechanical devices, the field of optomechanics has been fast evolving. Since the first exper-

iment to reach the quantum ground state in such devices[64], many groups have reached or are

close to reaching the quantum ground state. There have also been a variety of experiments and
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Figure 6.3: Theoretical plot of maximal output field squeezing min(Sout

ϕ
[ω]) as a function of fre-

quency ω and cooling beam detuning ∆p. The cooling beam power is Pin,p = 1mW, with double-pass
filtered classical noise Cxx,p = 0.0089/(563)2, Cyy,p = 61/(563)2 at 1µW. The signal beam power
Pin,s = 1µW with Cxx,s = 0.016, Cyy,s = 105. Its detuning is ∆s/2π = −10 kHz. The detection
efficiency σ = 0.71.
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theory proposals to explore other interesting quantum effects. Among the different optomechanical

systems used, the system described in this thesis represents an effort to push the lower limit of

the mechanical oscillator frequency. As shown in this thesis, a lower mechanical frequency means

not only a higher thermal phonon number at the same temperature, but also the optomechanical

system is more susceptible to classical noise from laser. Although the quantum ground state has

not been reached in this first pass experiment, we have developed a clear understanding of how and

to what extent classical laser noise limits optomechanical measurements.

To summarize, in Chapter 1 I discussed the basic idea of ground state cooling and observing

RPSN. Different research groups’ approaches in observing these quantum effects are reviewed and

compared to our approach. Chapter 2 described the theory of laser cooling and heterodyne detection,

with an emphasis on the complications created by classical laser noise. Chapter 3 described the

experimental design and measurement methods. A good understanding of feedback theory and the

feedforward method enabled the cooling laser lock and the filter cavity to work. Chapter 4 was

devoted to describe our efforts in characterizing the classical laser noise, especially the classical

phase noise. The measurements also confirmed our ability to filter the cooling laser noise with the

filter cavity. Chapter 5 showed some preliminary results of optomechanics and laser cooling using

unfiltered lasers. These results matched theory derived in Chapter 2, and showed laser cooling down

to about 60 phonons. Finally, the detection methods developed and technical improvements we are

working on now should enable us to achieve ground state cooling and observation of RPSN in the

near future.
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Appendix A

Membrane Mechanical Properties

A.1 Derivation of membrane vibrational mode frequency

The membrane we use is formed by depositing a square of silicon nitride (Si3N4) on a silicon

substrate. The spacing difference between silicon nitride atoms and silicon atoms at the border of

the membrane creates stress. This stress can be varied by changing the ratio of silicon vs nitrogen

in the manufacturing process. The vibrational modes of such a highly stressed membrane can be

modeled similar to drumheads. For a square membrane with side length a (XY plane) and thickness

h (Z direction), if we neglect its longitudinal displacement, the total kinetic energy is

T =
1

2
ρh

¨
dxdy(

∂z

∂t
)2 (A.1)

where ρ is the density of Si3N4.

Since the membrane is taut, we can assume the pre-existing stress σ in the membrane is isotropic

in the XY plane. Its contribution to the potential energy of the membrane is

V1 = σh

¨
dxdy[

�
1 + (

∂z

∂x
)2 + (

∂z

∂x
)2 − 1] (A.2)
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To first order, the total energy is

E = V1 + T = σh

¨
dxdy[

1

2
(
∂z

∂x
)2 +

1

2
(
∂z

∂x
)2] +

ρh

2

¨
dxdy(

∂z

∂t
)2 (A.3)

From the boundary conditions, we can decompose the membrane motion into orthogonal (m,n)

modes (m, n = 1, 2, 3, ..): displacement at any point (x, y) is z(x, y) = A(t) sin mπx

a
sin nπx

a
. Here

A(t) is the time varying vibration magnitude. The total energy for this mode is

E = V1 + T =
σh

2

π
2

4

m
2 + n

2

a2
A

2 +
ρh

2

a
2

4
Ȧ

2 (A.4)

Taking derivative of Equation (A.4), we get the equation of motion for (m, n) mode:

1

4
MÄ+

1

4
σh(m2 + n

2)π2
A = 0 (A.5)

The effective mass for the vibrational modes of the membrane is 1

4
of its mass M = ρha

2. The

resonant frequency of the(m,n) mode is ωm,n/2π =
�

σh

M
(m2 + n2)/2 = 1

2a

�
σ

ρ
(m2 + n2).

