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The ability to generate and manipulate non-Gaussian macroscopic quantum states and
multi-body entanglement with light is foundational to achieving quantum-enhanced tech-
nologies, and furthuring our understanding on macroscopic quantum effects and deco-
herence mechanism. Optomechanical devices which coherently couple the optical and
mechanical degrees of freedom have emerged as a prominent platform for them in the past
two decades.

I will present in this thesis my work toward realizing full optical quantum control of
the motional state of superfluid 4He in a fiber Fabry-Perot cavity, where coherent coupling
between the intensity of the optical field and the density fluctuation of ∼ 1 ng of liquid
helium is established via electrostrictive interaction. The characterization of the device
and demonstration of standard optomechanical effects, such as sideband asymmetry and
dynamical backaction, have been previously reported in the works [1] [2] via a heterodyne
detection scheme. In this work, I will present the measurements done with a heralded
single photon detection scheme, where the detection of a single photon heralds the creation
or annihilation of a single phonon.

Photon and phonon statistics, such as the coherence function, reveal properties of the
quasi-probability distribution of a state, which is widely used to verify the quantumness of
a state. I will present measurements of the phonon coherence used to characterize our sys-
tem. In particular, the coupling, damping and heating mechanism of the device is modeled
by measurements of the first-order coherence. The acoustic state is characterized by its
phonon coherences up to the fourth-order, and found to be consistent with a thermal state
in equilibrium to its bath via a Markovian coupling. Through post-selection on photon
detection events, a k-phonon-subtracted or -added out-of-equilibrium state is heralded and
characterized by its phonon coherences (for k ≤ 3).

These studies employ single-mode optomechanics, in which the optical mode couples
to exactly one acoustic mode. Measurements on multimode coupling indicate that the sys-
tem is well-approximated by the single-mode coupling assumption up to 99%, as a result
of the orthogonality condition between spatial profiles of the coupled modes imposed by
the geometry of our device.

Works presented in this thesis demonstrate the robust implementation of single pho-
ton counting for our system, providing access to the nonlinear quantum optomechanical
effects induced by measurement backaction, and lays the foundation for implementing a
full quantum protocol to generate, manipulate, store and read out an acoustic state on the
single quantum level.
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Chapter 1

Introduction

In the past two decades, the field of optomechanics have emerged rapidly as a platform
to merge the optical and the mechanical domains, and to access quantum phenomena
on a macroscopic scale. Fundamentally, while quantum mechanics is well-established
in describing physical laws on a microscopic level, there remains a gap to bridge in the
understanding of quantum effect and its decoherence mechanism on macroscopic objects.
More tangibly, recent rapid development in quantum-enhanced technologies, such as sens-
ing, memories, information processing and communication, has led to a growing demand
for interfacing single photon with more robust and accessible platforms to be used as the
building blocks of large-scale quantum network [3].

Quantum optomechanical devices harness the coherent coupling between the electro-
magnetic and mechanical degrees of freedom, in order to manipulate and probe the me-
chanics on the single quanta level using light. This makes such a system an ideal candi-
date for studying macroscopic quantum mechanics. Methods that are extensively studied
and understood in the field of quantum optics can be implemented in an optomechani-
cal system, while mechanical elements are more scalable and orders of magnitude more
macroscopic than atomic and molecular ensembles. A full optical control over the mechan-
ical motion will make the system promising for testing macroscopic quantum mechanics,
studying decoherence mechanism of quantum effects, and exploring potential physics be-
yond the standard model [4] [5] [6] [7].

On the other hand, while there already exists a wide range of quantum optical devices
interfacing with various elements (such as atoms [8], superconducting circuits [9], solids
[10], quantum dots, cystal defects [11]), mechanical resonators have been drawing grow-
ing interests since they are generally more robust with simpler design and low dissipation,
which could be used as solid-state quantum memory and sensing elements. Since me-
chanical motion can be easily coupled to any system and tunable in frequency, it can be
used to build hybrid quantum devices [9] [12] to establish coupling between otherwise
incompatible systems.

Strong cooperativity is the regime where information gets transferred between the
modes and read out faster than the decoherence of the system. Many interesting quan-
tum effects have been demonstrated in the optomechanical domain, including sideband
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cooling to ground state [13] [14], enhanced precision measurement beyond the standard
quantum limit [15] [16], and squeezed light [17] [18]; however, it remains a challenge to
implement optomehchanical system in the strong single-photon cooperativity regime, due
to limited coupling compared to the damping of the oscillators. While linear equations of
motion suffice to formulate the intrinsic optomechanical coupling and interaction for exist-
ing optomechanical systems, nonlinearity is required to access mechanical states that are
higher in the hierarchy of non-classical states, exhibiting stronger quantum effects such as
negativity in Wigner function or violation of Bell-type inequalities. This will truly allow
for a full optical control over the mechanical state on the single quantum level and offer
quantum advantage in universal information processing and computing [19].

To access the nonlinear regime with weak intrinsic single-photon coupling, one method
is to introduce nonlinearity in other stages of the experiment, such as the measurement
backaction-induced nonlinearity at the detection stage with the use of single photon de-
tectors [20]. This scheme has been widely implemented in the field of quantum optics
and cavity-QED [21]. For optomechanics in particular, the detection of one photon scat-
tered by the mechanics heralds the creation or annihilation of one phonon in the coupled
mode. The strong projective measurement on the optical field alters and heralds the state of
the mechanics, enabling quantum control over its preparation, manipulation, readout and
verification. Moreover, conditional state preparation can be used to generate multi-body
entanglement via postselection on detection events. It can be shown that postselection
enables the state to carry more information, giving rise to a non-classical advantage [22].

This protocol has been demonstrated by several groups in the field of optomechan-
ics. In particular, Painter group at Caltech has shown phonon counting and behaviors
resembling a phonon laser using a photonic crystal made of silicon nanobeam (GHz)
[23]. Gröblacher (Delft) and Aspelmeyer (Vienna) groups have demonstrated various
non-classical effects in a similar device (∼ 1 pg), where they verify the generation of
non-classical entanglement between a photon-phonon pair, single phonon Fock state, en-
tanglement between two remote nanomechanical resonators and quantum teleporation [24]
[25] [26] [27]. Polzik group (Niels Bohr Insititute) has shown phonon counting and
ground state cooling with a membrane resonator (∼ 2 ng and 1 MHz) [28]. Vanner group
(Oxford) shows a heralded multi-phonon-subtracted pre-cooled mechanical state which is
non-Gaussian as verified by tomography in a Brillouin-optomechanical system [29] [30].
The single photon detection scheme and conditional state preparation are thus a promi-
nent means in generating and manipulating non-Gaussian mechanical state and multi-body
macroscopic entanglement in the presence of limited coupling.

It was first demonstrated in the 19th century that light carries momentum and exerts
a radiation-pressure force when interacting with other matter [31]. Bilateral unitary cou-
pling between the two can thus be established when the perturbation on the matter in turn
imprints its motion on the electromagnetic field without loss of information. Since then, a
wide range of optomechanical systems have been implemented which can be categorized
by their various coupling forces (unitary forces such as radiation pressure force [32], elec-
trostriction [1], and dipole forces [33]), type of resonators (such as Fabry-Perot cavities,
microtoroids [34], whispering gallery mode of a superfluid He droplet [35]), operating
frequency of the light (GHz to THz) and mechanics (Hz to GHz), type of mechanical el-

2



ements and their effective mass (from nanoscale membrane [36] to suspended mirros of
kilogram [37]).

In this work, we use a fiber Fabry-Perot cavity filled with ∼ 1 ng of superfluid 4He,
where the motional state of 4He density fluctuation is coupled to an optical cavity mode
in the telecom range via electrostriction. Unique properties of superfluid He, such as low
optical absorption, zero viscosity, and high thermal conductivity, make it ideal for building
an optomechanical system toward stronger coupling and cooperativity. The simple geom-
etry and coupling mechanism of the device give rise to a single-mode coupled system,
which is rather unique in optomechanics, as it is often challenging to isolate mechanical
coupling. An initial characterization of the device is presented in [2] [38] [39] [1], where
they show the quantum fluctuations of the acoustic mode via power spectral density of the
auto-correlation and cross-correlation of the Stokes and the anti-Stokes sideband under a
heterodyne detection scheme.

I will proceed presenting our progress toward realizing optical quantum control of
liquid He motion using a single photon heralding detection scheme. This work is motivated
by (i) the necessity to introduce nonlinearity via strong projective measurements to access
and manipulate the mechanics on the single quantum level; (ii) developing a potential new
platform for quantum information technologies, which has a simple design and is scalable
in size and number, operating in the telecom range compatible with fiber communication;
(iii) demonstration of macroscopic quantum effects on nanogram (rather straightforward
to scale up for our system) of liquid helium, and test for macroscopic quantum theory.