For the stoichiometric membrane we used in this experiment, the stress specified by Norcada is

about 900MPa, the measured (1, 1) mode frequency is 261 kHz. Using the parameters: a = 1.5mm,

h = 50 nm, and ρ = 3.44 × 103 kg/m3, we get the implied stress σ = 940MPa, consistent with the

spec. The effective mass of the membrane is meff = 1

4
M = 9.68× 10−11 kg.

A.2 Derivation of membrane Duffing coefficient

The above described harmonic oscillator behavior agrees well with our observations at small external

drive. If we increase the drive, the membrane deflection shows nonlinear behavior as a Duffing

oscillator. To describe this effect, we need to include the additional potential energy term when the

deflection is large[65].
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The large deflection caused strain can be described by

�x =
1

2
(
∂z

∂x
)2, �y =

1

2
(
∂z

∂y
)2 (A.6)

Using generalized Hooke’s Law for plane stress, we can express the stress tensor as




σx

σy



 =




1 ν

ν 1




Eh

1− ν2




�x

�y



 (A.7)

where E is the Young’s modulus and ν is Poisson’s ratio of Si3N4.

The additional potential energy caused by the strain-displacement is

V2 =
1

2

¨
(σx�x + σy�y)dxdy =

1

8

Eh

1− ν2

¨
[(
∂z

∂x
)2 + (

∂z

∂x
)2]dxdy (A.8)

And the total energy of the (m,n) mode becomes

E = V + T =
σh

2

π
2

4

m
2 + n

2

a2
A

2 +
ρh

2

a
2

4
Ȧ

2 +
1

8

Eh

1− ν2
[
9

64
(m4 + n

4) +
m

2
n
2

32
]
π
4

a2
A

4 (A.9)

The equation of motion now becomes

1

4
MÄ+

1

4
σh(m2 + n

2)π2
A+

1

2

Eh

1− ν2
[
9

64
(m4 + n

4) +
m

2
n
2

32
]
π
4

a2
A

3 = 0 (A.10)

The A
3 term is the Duffing term that explains the nonlinear behavior we see at large deflections.

Here we neglected the A
3 term from the expansion of the pre-existing stress. For Si3N4, the strain-

displacement term is 3 orders of magnitude bigger than the third order term caused by σ.

For a Duffing oscillator described by

ẍ+
ω0

Q
ẋ+ ω

2

0
x+ βx

3 = 0 (A.11)

The nonlinearity could be characterized by its critical amplitude ac = (4
3
)3/4 ω0√

Qβ
. In the membrane
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characterization paper[46], we measured ac = 3.1 nm for a 1mm×1mm×50 nm low stress membrane.

The fundamental mechanical mode frequency is ω0/2π = 133.8 kHz, with Q = 1.1 × 106. Using

commonly cited numbers E = 390GPa, ν = 0.24 , we can calculate the critical amplitude for the

(1, 1) mode

ac = (
4

3
)3/4

ω0�
Q

Eh

1−ν2
5

8

π4

a2M

= 10.3 nm

about a factor of 3 larger than the measured value. This difference could be due to uncertainties

in the critical amplitude measurement and difference in actual Young’s modulus from the number

cited here.
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Appendix B

Laser Technical Notes

Most of the laser cooling and detection measurements mentioned in this thesis are conducted using

Innolight’s Prometheus Nd : YAG cw laser at a wavelength of 1064nm. The Prometheus laser is

popular in quantum optics research because of its low amplitude and phase noise, and because of

its ease of use. However, degradations of the laser’s performance will occur when the laser diode

wears out, or when certain settings are not optimized. Based on the experience we gained in the

past few years, here I summarize the steps to properly change the laser diode and re-optimize the

laser settings.

B.1 Basics of Nd:YAG laser

B.1.1 Nd:YAG laser

Solid state lasers[66] use crystals (or glass) doped with elements that have incomplete inner shell

electron states. Optical transitions that occur between these inner states are shielded from external

crystal lattice perturbations by the outer shell, so sharp fluorescent lines can be achieved.

In Nd : YAG lasers, the host material Y3Al5O12 (YAG) is very hard, isotropic, with good optical

quality, and has a high thermal conductivity, making it ideal for lasers. The Nd atom has vacant

4f orbits: 4f 45s25p66s2. The trivalent ion Nd3+ that forms inside the host crystal loses its 6s shell

and one electron in 4f . The hyperfine structure manifolds 2s+1
LJ used for laser transitions are
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Figure B.1: Energy levels of Nd3+ used to form the 1064 nm four-level system

obtained by different combinations of orbital angular momentum L (depending on the orientation

of the three 4f electrons left) and spin angular momentum s = 3/2. The manifolds are further split

into 2J +1 sublevels by the crystal field. In particular, the 1064nm laser transition occurs between

the R2 sublevel of 4
F3/2 and the Y3 sublevel of 4

I11/2 states, as shown in Figure B.1.

Once the laser transition occurs, the ion population is quickly transferred to the ground state

4
I9/2. The ions then get pumped up to the pumping band starting with the 4

F5/2 manifold. Ions

pumped into the pumping bands then quickly relax to the upper laser transition level. By pumping

strongly at 808 nm for the transition from the ground state to the pumping bands, population

inversion between the laser levels is created, as in any typical four-level system.

One well-known fact about the Nd : YAG laser is the phenomenon of relaxation oscillation. It

creates sinusoidal oscillations in the output of the cw laser. To model this, we denote the electron

population of the four energy levels as n0, n1, n2 and n3. Since relaxation from the pumping bands

to the upper laser level is very fast, n3 ≈ 0. The rate equations of the two laser levels are then:

dn2

dt
= Rpn0 − (n2 − n1)σφc− (

n2

τ21
+

n2

τ20
) (B.1)
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dn1

dt
= (n2 − n1)σφc+ (

n2

τ21
− n1

τ10
) (B.2)

where Rp is the pumping rate, σ the stimulated emission cross section, φ the photon density, c

the speed of light in the medium, and the various τij terms are the radiationless relaxation rates

between different levels. Because relaxation from the lower laser level to the ground state is also

very fast, we can write τ10 � 0. Then n1 = 0 and we get:

dn2

dt
= Rpn0 − n2σφc− (

n2

τ21
+

n2

τ20
) (B.3)

Within the laser resonator, we also have the rate equation of photon density:

dφ

dt
= n2σφc−

φ

τc
+ S (B.4)

where the first term denotes an increase in the photon density by stimulated emission, the second

term denotes cavity losses, and τc is the cavity decay rate. The third term S is the small rate of

spontaneous emission added to the laser emission (usually negligible except for explaining how the

laser emission started).

Relaxation oscillation occurs as a perturbation around the stable solution of the above two

equations. We could write the fluctuations as n2 = n2s + ∆n2, φ = φs + ∆φ. The linearized

equations then simplify Equations (B.3) and (B.4), to give to the first order

d
2∆φ

dt2
+ σφc

dφ

dt
+ (σc)2φn2∆φ = 0 (B.5)

The e
st form solution of this equation gives, after transient spikes caused by initial conditions,

∆φ = exp(−σφc

2
t)sin[σc

�
φn2t] = 0 (B.6)

One conclusion from Equation (B.6) is that the frequency of the relaxation oscillation is proportional

to n2, or the square root of the intracavity power I. Therefore the higher the output power from
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Figure B.2: Schematic of the Prometheus laser optical setup. The pump diode output at 808 nm
goes through two lenses (LS1 and LS2) and a dichroic mirror (DM), into the MISER. The 1064 nm
output of the MISER then goes to a beam sampler (BS) where a small part of it goes to a lens
(LS3) and onto a photodiode (PD), which is used for the noise eater to feedback to the pump diode
current. The rest of the beam goes through doubling crystal optics, where a small portion of the
1064 nm beam is used to generate 532 nm output. The pump diode is connected to a heat sink
(HS). The MISER has two magnets on its sides, and a piezoelectric transducer (PZT) on its top.

the laser, the higher the oscillation frequency. This is consistent with what we see when we change

the pumping diode current, thus changing the output power of the laser.

The decay time constant τd = 2/σφc is inversely proportional to the stimulated emission rate,

thus it is proportional to the lifetime of the upper laser level. This makes physical sense because if the

lifetime of upper state is long, any fluctuation in the electron population will create a fluctuation in

the photon density before it dies out, this photon density fluctuation will then cause more fluctuation

in the electron population in return, thus creating the relaxation oscillation. This also explains why

the relaxation oscillation is mostly observed in solid state lasers, which have relatively long upper

laser level lifetimes.

B.1.2 Inside the Prometheus laser

The Prometheus laser is a typical Nd : YAG laser setup, including a pumping diode, a lasing material

and an optical resonator (which in this case are combined in a laser crystal called the MISER), a

noise eater for feeding back on the pumping diode, and a doubling crystal setup for producing the

532 nm output. A schematic of the setup is shown in Figure B.2.
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The diode used in our laser is Coherent s-81-2700c-200-H/L, with an output centered at 808 nm.

The noise in the diode output contributes to the laser output intensity fluctuation at low frequencies.

As discussed in the last section, when the pumping diode degrades, fluctuations in its output power

will cause relaxation oscillations. The lowered laser output will also cause the laser noise eater to

malfunction, this will be discussed later.

The centerpiece of the laser is a MISER, or monolithic isolated single-mode end-pumped ring.