The thesis is structured as follows:

• Chpater 2 I will provide a formulation of the dynamics of an optomechanical sys-
tem, and some well-known results arising from optomechanical interaction. I will
highlight the importance of achieving a nonlinear regime in quantum optomechan-
ics, and the motivation for using a single photon counting scheme. I will also de-
scribe the working principle of our system with superfluid He.

• Chpater 3 I introduce the definition of photon coherences and the use of photon
statistics in characterizing quantum states. I will highlight its relevance in verifi-
cation of non-classicality. I will discuss the hierarchy for non-classicality, as some
states exhibit behaviors that are ”more quantum” and cannot be explained by the
formulation of those states from a lower tier.

• Chpater 4 describes the experiemntal setup and procedure, which is mainly to im-
plement a photon counting scheme and protocol.

• Chpater 5 gives the characterization of our device and demonstration of standard
optomechanical effects such as sideband asymmetry and backaction via single pho-
ton counting.

• Chpater 6 shows measurements on phonon coherences of the thermal state of su-
perfluid He up to the fourth-order. I will also discuss our measurements on phonon-
subtracted and -added thermal states, which is prepared and probed via postselec-
tion.
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• Chpater 7 shows the characterization of multimode coupling, and the model to
account for its deviation from the assumed single mode coupling regime imposed
by the orthogonality condition in our system.

• Chpater 8 I will summarize the work presented in this thesis and discuss the outlook
for future work related to this experiment.
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Chapter 2

Quantum optomechanics

In this chapter I will provide the formulation of the canonical optomechanical system
and some relevant signature effects arising from optomechanical interaction. I will then
provide an overview of the field of optomechanics, in particular, the implementation of
nonlinear optomechanics in the quantum regime. I will then discuss the motivation for
implementing the single photon counting scheme to access the nonlinear regime. Finally
I will give a description of our optomechanical system, including its implementation with
superfluid helium and its coupling mechanism.

2.1 Canonical optomechanical system
An optomechanical system is implemented by coupling light to some mechanical degree of
freedom. An optical cavity is often used to enhance the coupling to a mechanical resonator
involving any arbitrary forms of mechanical excitations. Figure 2.1 shows the schematic
of a canonical optomechanical system, where a Fabry-Perot cavity with one movable end-
mirror is attached to a spring. The cavity optical field exerts a radiation pressure force on
the mechanical motion of the mirror. The change in the mirror position in turn changes
the cavity resonant frequency, thus establishing the coupling between the optical and the
mechanical degree of freedom.

2.1.1 Fabry-Perot cavity
We first formulate the dynamics of the optical mode. A single optical mode â in a lossless
system is described by the simple harmonic oscillator Hamiltonian,

Ĥc = ~ωc(â
†â+

1

2
) (2.1)
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Figure 2.1: Schematic of a canonical optomechanical system, where a Fabry-Perot cavity
with one movable end-mirror is attached to a spring. Wiggly arrows describe the various
dissipation associated to each port that couples the optical mode to the environment.

where ωc is the optical mode frequency and â the annihilation operator. The Heisenberg
equation of motion of the mode is given by

˙̂a = − i
~

[â, Ĥc] = −iωcâ (2.2)

To include the couplings of mode â to the environment, we apply the input-output theory
[40] [41] to model the various quantum fluctuations or drive coupled to the system via
each of its ports. Each port is associated to an input mode and corresponding dissipation.
In the canonical system, we have two ports, the internal (”int”) loss port whose input is
the vacuum noise ξ̂int with a damping rate κint; and the input port (”in”) whose input is
ξ̂in + âd(t) with a damping rate κin. âd(t) is the drive applied to the cavity. The equation
of motion in equation 2.2 is thus modified to

˙̂a = −iωcâ−
κc

2
â+
√
κintξ̂int +

√
κinξ̂in +

√
κinâd(t) (2.3)

where κc = κint + κin is the total damping rate of the cavity. Here we assume the input
mirror is the lower reflectivity side, hence most of the external loss occurs through the input
mirror with κin. In the rotating frame of the cavity frequency ωc, we have â→ âe−iωct such
that

˙̂a = −κc

2
â+
√
κintξ̂int +

√
κinξ̂in +

√
κinade

−i∆t (2.4)

under a classical coherent drive âd(t) → ade
−iωdt. The drive has a steady amplitude of

ad, frequency ωd, and drive detuning ∆ = ωd − ωc. For a drive power of Pd, the rate of
photons sent to the optical cavity is 〈a∗dad〉 = Pd/(~ωd).

It is helpful to identify the intracavity field as the sum of a classical field āe−i∆t and
a quantum fluctuation field δâ, such that â = (ā + δâ)e−i∆t. It follows that the optical
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fluctuation is described by

δâ = −κc

2
δâ+

√
κintξ̂int +

√
κinξ̂in (2.5)

Meanwhile, the cavity has a steady state amplitude

ā =
1

κc/2− i∆
√
κinad ≡ χc[∆]

√
κinad (2.6)

where χc[ω] is the cavity susceptibility. The intracavity photon number is thus given by

nc = 〈ā∗ā〉 =
κinPd/(~ωd)

κ2
c/4 + ∆2

(2.7)

Finally, we note that the vacuum noise operators ξ̂i have the following important cor-
relation relations that characterize the field properties, including

〈ξ̂i(t)ξ̂j(t′)〉 = 〈ξ̂†i (t)ξ̂
†
j (t
′)〉 = 0 (2.8)

〈ξ̂†i (t)ξ̂j(t′)〉 = 0 (2.9)

〈ξ̂i(t)ξ̂†j (t′)〉 = 〈ξ̂†i (t)ξ̂j(t′)〉+ [ξ̂i(t), ξ̂
†
j (t
′)] = δijδ(t− t′) (2.10)

which follow the commutation relations obeyed by any operators associated to the inde-
pendent Markovian bath coupled to each port [39],

[ξ̂i(t), ξ̂
†
j (t
′)] = δijδ(t− t′) (2.11)

[ξ̂†i (t), ξ̂j(t
′)] = 0 (2.12)

2.1.2 Mechanical resonators

For the canonical mechanical resonator, we consider the mechanical mode b̂ to be coupled
to a thermal bath with no external mechanical drive. There is thus only one coupled port
whose input is the thermal noise η̂ with a total mechanical damping γm. The equation of
motion of b̂ is thus given by

˙̂
b = − i

~
[â, Ĥm]− γm

2
b̂+
√
γmη̂

= −(iωm +
γm

2
)b̂+

√
γmη̂ (2.13)

where ωm is the mechanical frequency, and the bare mechanical oscillator Hamiltonian is
given by

Ĥm = ~ωm(b̂†b̂+
1

2
) (2.14)
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By Fourier transforming equation 2.13, we have

iωb̂[ω] = −(iωm +
γm

2
)b̂[ω] +

√
γmη̂ (2.15)

The mechanical mode is thus described by

b̂[ω] =
1

γm/2− i(ω − ωm)

√
γmη̂ ≡ χm[ω]

√
γmη̂ (2.16)

where χm[ω] is the susceptibility of a bare mechanical resonator.
Note that the creation and annihilation operators are related to the position and momen-

tum of the mechanical motion by x̂ = xZPF(b̂+ b̂) and p̂ = imeffωmxZPF(b̂− b̂), where the
effective mass of the mechanics is meff, and the zero-point fluctuation of the mechanical
motion is given by

xZPF =

√
~

2meffωm
(2.17)

Note that the mechanical displacement in the ground state is thus 〈0|x̂2|0〉 = x2
ZPF.

The correlations of the thermal noise operator η̂ associated with any Markovian bath
at temperature T are given by

〈η̂†i (t)η̂j(t′)〉 = nthδijδ(t− t′) (2.18)

〈η̂i(t)η̂†j(t′)〉 = 〈η̂†i (t)η̂j(t′)〉+ [η̂i(t), η̂
†
j(t
′)] = (nth + 1)δijδ(t− t′) (2.19)

where we apply the general Markovian commutation relation in equation 2.12, and nth =
1/(e~ωm/(kBT )−1) is the occupation number following Bose-Einstein statistics1. The power
spectral density (PSD) of b̂† and b̂ can thus be computed using equation 2.16 such that

〈b̂†[ω]b̂[−ω]〉 =
γm

(γm/2)2 + (ω + ωm)2
〈η̂†[ω]η̂[−ω]〉 ∝ nth (2.20)

〈b̂[ω]b̂†[−ω]〉 =
γm

(γm/2)2 + (ω − ωm)2
〈η̂[ω]η̂†[−ω]〉 ∝ nth + 1 (2.21)

The difference of a single phonon in the mechanical PSDs is the well-known phenomenon
of sideband asymmetry, originating from the correlation relation of the quantum noise
operator in equations 2.18 and 2.19.

1Note that the correlation relation in equation 2.18 is generic for all noise operators associated with a
weakly coupled Markovian bath. For ξ̂ in equation 2.10, the optical radiation’s occupation of the thermal
bath is negligible at room temperature (optical frequency usually ωc � (kBTroom/~)). ξ̂ is thus effectively a
vacuum noise operator for nth → 0.
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2.1.3 Optomechanical coupling
We can thus write the total Hamiltonian of the coupled system as

ĤOM = ~ωc,effâ
†â+ ~ωmb̂

†b̂ (2.22)

In the canonical system, the mechanical motion modulates the cavity length, which is
related to the bare cavity frequency by ωc = πcq/Lcav. c is the speed of light and q
some integer representing the longituidinal mode number. The effective optical resonant
frequency is thus given by

ω̂c,eff =
πcq

Lcav + x̂
= ωc(1 +

x̂

Lcav
)
−1

= ωc +
∂ω̂c,eff

∂x
x̂+O(x̂2) ≈ ωc + (

∂ω̂c,eff

∂x
xZPF)(b̂+ b̂†) (2.23)

where the coupling is linearized under the expansion of ω̂c,eff to the first order of x̂ given
that x̂� Lcav. We define the single photon optomechanical coupling as

g0 ≡
∂ω̂c,eff

∂x
xZPF (2.24)

which characterizes the coupling strength between a single photon and a single phonon.
Equation 2.22 thus becomes

ĤOM = ~ωcâ
†â+ ~ωmb̂

†b̂+ ~g0â
†â(b̂† + b̂) (2.25)

Equations of motion of the coupled modes, â and b̂, are thus described by

˙̂a = −κc

2
â− ig0(b̂+ b̂†)â+

√
κintξ̂int +

√
κinξ̂in +

√
κinade

−i∆t (2.26)

˙̂
b = −(iωm +

γm

2
)b̂− ig0â

†â+
√
γmη̂ (2.27)

The last term in the Hamiltonian 2.25 can be understood as the interaction term where
the radiation pressure force F̂RP = ~g0â

†â/xZPF acts on the mechanical displacement x̂.
We linearize the interaction term Ĥint = ~g0â

†â(b̂† + b̂) with â = ā+ δâ, such that

Ĥint = ~g0ā
2(b̂† + b̂) + ~g0ā(b̂δâ† + b̂†δâ) + ~g0ā(b̂†δâ† + b̂δâ)

= Ĥss + Ĥbs + Ĥpdc (2.28)

The linearization is valid under the criteria that |g0(b̂+ b̂†)| � κc, or the less strict criteria
g0 � κc, under which single photon decaying with τ cannot be resolved by the mechanics
[42]. This allows us to drop the terms in the equations of motion that are quadratic in
optical fluctuation δâ and mechanical fluctuation δb̂. The first term describes the average
radiation pressure force inducing a steady state mechanical displacement, while the latter
two terms resemble a beam splitter-like interaction (create one quanta as one quanta is
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Figure 2.2: Schematic showing the drive tone and mechanical sidebands under optical
cavity filtering in the sideband-resolved regime. The anti-Stokes sideband of the red drive
(corresponding to the annihilation of one phonon and a beam splitter-like interaction) and
the Stokes sideband of the blue drive (corresponding to the creation of one phonon and a
parametric down conversion-like interaction) are resonant with the optical cavity.

destroyed) and a parametric down conversion-like interaction (create or destroy a pair of
quanta simultaneously) respectively.

By solving the linearized equations of motion of the coupled optical and mechanical
modes given by,

δ ˙̂a = −(
κc

2
− i∆)δâ− ig0ā(δb̂+ δb̂†) +

√
κintξ̂int +

√
κinξ̂in (2.29)

δ
˙̂
b = −(iωm +

γm

2
)δb̂− ig0(āδâ

† + ā∗δâ) +
√
γmη̂ (2.30)

it can be shown that the optical fluctuation δâ can be written as the sum of a mechanical
motion-dependent part and a vacuum noise part, δâ = δâ†x̂[ω] + δâξ̂[ω], where [39]

δâ†x̂[ω] = −ig0āχc[ω + ∆](δb̂[ω] + δb̂†[ω]) (2.31)

δâξ̂[ω] = χc[ω + ∆](
√
κintξ̂int +

√
κinξ̂in) (2.32)

where we expand b̂ around the steady state solution to be b̄ + δb̂. Note that δâ†x̂[ω] is the
sum of two parts, δâδb̂[ω] and δâδb̂† [ω].

For δâδb̂[ω] ∝ χc[ω + ∆]δb̂[ω], we note that δb̂[ω] is centered around +ωm (equation
2.21). δâδb̂[ω] is thus known as the anti-Stokes scattered sideband that is only resonant
with the cavity under a red-detuned drive (∆ = ωd − ωc ≈ −ωm) due to the optical cavity
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filtering characterized by χc[ω + ∆]. It corresponds to the operator Ĥbs.
Similarly, we have δb̂†[ω] centering around−ωm (equation 2.20), δâδb̂† [ω] is thus known

as the Stokes sideband, which is only resonant with a blue-detuned drive (∆ ≈ +ωm). It
corresponds to the operator Ĥpdc. A schematic of the two resonant sidebands are shown in
figure 2.2 in the resolved-sideband regime (ωm � κc).

2.2 Applications of the optomechanical interaction
The formulation of a canonical optomechanical system presented in the preceding section
are universal for any optomechanical system which couples one optical mode to one me-
chanical mode. I will give a brief overview of some of the important phenomena explored
and observed in the field of optomechanics as a result of the optomechanical interaction.

2.2.1 Optomechanical cooling
To realize quantum control of a mechanical oscillator, the mechanical state needs to be near
ground state. It can be optomechanically cooled via the interaction Ĥbs = ~g0ā(b̂δâ† +
b̂†δâ). A red-detuned drive photon is scattered into the anti-Stokes sideband gaining an
energy of ~ωm while one phonon is absorbed. In the resolved-sideband regime, the cooling
process is strongly enhanced by the optical cavity filtering. Similarly, on the blue-detuned
side, the drive photon scattered into the Stokes sideband loses an energy of ~ωm while one
phonon is created in the process, resulting in optomechanical amplification in effect.

To derive this backaction effect, we examine the coupled linearized equations of mo-
tion (Fourier transformed from equations 2.26 and 2.26),

δâ[ω] = δâ†x̂[ω] + δâξ̂[ω]

= −ig0āχc[ω + ∆](δb̂[ω] + δb̂†[ω]) + χc[ω + ∆](
√
κintξ̂int +

√
κinξ̂in) (2.33)

δb̂[ω] = −ig0χm[ω](āδâ†[ω] + ā∗δâ[ω]) + χm[ω]
√
γmη̂[ω] (2.34)

Plugging equation 2.33 into equation 2.34, we have

δb̂[ω] = −g2
0nc(χc[ω + ∆]− χc[ω −∆])χm[ω](δb̂[ω] + δb̂†[ω])

− ig0χm[ω](āδâ†ξ[ω] + ā∗δâξ[ω]) + χm[ω]
√
γmη̂[ω]

= −iΣ[ω]χm[ω](δb̂[ω] + δb̂†[ω])− iχm[ω]F̂RPSN[ω] + χm[ω]F̂th[ω] (2.35)

where we define the radiation pressure shot noise as F̂RPSN[ω] = g0(āδâ†ξ[ω] + ā∗δâξ[ω])
arising from the vacuum fluctuations of the optical field. And the thermal noise force is
defined as F̂th[ω] =

√
γmη̂[ω]. We also have

Σ[ω] = −ig2
0nc(χc[ω + ∆]− χc[ω −∆]) (2.36)

as the optomechanical self-energy. It acts as an extra force exerted on the mechanics by
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the optomechanical interaction[39], which is proportional to the mechanical displacement.
Note that the term Σ[ω]χm[ω]δb̂†[ω] in equation 2.35 is negligible as χm[ω] centers

around +ωm while δb̂†[ω] centers around −ωm. We thus rewrite equation 2.35 as

δ̂b[ω] = (F̂th[ω]− iF̂RPSN[ω])χm, eff[ω] (2.37)

where we define a modified acoustic susceptibility in response to the extra optical force as

χm, eff[ω]−1 = χm[ω]−1 + iΣ[ω] (2.38)

We can write Σ[ω] = −iγopt/2 + δωm such that χm, eff[ω] can be written in the familiar
form

χm, eff[ω] =
1

γm+γopt

2
− i(ω − (ωm + δωm))