It is a Nd : YAG crystal which also forms a nonplanar ring optical cavity. The front surface of the

crystal has a partially reflective dielectric mirror coating which serves as the output coupler mirror

of the cavity. The light bounces around the internal surfaces due to total internal reflection.

Besides the obvious advantage of being mechanically stable, the MISER also easily provides

a single frequency output. The small size of the crystal (usually on mm scale) makes the axial

mechanical modes sufficiently far apart. The design of the MISER also makes the beam a unidirec-

tional traveling wave. This prevents creating standing wave in the gain medium, where population

inversion could be saturated at antinodes, and untapped inversions at nodes will contribute to other

modes. Such distortion of the gain shape, known as spatial hole burning[67], makes it difficult to

achieve single frequency output.

The MISER eliminates standing wave by working as an optical isolator. The MISER crystal is

nonplanar, this acts as a half waveplate that rotates the light polarization everytime it touches a

surface. A magnet is attached to the crystal (as will be mentioned later, special attention is needed

when using tools around the MISER because of the magnet) to create the Faraday effect. Finally,

the front surface coating has a reflectivity that is polarization dependent, and acts like a polarizer.

It favors one beam direction over the other, and avoids forming a standing wave.

The frequency of the laser output can be tuned by varying the crystal temperature, which

changes the ring cavity length. For Nd : YAG crystal at 1064 nm, the thermal tuning coefficient

is −3GHz/oC. Changing the pumping power also changes the crystal temperature, and thereby

changes the output frequency. Another way to tune the frequency is to apply stress on the MISER

by a piezoelectric transducer (PZT). The PZT creates stress-induced birefringence in the crystal

refractive index, and changes the cavity shape. The Prometheus laser PZT has a frequency tuning
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range of ±200MHz, with a bandwidth up to 200 kHz, making it convenient for fast feedback.

Theoretically, the fundamental limit of the laser linewidth is the Schawlow-Townes equation[68]

when only quantum noise is considered. For a finesse F = 100 cavity at 1mW output, this limit

is ∆νL = 1Hz. As seen in the previous paragraph, significant additional frequency noise can be

added by temperature fluctuations, pumping power fluctuations, and mechanical vibrations. The

Prometheus laser has a typical linewidth of less than 1 kHz. Again, suppressing the pumping power

fluctuation helps to reduce the laser frequency noise.

As shown in Figure B.2, the output from the MISER goes to a beam sampler, where a small part

of the beam is picked off by a noise eater. The noise eater feeds back on the pumping diode current

to suppress its fluctuations. In the Prometheus laser, this eliminates the relaxation oscillation and

lowers the laser intensity noise.

B.2 Instructions for replacing laser diode

B.2.1 Replacing the laser diode

A sign that the laser diode is degrading is a decrease in output laser power at the nominal current.

Notice at high powers (> 100mW), the power measurement should be carried out using a power

attenuator (e.g. Coherent 1000:1 Attentuator), or a combination of several beamsplitters, before

the power meter.

The replacement laser diode part number is Coherent s-81-2700c-200-H/L. A thin graphite or

indium sheet is also needed to provide good thermal contact between the laser diode and the heat

sink. To replace the diode, the procedure is as follows:

1. Turn off the laser, disconnect the power cable and the GPIB cable from the back of the

laser. Move the laser from the optical breadboard to somewhere easy to access (we will need to

access several screws on the bottom of the laser later). The laser position on the breadboard can

be reproduced accurately by locking down several posts on the sides of the laser before moving it

out.

2. Remove the laser cover by unscrewing the IR beam shutter (two M2 screws). Then remove
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four black M2 screws on each side of the cover. Lift up the cover, watch out for the mirror mounts

to the rear of the laser.

3. Disconnect the noise eater black wires from the toroid. Disconnect the LED white wires from

the PCB on the bottom next to the diode. Disconnect the three MISER cables at the connector.

Cut off the cable tie and disconnect the MISER piezo cable that is tied to the three MISER cables.

4. Unscrew the M3 screw of the stabilization rod on the side. Remove the five M4 screws on

the rear bottom of the laser (two on each side, and one in the center), and remove the heat sink

with the laser diode attached to it.

5. Wear gloves. Unscrew the laser diode from the heat sink and gently remove the graphite

sheet on the back. Disconnect the diode wires from its connector.

6. Attach the graphite sheet (remember to ask for a new graphite sheet when you order the

diode replacement from Innolight) to the new diode and rub it gently so you get good contact

between the diode and the heat sink. Reconnect the laser diode wires and cut off the short circuit

pin.