(2.39)

where we can identify the modified mechanical frequency and damping as

ωm,eff = ωm + <(Σ[ωm,eff]) (2.40)
γm,eff = γm − 2=(Σ[ωm,eff]) (2.41)

The change in frequency is known as the optical spring effect, and the change in damping
rate is known as the optomechanical damping (positive change) or anti-damping (negative
change) effect. Note that Σ[ω] is evaluated at ωm,eff, leading to a nonlinear equation. Under
the weak coupling regime where |g0ā| � κ, we approximate the solution by evaluating at
ωm

2 such that

Σ[ωm] = g2
0nc(

1

(∆ + ωm) + iκc/2
+

1

(∆− ωm)− iκc/2
) (2.42)

It follows that

γopt = −2=(Σ[ωm,eff]) =
4g2

0ncκc

4(∆ + ωm)2 + κc/4
− 4g2

0ncκc

4(∆− ωm)2 + κc/4
(2.43)

Under a red-detuned drive where ∆ = −ωm, the optomechanical damping is γopt =
+4ncg

2
0/κc, resulting in an increase in the effective mechanical damping. Under a blue-

detuned drive where ∆ = +ωm, we instead have γopt = −4ncg
2
0/κc, resulting in a reduced

effective mechanical damping. The dynamical backaction of optomechanical damping
thus allows for optomechanical cooling. The complete theory of sideband cooling can be
found in works [42] and [43].

In the weak coupling regime, it is shown that the minimum phonon number can be
achieved in the absence of couplings to the external thermal bath (intrinsic γm = 0) is

2Since κc � γm,eff, we can assume ωm ≈ ωm,eff is a constant across γm,eff.
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given by

nmin,0 = (
κc

4ωm
)
2

< 1 (2.44)

in the resolved-sideband regime. Taking into account of the coupling to the thermal envi-
ronment with nth at a rate of γm, we have

nmin =
γoptnmin,0 + γmnth

γopt + γm
(2.45)

setting the lower limit for optomechanical cooling. We thus define the dimensionless
constant,

C =
γopt

γm
=

4ncg
2
0

κcγm
(2.46)

known as the multi-photon cooperativity, which is an important parameter that character-
izes the strength of optomechanical coupling with respect to the decoherence of the system.
The thermal decoherence time of the system is 1/(nthγm), which is the time it takes for
one quanta of the mechanical motion to decohere from the ground state. A cooperativity
of

C =
γopt

γm
> nth (2.47)

thus indicates that the optomechanical coupling, or the entanglement or state transfer be-
tween a photon and a phonon, is faster than the thermal decoherence. This sets the coher-
ence threshold of quantum information transfer between the optical and the mechanical
mode. A larger C allows for sideband cooling to the lowest occupancy limit in equation
2.44. This quantum coherence limit further leads to the definition of the quantum cooper-
ativity

Cqu =
C

nth
=

γopt

γmnth
(2.48)

which takes into account of the thermal bath.
While one can lower the bath temperature nth to reach near mechanical ground state,

the lowest temperature the dilution fridge could continuously cool down to is around 20
mK. It thus requires a mechanical resonator of ωm on the GHz scale to reach near ground
state via cryogenic cooling [24]. To allow for a wider range of mechanical platform,
pre-cooling via the optomechanical cooling is more efficient and desirable. Large cooper-
ativity past the quantum coherence threshold (C > 1) has been realized by implementing
mechanical resonators of ultra-high mechanical quality factor, such as a silicon nitride
membrane which is cooled to the lowest mechanical mode temperature reported in the µK
range [44]. Other micro-/nano-mechanical oscillators that are optomechanically cooled to
the quantum ground state (nm < 1) include works in [14] [13].
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2.2.2 Quantum state transfer

Note that under Ĥint, the optomechanical interaction is unitary, which preserves informa-
tion transfer between the optical and the mechanical modes, and enables its application
in quantum communication and information processing. The beam-splitter interaction
Ĥbs = ~g0ā(b̂δâ† + b̂†δâ) describes the quantum state transfer between light and mechan-
ics. As proposed in [45], a pulsed drive is used to enable a full state swap between the δâ
excitation and the b̂ excitation.

This protocol has been implemented in experiments extensively. For instance, the state
of a travelling microwave field is transferred into and readout coherently from a mechan-
ical oscillator at the single quantum level [46]. Under a strong microwave excitation,
the interaction is enhanced by the multi-photon coupling to the strong coupling regime
(g0
√
nc > κc) with a C � 1, which simultaneously swaps the states of the microwave

resonator and the mechanical oscillator, at a rate faster than its decoherence. Via the same
interaction, a measurement pulse is applied after sometime to read out the state of the
mechanics, showing the ability of such a system to store information. Bidirectional co-
herent conversion between microwave and optical light has also been demonstrated [47]
[48] [49], where a low frequency mode and a high frequency mode can be coupled to a
mechanical mode mediating the conversion between the two fields. It demonstrates the po-
tential of an optomechanical system in enabling large-scale quantum information network
[50] [3] [51].

2.2.3 Squeezed light and mechanics
Optomechanical interaction has also been proposed and demonstrated to generate and ma-
nipulate non-classical states of light and mechanics. One prominent example is a squeezed
mechanical state, which is of great importance in high precision measurement, such as the
detection of gravitational waves [52]. A squeezed optical drive can be used to directly
transfer the squeezing from the optical field to the mechanics [53]. In general, to generate
quadrature squeezing, a parametric coupling for b̂ is introduced and the mechanical hamil-
tonian is in the form of (b̂2+b̂†2). A modulating laser can be applied to parametrically drive
the mechanical oscillator as proposed in [54], which compensates the optomechanically
induced frequency shift. The squeezing Hamiltonian is given by

Ĥsq,m =
~δωm/ cos (2ωmt)

2
(b̂2 + b̂†2) (2.49)

in the rotating frame of ωm, where δωm is the optical spring, or change in mechanical fre-
quency given by equation 2.40. The drive is thus modulated at δωd(t) = δωm/ cos (2ωmt),
which results in the quadrature-squeezed mechanical mode

b̂(t) = cosh (δωdt)b̂(0)− i sinh (δωdt)b̂
†(0) (2.50)

displaying exponential squeezing in the mechanical quadrature operator as time increases
(∝ e−δωmt).
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On the other hand, schemes for generating squeezed noise in the optical field are pro-
posed in [55] [56] which play an important role in quantum enhanced metrology and opti-
cal communication. An optical cavity with an intensity-dependent length acts as a nonlin-
ear Kerr medium inside the cavity, which induces a squeezing effect. While the magnitude
of squeezing is limited by the thermal decohrence of the mechanics, sub-shot-noise opti-
cal squeezing has been demonstrated in the implementation of cavity optomechanics with
ultracold atoms [12]. The atoms’ center of mass alters cavity resonant frequency linearly,
which is thus coupled to the quantum fluctuation of radiation pressure analogous the the
mirror displacement. The strongly multi-photon-coupled system acts as a high-gain, non-
linear parametric amplifier for the quantum fluctuation of the intensity [57]. Similarly,
it has also been demonstrated in a silicon micromechanical resonator coupled to a pho-
tonic cavity, where steady-state squeezing below the vacuum noise level is shown in the
reflected light that is sent in to the cavity for continuous position measurement [17].

The generation of squeezed state is also closely related to the realization of a backaction-
evading or quantum non-demolition (QND) measurement on the optical amplitude quadra-
ture or the photon number statistics [58] [59]. When measuring the two quadratures of
motion simultaneously, the precision of the pair of noncommuting observables is limited
by the Heisenberg uncertainty principle. However, since the optomechanical system com-
mutes with the observable, measurement on a single observable can be up to an arbitrary
precision and achieve quantum nondemolition [60] [61]. In general, a QND measurement
for the energy requires the coupling of the probe to be proportional to the squared general-
ized coordinate of the system [60] [62]. A QND measurement of the mechanical position
using a pulsed scheme is demonstrated in [63] [64]. Since the pulse is applied over dura-
tion much shorter than the period of the mechanical motion, a measurement on the position
is backaction-evading and only perturbs the momentum and leaves the position unchanged,
such that

Xout
c = X in

c , P out
c = P in

c + χX in
m

Xout
m = X in

m , P out
m = P in

m + χX in
c + Ωp (2.51)

whereX and P are the dimensionless amplitude and phase quadrature, χ characterizes the
strength of the position measurement, and Ωp describes the classical momentum transfer
from the measurement. The precision is thus only limited by the optical phase noise [65],
as the position measurement suppresses the position variance (σXM ∝ 1/χ2) while the
momentum variance increases (σPM ∝ χ2). A subsequent pulse is sent after 1/4 of the
mechanical period to measure initial momentum and reduces phonon occupancy (neff =
(σXMσPM)1/2). The QND protocol gives rise to cooling and quantum state preparation that
is based on quantum measurement and feedback [66] [7] [4].

2.2.4 Quantum entanglement
Entanglement between the optical and the mechanical modes can be used to demonstrate
quantum interference among quantum states in a macroscopic system. Consider a state
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initiated in

|Ψ(0)〉 = |α〉c ⊗ |β〉m (2.52)

where |α〉c and |β〉m are the initial coherent states of the optical field and the mechanics.
It can be shown that under time evolution in the interaction picture, at time t the state is
evolved to an entangled state in the form of

|Ψ(t)〉 =
∞∑
n=0

cne
iφn(t)|n〉c ⊗ |φn(t)〉m (2.53)

where cn|n〉c is the coherent state of the cavity field in the basis of Fock states, φn(t) is
the phase shift acquired from the optomechanical coupling, and |φn(t)〉m = |βe−it〉m the
time evolved mechanical coherence state [67] [68]. At t = 2π, depending on the value of
g0-dependent φn(0), non-classical state of the cavity field can be acquired in the form of
multi-component Schrodinger cat state, such as

|Ψcat〉c = e−|α|
2/2
[
(
1 + i

2
)|+ α〉c + (

1− i
2

)| − α〉c
]

(2.54)

Furthermore, through the entanglement, non-classical states of the mechanics can be
generated via conditional measurements on the field [68]. For instance, it can be shown
that a measurement of the x-quadrature of the field at time projects the mechanical state
into

|Ψ(x)〉m =
∞∑
n=0

cne
iφn(π)〈x|n〉|φn(π)〉m (2.55)

derived from equation 2.53, which is a non-classical state of superposition of spatially sep-
arated coherent states, resembling a Schrodinger cat state with different values of coherent
components. Generation of such non-classical optical and mechanical state are advanta-
geous in optical communication application and in the study of quantum mascroscopic
coherence.

The proposal for continuous-variable entanglement stems from the Einstein-Podolsky-
Rosen (EPR) paper [69], even preceding the notion of quantum entanglement, where they
consider a two-particle state correlated in their positions and momenta,∫

dx1dx2ψ(x1, x2)|x1, x2〉 ∝
∫
dx|x, x− u〉 (2.56)

where the two-particle wave function is given by ψ(x1, x2) ∝ δ(x1 − x2 − u). The two
particles are perfectly correlated in their positions and momenta (x1−x2 = u, p1+p2 = 0),
such that the measurement on one state allows one to predetermine that of the other state
with certainty [70]. The origin of such correlations must originate from a quantum theory
which cannot be explained by any classical theory. Quantum entanglement thus has the
potential in enabling information processing beyond classical bounds [71], sensing beyond
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standard quantum limit [72] [73] and also test for fundamental quantum theory on massive
objects [5].

Experimentally, continuous wave schemes have been proposed to demonstrate genuine
multipartite entanglement in the steady state [74] [75] [76] [77]. With a continuous-wave
light field, the system is in a stationary state, and the entanglement is verified via quadra-
ture measurement on the continuous-variable of the output light field. The entanglement
with the mechanical state thus can only be inferred from the correlations between the opti-
cal modes, which often raises ambiguity, as it is shown that separable states can distribute
entanglement as well [78].

Alternatively, a pulsed scheme has been proposed and widely used to generate en-
tanglement [79], which is first implemented with atomic ensembles [80]. The quan-
tum control protocol begins with the mechanics optomechanically cooled via the Ĥbs.
A blue-detuned pulse (”write” drive) is then applied to entangle the states between the
mechanics and the optical field via the parametric-down-conversion Hamiltonian Ĥpdc =

~g0ā(b̂†δâ† + b̂δâ), which generates photon-phonon pairs. A two-mode squeezing or en-
tangled state is generated when the optical and the mechanical modes are initiated near
ground state. The system is in the multi-photon strong coupling regime during the pulse
in order to generate entangled pairs faster than the decoherence of the system. After stor-
ing the entangled mechanical state in the system for some time delay, the state is read out
with a red-detuned pulse (”read” drive) via Ĥbs mapping the entangled mechanical state
to the emerging output field. Variances of the quadrature amplitudes of both the write and
read pulses are used to determine the inseparability, or the quantum entanglement criteria
of the photon-phonon pair. An EPR-type of entanglement between the mechanics and a
microwave field is demonstrated in [81]. Remote entanglement between two microme-
chanical oscillators is verified in [26]. Furthermore, the pulsed scheme is used to realize
quantum teleportation [79] [82] [27], where an input photonic state is transferred to the
joint vibrational state of a pair of mechanical resonators. The long memory time and low
loss transfer operating on-chip make such a system a desirable candidate as the quantum
memory or repeater in a quantum network [3] [83].

The pulsed scheme has the advantage that the system is not limited by more restrictive
stability requirements compared to that of a continuous wave scheme. Furthermore, the
time sequence of the pulse guarantees a direct and unambiguous verification of correlation
that is originated from quantum entanglement [80].

2.3 Nonlinear quantum optomechanics
In the formulation presented in the last section, the optomehcanical interaction is linearized
such that

Ĥint = ~g0â
†â(b̂† + b̂)→ ~g0(δâ

† + δâ)(b̂† + b̂) (2.57)

in the assumption of small single-photon optomechanical coupling g0 � κc which holds
true for all of the existing optomechanical systems. As shown in section 2.2 where I
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give an overview of some of the important results of the optomechanical interaction in
the linearized picture, this linearized quadratic Hamiltonian (Ĥbs + Ĥpdc) is sufficient in
describing these quantum phenomena of interest.

Note that a strong single-photon coupling regime where

C0 =
4g2

0

κcγm
� nth (2.58)

allows us to access the system at the single quantum level, but puts a very strict restriction
on the system parameters, including high quality factors of the optical and the mechanical
oscillators and the single photon coupling (which scales with 1/Lcav and 1/

√
meff in the

canonical system, thus becoming weaker with more massive objects). While the single-
photon strong cooperativity has been achieved with microwave qubits [84] [85] [86] and
microwave photons [87], and has also been demonstrated with optical photons in [88], it
remains challenging to build systems satisfying the requirement which limits the available
platforms suitable for quantum technologies and tests.

In this section, I will give an overview of the experimental methods proposed and
implemented to circumvent the single-photon strong coupling restriction, in order to access
and manipulate the system on the single quantum level, and generate states exhibiting
more exotic quantum nature, such as non-Gaussian states and states with Wigner-function
negativity.

2.3.1 Multi-photon strong coupling regime
By the linearized interaction description, optomechanical coupling strength scales with the
field amplitude as g = g0

√
nc. It is thus a convenient method to circumvent the restriction

of a weak g0 by using a stronger drive such that

C =
4ncg

2
0

κcγm
> nth (2.59)

The system thus operates in the strong multi-photon coupling regime where information
is transferred or readout between a single photon and a single phonon at a rate faster than
the decoherence, which gives access to the discrete nature of the light and the mechanics.

As discussed in section 2.2, a few interesting results have been demonstrated under
this regime, such as optomehcanically cooling the mechanics into its quantum ground state
(2.2.1). Non-classical states such as the squeezed optical and mechanical state below shot
noise have been generated in this regime as well (2.2.3). While the coupling conveniently
scales with the strength of the drive, it also inadverdently introduces unwanted heating to
the device and increases thermal decoherence.

2.3.2 Nonlinearity in quantum optomechanics
Here we refer to non-classical states as any state that cannot be described as a statistical
mixture of the coherent states. They have highly irregular Glauber-Sudarshan P -function
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[89] [90], which exhibits negativity and singular behavior. A more detailed classification
and criteria for non-classical states are described in chapter 3. While some states with neg-
ative P -function are accessible in the multi-photon strong cooperativity regime, we cannot
access the more ”quantum” states such as the non-Gaussian (states cannot be describes by
a statistical mixture of Gaussian states) or the negative Wigner-function states with a clas-
sical drive. Under the linearized interaction, the resulting equations of motions are also
linear as shown in equations 2.29 and 2.30. The output state thus remains a Gaussian state
(or a state with positive Wigner function) with a Gaussian or a positive-Wigner function
state input [42] [19]. The dynamics is intrinsically nonlinear in their equations of motions
only under the full cubic interaction in equation 2.57.

While any protocol relying on a single-quadrature measurement can be described in
the linearized picture in general [91], nonlinearity needs to be introduced into the formu-
lation of the system to generate non-Gaussian or more exotic states of the quantum nature.
For instance, for the Schrodinger cat state describe in equation 2.54, it is stems directly
from the time evolution of a coherent state following the cubic interaction Hamiltonian in
equation 2.57 [68].