7. Attach the diode to the heat sink and put the heat sink back onto the laser. Reconnect

all the wires. Put a new cable tie to bundle the MISER cables. Reconnect all cables to the laser

controller.

B.2.2 Laser output optimization

Now we can put the laser back onto the optical breadboard and start optimizing its output.

1. Turn the laser on, set the diode current at 0.2A. Set the diode temperature at 25 ◦C. Use an

IR viewer (not an IR card!) to look at the spot where the diode output hits in the MISER, make

sure it is centered on the front surface of the MISER. You can check this by adjusting the two lenses

between the diode and the MISER in the X and Y directions. To be able to adjust the X, Y set

screws on the lenses, you need to loosen the lock screw on the lens holders. As you move the Y set

screws of the lenses, you can easily identify when the spot hits the edge of the MISER crystal, then

recenter it. When using an Allen wrench to access the set screws, pay attention to the magnet on

the MISER as it can attract the wrench and damage the crystal.
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2. Once you are sure the beam is quite well centered, increase the diode current all the way to

2.2A. You should be able to see some output from the MISER by now, open the IR beam shutter

and measure the IR output. Again, be careful with the high power output.

3. Now you can adjust the X and Y set screws of the two lenses iteratively to maximize the IR

output. Although it is mentioned in Innolight’s instruction sheet that you also can try to adjust

the Z positions of the lenses, we think it is usually unnecessary. Besides, loosening the screws for

the lens mounts may cause mechanical perturbations to all the optics inside the laser.

4. As you might notice, at low diode currents above the lasing threshold, you can see two beams

in the laser output, and the main output looks clipped on an IR card. Do not worry. As you increase

the diode current to 2.1A, the other beam will become dimmer and the main beam will become

more circular. At low pumping power, the MISER allows significant lasing of a second mode, but

as we approach the nominal conditions, that stray beam becomes negligible.

5. Once the laser output power is maximized by the lens adjustments, change the laser diode

temperature to maximize the output power. The temperature range to look for the power maximum

is 18 ◦C to 35 ◦C. If more than one power maximum appears in this range, use the lower one.

6. Now turn down the diode current a bit and reopitmize the temperature to put the laser

output power at the level suggested on the laser datasheet. We need the laser output power to be

the same as before to get the noise eater to work properly. Write down the optimal diode current

level for future reference. Lock down the laser diode temperature setting on the laser controller.

7. Lower the diode current, tighten the lock screws on the two lens mounts. Turn the diode

current back to the optimal value, and make sure the laser output stays the same.

8. You can verify the laser output mode with a scanning Fabry-Perot cavity to check if it is

single mode.

9. During the adjustment, there is never the need to adjust the lens after the MISER, or anything

in the doubling crystal beam path. Because it is difficult to get the mode shape right once you

change it, such adjustments are not recommended. If you are absolutely sure the doubling crystal

alignment has changed and it is difficult to recover the optimal IR output, you can always take the

doubling crystal black box out, this will not affect the IR output.
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B.2.3 Noise eater adjustment

The output from the MISER goes to a beam sampler, where a small part of the beam is directed

to the noise eater. Input to the noise eater is produced at a photodiode, which requires an optimal

power. Three potentiometers on the noise eater PCB adjust the gains of the feedback loop. The

potentiometers look like copper screw heads. They are three amplifiers that largely do the same

thing, although the one closest to the photodiode has the largest effect in changing the gain. It is

recommended that the potentiometers be left at their factory settings, since bad settings can make

the laser output unstable. Instead, we can adjust the power landing on the photodiode.

There are two LEDs on the noise eater to show if the power into the photodiode is within its

working range. The green LED is on when there is too little power, the red LED is on when there

is too much power. The noise eater monitor (pin 12) on the back of the laser controller tells us how

much power is on the photodiode. In Innolight’s instruction sheet, it is suggested that the noise

eater monitor be set between 2.6− 3.6V. However, we found 4.0V optimal for a laser we have. To

change the amount of light onto the photodiode, adjust the Z position of the lens in front of the

noise eater photodiode and recenter the beam in the X and Y directions.

The way to verify if the noise eater is working properly is to measure the laser output amplitude

noise on a photodiode when the noise eater is on and off. As mentioned earlier, the classical

amplitude noise of the IR output at 15mW should be at the shot noise level.

B.3 Changing the laser controller potentiometer

One problem we have seen over the years is that the potentiometer knobs on the laser controller

front panel can have bad connections. When you turn the laser diode current knob, if you see

the current display fluctuating up and down, it is most likely due to the potentiometer connection

problem. The potentiometer part number is Bourns 3540S-1-103L, follow Innolight’s instruction

sheet to replace it.
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