Another prominent example where nonlinearity is required to describe the interaction
is the detection of discrete phonon number [92]. As the phonon number operator is given
by n̂ = b̂†b̂, measurement of the discrete number state of the mechanics is equivalent to a
measurement to it energy, or the quadratic x̂2. This requires the optomechanical system to
establish a coupling between the light field and the square of its displacement x̂2, instead
of x̂ in the canonical system, such that the interaction term is in the form of

Ĥint = ~g0â
†â(b̂† + b̂)2 (2.60)

where the coupling is in the form

g0 ∝
∂2ω̂c

∂x2
x2

ZPF (2.61)

One way to introduce such nonlinearity intrinsic to an optomechanical system is by
placing some dielectric object near a node or anti-node of the optical mode inside a cavity,
which creates a coupling proportional to x̂2 (at extrema, ωc(x) ∝ x̂2 to the lowest order for
small oscillation amplitude), known as the membrane-in-the-middle setup demonstrated in
works [93] [94] [95] [36] [96]). For such systems where the cavity detuning is periodic in
the displacement of the dieletric object (partially transparent), the optomechanical system
and coupling are said to be dispersive, allowing for a direct measurement on the phonon
number or the quantum nature of its energy [97] [98] [99] [100].

Note that with the quadratic coupling, it is still challenging to build an optomechanical
system operating in the single-photon strong cooperativity regime. Intrinsic nonlinearity
has been more accessible to implement in coupled qubit (in the GHz range)-oscillator
systems [101] or coupled atom-cavity system [102], which allows for the manipulation
of the mechanical state at the single quantum level, and for the generation and storage of
non-Gaussian mechanical states [103]. Regarding its application in information processing
with quantum advantage, such full quantum control is desirable with an optomechanical
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system as well, as it allows for direct coupling to photons of telecom-wavelength travelling
in standard telecom optical fibers. In the following section, I will describe a single photon
counting scheme that is used to circumvent the restriction due to a weaker coupling.

2.4 Single photon counting scheme
In this work, we adopt the method widely implemented in quantum optics to introduce
nonlinearity external to the optomechanical system at various other stages of the experi-
ment [20], such as using a single photon source at the input, which can be transferred and
mapped onto the mechanics to generate a single phonon Fock state via the linearized op-
tomechanical interaction. Alternatively, single-photon detection at the measurement stage
can be used to generate nonlinearity directly via the measurement backaction. Instead of
manipulating the system Hamiltonian or manufacturing specific device parameters, this
method introduces nonlinearity through the external fields that interact with the system in
the controlling and probing stages. It can be shown that such nonlinearity lifts the strict re-
quirement on a strong or nonlinear coupling [104], and the backaction from single photon
detectors is robust against detection efficiency and errors from damping of these system
[20].

The scheme of generating a non-Gaussian mechanical such as a Fock state by using a
single photon source is formulated in [105]. State transfers of a pair of quantum-correlated
light fields to a pair of macroscopic oscillators has also been proposed in [45], where an
EPR state in position and momentum of macroscopic objects can be realized. It is also
proposed to be used for the generation of quantum superposition of a mirror in a single-
photon Michelson interferometer setup, which can be made feasible for gravitational wave
detection [106] [107] [108]. Each arm of the interferometer contains a Fabry-Perot cavity,
with one of them has a moving mirror at one end. The system is initiated in a mechanical
ground state with the moving mirror in arm A as |0〉m, and the photon is in a superposition
of being in either arm A or B as |0〉A|1〉B + |1〉A|0〉B, such that

|ψ(0)〉 =
1√
2

(|0〉A|1〉B + |1〉A|0〉B)|0〉m (2.62)

The state at time t is then given by

|ψ(t)〉 ∝ |0〉A|1〉B|0〉m + ei(g/ωm)2(ωmt−sinωmt)|1〉A|0〉B|g/ωm(1− e−iωmt)〉m (2.63)

where in the second term, the mechanics is oscillating in a coherent state with amplitude,
g/ωm(1− e−iωmt), under the influence of the radiation pressure force exerted by the single
photon in arm A [109]. The mechanical state thus gets entangled and disentangled from the
photon every t = 2π/ωm periodically, indicated by the visibility of the photon interference.
It is further shown that arbitrary mechanical quantum states can be prepared in the single
photon interferometer setup via the postselection of the time of arrival of the output single
photon [110] [68].

Note that such schemes still in general require the system to operate in the single
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Laser

Figure 2.3: Structure of a three-level atom, which is used to produce entangled atomic
states under a weak laser pulse and projective measurement protocol.

photon strong coupling regime, where the zero point fluctuation of the mechanics is at
least larger than the linewidth of the cavity, in order to produce the nonlinear effects. As
for the qubit-mechanics coupled systems [101] [85] [111] [112], where a measurement
on the discrete state of the qubit directly projects the mechanical state onto highly non-
classical states, we can introduce nonlinearity effectively in an optomechanical system via
a strong projective measurement on the optical field enabled by the single photon detector
[20] [113].

Conditional state preparation

The probabilistic measurement protocol for preparation of a heralded non-Gaussian state,
such as an entangled state, is pioneered in quantum optics with atomic states, where non-
linearity is induced by state projection measurement [114].

Consider two three-level atoms A and B with a Lambda configuration with |0〉 and |1〉
being the ground state and |2〉 the excited state, as shown in figure 2.3. The atoms are
prepared in the ground state |0〉A|0〉B. A weak laser pulse at ω0 is sent to the atoms on
resonance with the |0〉 ↔ |2〉 transition. Suppose a detector is placed in the middle of the
two atoms and is sensitive to only the frequency ∼ ω1, corresponding to the spontaneous
emission |2〉 → |1〉 occurring at a rate T1 for the atom in the excited state |2〉. The detection
of a photon thus indicates that the pulse prepares a superposition of states |0〉A|2〉B and
|2〉A|0〉B just before the detection. Since the detector cannot distinguish where the detected
photon is emitted from, an entangled state in the form of

|Ψ〉 =
1√
2

(|0〉A|1〉B + eiφ|1〉A|0〉B) (2.64)

is heralded upon detection.
Note that in such a probabilistic measurement, there is no requirement on a strong

interaction, or a high probability of exciting the atom under the initial drive. In fact, the
drive is required to be sufficiently weak, such that the probability of exciting both atoms ε2

is much smaller than exciting one ε. Suppose the detector cannot resolve photon arrivals in
very close proximity, a detection actually heralds the state |1〉A|1〉B instead if both atoms
are excited, decreasing the fidelity of the entangled state. Thus, an excitation probability
of ε� 1 by the weak pulse is required.
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Entanglement is effectively produced by the storng projective measurement on the pho-
ton state, or equivalently induced by the backaction of the measurement. Such a detector
can be formulated as a collection of atoms, among which one atom C is coupled to the pair
of atoms A and B. Upon the detection of a photon, atom C is left in the excited state |e〉.
The density operator of atoms A and B conditioned on a detection event is thus governed
by the master equation

d

dt
ρ =

[
LC +

∑
i=A,B

(Li + S i,C + J i,C)
]
ρ (2.65)

where Lj is the Liouvillian action on some atom [115]. For instance, we have

LCρ = −γ
2

(σCeeρ+ ρσCee) + γσCggρσ
C
eg (2.66)

acting on the detector atom C, where γ is the detector bandwidth and σij = |i〉〈j|. S i,C
and J i,C account for the dipole-dipole and re-absorption interaction between atom i and
C. A full model describing the system using this master equation method is shown in [114]
[115] [116].

A strong projective measurement is made possible for our experiment with the de-
velopment of single photo detectors in the last few decades. In particular, fiber-coupled
superconducting nanowire single photon detectors (SNSPD) are particularly useful for
experiments in the near-infrared regime (as compared to single-photon avalanche diodes
which is much more efficient for visible photons) [117] [118] [119]. SNSPD is made of
a narrow superconducting wire which is biased with a current just below its critical cur-
rent. The absoprtion of an incident photon breaks its superconductivity locally, where the
current flows through causing the current density to increase in adjacent regions as well.
A normal resistance region is thus formed across the wire, yielding a voltage spike to be
detected. For near-infrared detection, sub-50 picosecond dead time (inactive time after a
photon detection event to restore superconductivity, mostly sub-100 nanosecond) [120],
sub-50 picosecond jitter time (variation in the delay time between optical input and elec-
tric signal output) [121], sub-1 Hz dark count rate (output in the absence of any incident
photons), and > 90% detection efficiency has been demonstrated in experiments [122].

DLCZ protocol

To enable robust quantum communication between massive particles (such as atomic en-
sembles) over distant lossy channels, Duan, Lukin, Cirac and Zoller propose the DLCZ
protocol which generates strong entanglement, stores the state and transfer the state with
high fidelity via conditional measurement [123] [21] [124]. The DLCZ protocol originates
from the scheme entangling single atom through single-photon interference as discussed
in the last section 2.4, which does not require a non-classical input light and super high
finesse resonator for the light and mechanics. Entangled states of atomic ensembles [125]
[126] [127] [10], spin of the ions or qubits, and macroscopic solid bodies (bulk vibration
mode in diamonds [10]) have been demonstrated via a DLCZ protocol.
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Figure 2.4: Schematic for the DLCZ protocol to generate, store, and read out an entangled
state of the optomechanical system.

For a coupled light-mechanical system, a DLCZ protocol to generate entangled states
between a single photon and phonon is shown in figure 2.4. The optomechanical device
and a pair of SNSPDs are placed in a dilution fridge. The mechanical mode can be ei-
ther cryogenically cooled by the fridge, or further optomechanically cooled via sideband
cooling to near its ground state nth � 1. The system is thus initiated approximately in
|ΨOM〉 = |0〉c|0〉m.

At time t = 0, a blue-detuned pulse at ∆ = +ωm is applied, denoted as ”write”,
creating two-mode squeezing via the interaction Ĥpdc = ~g0ā(b̂†δâ† + b̂δâ), driving the
state into

|ΨOM〉 = |0〉c|0〉m +
√
pb|1〉c|1〉m + pb|2〉c|2〉m (2.67)

where the excitation probability pb � 1 and higher order terms can be neglected. The
detection of a single Stokes-scattered photon following the write pulse thus heralds an
entangled state of |1〉c|1〉m.

After some time τ , a second pulse, which is red-detuned by ∆ = −ωm, acts on the
system by Ĥbs = ~g0ā(b̂†δâ + b̂δâ†). We denote it as the ”read” pulse as it reads out the
mechanical state through a state swap. A subsequent detection of a single anti-Stokes scat-
tered photon thus heralds a successful state transfer from the mechanics. The arrival time
of each write and read pair of photons are recorded by the SNSPDs. The pulse sequence
is repeated to collect sufficient photon counts for calculating their statistics. After post-
selecting on the pulse sequences where a single photon is emitted following each pulse,
the auto-coherences and cross-coherences of these photon pairs can be used to verify the
non-classical nature of the heralded entangled photon-phonon state.

Photon statistics and their correspondence with non-classicality, and the fidelity of
the heralded state are discussed further in chapter 3. Note that compared to a homodyne
or heterodyne measurement, where the continuous-quadrature variable is measured, we
can directly access the discrete energy levels or phonon numbers of the mechanical mo-
tion made possible by the projective measurement via single photon detection. Phonon
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Figure 2.5: Device schematic: A fiber Fabry-Perot cavity filled with superfluid 4He.

counting [23] [28], single phonon Fock state [25], entangled photon-phonon pair [24], en-
tangled remote mechanical oscillators, quantum teleportation and Bell test [26] [128] have
been demonstrated with various nanomechanical oscillators using the DLCZ scheme. A
characterization of the non-classical state of a single phonon-added or -subtracted thermal
mechanical state has also been shown in [29] [30]. Single photon detection thus provides
access to the non-Gaussian and negative Wigner function regime in optomechanics despite
that the systems cannot achieve single-photon strong coupling yet, enabling further studies
in quantum communication technology and macroscopic quantum effects.

2.5 Optomechanics with superfluid He
In this section, I will explain the design and coupling mechanism of our optomechanical
device, which is made a fiber Fabry Perot cavity filled with superfluid 4He as shown in
figure 2.5.

The Fiber Perot cavity is formed by a pair of single-mode telecom (1550 nm) optical
fibers3. The fibers are ablated by a CO2 laser by the Jakob Reichel Lab (Paris) [129]
[130] [38] to produce a concave indentation at the fiber ends. Optical Distributed Bragg
Reflector (DBR) made of layers of silica and tantala is then deposited onto the indentations
to form highly reflective mirrors. A more detailed documentation of the building of the
cavity is presented in [38].

It is formed by a pair of optical fibers coated with dbr mirrors with high reflectivity
to form a fabry perot cavity. They are aligned by a pair of glass ferrules, and housed
in a copper cell. Since the glass ferrules are very narrow confining the position of the
fibers, the cavity does not require any in situ alignment. The device is placed inside a
dilution fridge below 20mK. The cavity is filled with superfluid helium via the capillary

3IVG fiber: Cu 1300 and Cu 1300/200. SMF-28 fiber with a 125 µm diameter.
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nHeλc ωc/2π Lcav κc/2π ηκ ∆ωFSR/2π Fc Qc

1548.3 nm 193.63 THz 70.3 µm 47.2 MHz 0.29 2.08 THz 4.4×104 4.1×106

λac ωac/2π γac/2π ∆ωFSR/2π Fac Qac

754.5 nm 315.4 MHz 3250 Hz 1.7 MHz 500 9.7 ×104

Vmode meff g0/2π nth C0 Cqu,0

5000 µm3 ∼ 1 ng 4600 Hz 1.4 5.5 ×10−4 3.9 ×10−4

Table 2.1: Parameters of the superfluid He-filled optomechanical device.

line into the fill port. The mechanical element consists of ≈ 1 ng of superfluid He. Table
2.1 shows important parameters of the device. Characterization of some of the important
parameters is shown in chapter 5, and measurement of standard optomechanical effects
such as quantum sideband asymmetry and optomechanical backaction are shown in section
5.3.

2.5.1 Coupling mechanism
The ”mechanical” element in our device is the acoustic excitation, in particular, the density
fluctuations of superfluid He, which is indicated by the blue wave in the schematic in figure
2.5.

In the canonical system, the coupling arises from the radiation pressure force. Here
we make use of the electrostrictive force instead. As the electromagentic field inside the
He-filled cavity polarizes the He atom, causing the atoms to move along the electric field
gradient. The change in the density profile of He inside the cavity thus changes the dielec-
tric constant (the index of refraction locally), in turn changing the detuning of the cavity.
The electrostriction-induced interaction is fully described by the formulation of the canon-
ical system as discussed in section 2.1, as they are both unitary and bi-directional and fully
captured by the interaction term in the Hamiltonian.

Spatial profile of the electric field inside the cavity can be written as

∇2E(~r) +
ω2n2

He(~r)

c2
E(~r) = 0 (2.68)

where nHe is the spatial profile of the index of refraction of He inside the cavity. Assume
the interaction introduces small perturbation to ω, E(~r) and nHe, we write the perturbed
terms as

n2
He(~r) = n̄2

He + 2n̄HeδnHe(~r) (2.69)
ω2 = ω̄2 + 2ω̄δω (2.70)

where n̄He = 1.0261 for superfluid 4He. By applying the proper boundary condition [38],
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we can find that the detuned frequency by the interaction is given by

δω = −ω
∫
V
δnHe(~r)I(~r)d3~r∫

V
nHe(~r)I(~r)d3~r

(2.71)

Local change in index of refraction can be related to the change in density profile by the
Clausius-Mossotti relation, such that ρHe ∝ (nHe−1) [131]. The optomechanical coupling
is thus proportional to the overlap integral between the intensity of the field and the density
fluctuation of the helium. Note that electrostriction gives rise to an elastic force, such that
the energy stored in the acoustic excitation can be written as

Uac =
1

2

∫
V

KHe

(δρHe(~r)

ρHe

)2

d3~r = ~ωacb̂
†b̂ (2.72)

where K = v2
HeρHe is the Young modulus of helium. Re-writing optomechanical coupling

defined in section 2.1, we have

g0 =
∂ω̂c,eff

b̂+ b̂†
= ∂ω̂c

√
~ωac

4Uac

= ωc

√
~ωac

4K
(
n2

He − 1

2n2
He

)

∫
V
δρHe(~r)I(~r)d3~r

(
∫
V
I(~r)d3~r)

√∫
V

(δρHe(~r))2d3~r
(2.73)

Note that we thus have

g0 ∝ ωc

√
ωac

Vmode
(2.74)

where the acoustic mode volume Vmode ∼ Lcavw
2
0 ∼ 5000µm3 with w0 being the beam

waist of the cavity. As the transverse mode size ∼ w2
0 ∝ Lcav, we have Vmode ∝∼ L2

cav.
The single-photon optomechanical coupling thus approximately scales with 1/Lcav.

Wavelength matching

One important advantage of the simple geometry of our device is that wave equations for
the optical mode and the acoustic mode share the same boundary conditions, set by the
mirror ends of the fiber cavity. While the optical mode is confined by the highly reflective
optical DBR, the acoustic wave is confined by the large acoustic impedance mismatch at
the He-fiber boundary (vSiO2 � vHe). Note that the wave equation for helium also shares
the same form of that of the optical mode as shown in equation 2.68, such that

∇2φHe(~r) +
ω2

v2
He
φHe(~r) = 0 (2.75)

where φHe ∝ δρHe(~r)/ρHe is the velocity potential of He, derived from the continuity
equation [39].
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It can be shown that solutions to these wave equations can be written as the orthonor-
mal set of Hermite-Gaussian modes (see chapter 7 for more details). Note that the coupling
is proportional to the overlap integral between the three-dimensional Gaussian modes of
|E(~r)|2 and δρHe(~r). For simplicity, we will consider the 1D plane wave case here which
closely corresponds to the longituidinal profile of the waves as illustrated in figure 2.5(c).
For the optical mode which has a node at the boundary, we have

I(z) ∝ |E(z)|2 ∝ sin2 (πqopt
λ/2z/Lcav) (2.76)

And for the acoustic wave which is confined by the impedance mismatch, it has an anti-
node at the boundary, following

δρ(z) ∝ cos (πqac
λ/2z/Lcav) (2.77)

where qopt
λ/2 and qac

λ/2 are the number of half-wavelength inside the cavity.
Optomechanical coupling between modes of different mode number is thus given by

gq
opt,qac

0 ∝
∫ Lcav

0

I(z)δρ(z)dz ∝
∫ Lcav

0

sin2 (πqopt
λ/2z/Lcav) cos (πqac

λ/2z/Lcav)

=

∫ Lcav

0

(1− cos (2πqopt
λ/2z/Lcav)) cos (πqac

λ/2z/Lcav)

∝ δ2q
opt
λ/2

,qac
λ/2

(2.78)

By the orthogonality of the Gaussian modes, the coupling is only nonzero if

qac
λ/2 = 2qopt

λ/2 (2.79)

or in terms of wavelength of the mode, λac = λc/2, where λc is the wavelength in He.
The geometry of the device thus guarantees an efficient single mode coupling, where

one optical mode only interacts with the motion of one acoustic mode and vice versa. This
is rather unique for an optomechanical system where it is usually challenging to isolate
the optical mode from the motions of various mechanical modes [132] [42]. While multi-
mode optomechanics give rise to various interesting results (such as enhanced nonlinear
dynamics [133] [134], phonon lasing based on population inversion [135], non-reciprocal
couplings in phononic device [136]), in quantum applications where we want to implement
full quantum control over the system with high fidelity, the single mode condition allows
for more convenient data taking and analysis without the need to distinguish the source of
photons. We assume the exact same boundary conditions in a one-dimensional model in
deriving the wavelength matching condition. In chapter 7 we measure to what extent this
approximation holds for our system.
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2.5.2 Superfluid He
Liquid helium was first found to exhibit abnormal behavior below 2.2 Kelvin in 1938
[137], such as diminishing viscosity, resembling a superfluid. Several theories have been
proposed to formulate its transition [138] [139], and its properties have been extensively
studied in experiments in the past few decades, which can be found in [140] [141]. Several
properties of superfluid 4He make it an ideal candidate for implementing an optomechan-
ical system (as opposed to the fermion 3He which transitions into superfluid at a much
lower temperature < 2.5 mK).

First, superfluid is predicted to have a very low optical absorption of infrared photons
under low temperature (< 300 mK) of less than 10−12 mm−1, due to its large bandgap (<
20 eV [142]). There also exists no chemical impurities under its low transition temperature
(∼ 500 mK), and no structural defects in a liquid. It also does not have any viscosity, such
that the dominant damping in He is the three-phonon process scaling as T 4 [143]. A
superfluid system thus could acheive ultra-low optical and acoustic loss.

A combination of low optical absorption and high thermal conductivity [140] makes it
an ideal mechanical element to be able to handle a large optical drive (or the drive-induced
thermal phonons) without excessive heating, as it can be thermalized by the bath (dilution
fridge) effectively.

Superfluid He is thus ideal for implementing an optomehcanial system toward higher
cooperativity, which requires high finesse optical cavity and mechanical resonator, han-
dling of large optical power and low thermal phonons. Furthermore, fluid He which con-
formally fills the cavity allow for the simple geometry of the system, which does not
require in situ alignment and leads to the single-mode wavelength matching condition.

There are several existing optomechanical experiments with superfluid helium, includ-
ing the Schwab (CalTech) group where ultra-high Q (> 108) acoustic resonators in bulk
4He has been built to study macroscopic quantized motion [144] [145]. The Bowen group
[146] demonstrated sideband cooling of excitations in superfluid He film coupled to a mi-
crotoroid. There are systems studying the He ripplon [147] or He droplets [148] [35].
However, no stronger quantum effects have been shown to date.
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Chapter 3

Nonclassicality Criteria

As proposed in section 2.4, photon counting statistics is used to characterize and verify the
quantum feature of a state. I will start this chapter by describing the temporal coherences of
a thermal state in both the classical and quantum picture. I will then discuss how coherence
is used to classify the nature of the distribution function, which exhibits quantum features
of the state and verify its non-classicality.

3.1 Temporal coherences of a thermal state

3.1.1 Classical theory of optical coherence
While the fluctuations in optical fields are too rapid to be observed directly, interferomet-
ric experiments allow for the measurements of the correlations between these fluctuations
at different space-time points, which reveal the statistical properties and classification of
the associated field. Although interferometry first emerged in astronomy to measure the
spatial coherences of the light emitted by visible stars and to determine their stellar an-
gular diameters [149] [150], some of the resulting observations of unexpected correlation
properties also sparked debate on the nature of light, suggesting the need of a complete
quantum mechanical theory to describe electromagnetic radiation [151] [152]. We will
first examine the coherence functions with the classical theory of light, where the electric
field is a classical variable.

Two types of interferometry are shown in Figure 3.1. The Mach-Zehnder Interfer-
ometer shown on the left measures the electric field correlations. It is equivalent to the
Michelson interferometer where the light paths are recombined before detection [149].
The intensity of the light time averaged over some measurement period at the output port
is 〈Iout(t)〉 ∝ 〈|Eout(t)|2〉, where Eout(t) = 1

2
E(t1) + 1

2
E(t2) and t − ti is the time it

takes to travel from the input port to the output port via path i, assuming 50/50 lossless
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Figure 3.1: Schematic of a Michelson-type field interferometer (a) and a Hanbury Brown
and Twiss-type intensity interferometer (b).

beamsplitters. We thus have

〈Iout(t)〉 ∝ 〈|Eout(t)|2〉 =
1

4

〈
|E(t1)|2 + |E(t2)|2 + <[E∗(t1)E(t2)] + <[E(t1)E∗(t2)]

〉
=

1

4

(〈
|E(t1)|2

〉
+
〈
|E(t2)|2

〉
+ 2<

[〈
E∗(t1)E(t2)

〉])
(3.1)

where the last term gives rise to the interference effect. It includes the first-order time
correlator of the electric fields 〈E∗(t)E(t+ τ)〉, evaluating the time average of the product
of the electric fields travelling through the two paths with a time delay of τ in between1. It
follows that the normalized first-order temporal coherence function is defined as

g(1)(τ) ≡ 〈E
∗(t)E(t+ τ)〉
〈E∗(t)E(t)〉

(3.2)

Figure 3.1(b) shows an intensity interferometer instead. This was first demonstrated in
the Hanbury Brown and Twiss (HBT) experiment, where the correlation between the pho-
tocurrents generated by two spatially separated photomultipliers were measured, demon-
strating high-order interference (i.e., correlations between the intensities instead of the
first-order interference between fields) [154]. The correlation between the two intensities
detected at the output ports is 〈I1(t)I2(t + τ)〉. By the classical description of light, the
intensities detected at the output ports are simply I1(t) = I2(t) = 1

2
I(t) (intensity mea-

sured by averaging over a cycle of oscillation), the normalized measured correlation is
thus related to the second-order temporal coherence function such that

〈I1(t)I2(t+ τ)〉
〈I1(t)〉〈I2(t)〉

=
〈I(t)I(t+ τ)〉
〈I(t)〉2

=
〈E∗(t)E∗(t+ τ)E(t+ τ)E(t)〉

〈E∗(t)E(t)〉2
≡ g(2)(τ) (3.3)

1〈E∗(t1)E(t2)〉 is equivalent to 〈E∗(t)E(t + τ)〉 with the assumption that the field is ergodic, which
means the statistical properties of the field fluctuation do not change with time. Hence, the correlation only
depends on delay τ = t2 − t1 instead of ti [153].
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For a classical stationary wave with fixed amplitude and phase E(t) = e−iω0t+iφ,
g(2)(τ) = 1 for all τ showing that its intensity is temporally uncorrelated. We can con-
sider a realistic picture of a classical field corresponding to the emission from some atoms
(for instance, a conventional gas lamp light source) and its detection corresponding to
the absorption of radiation by the atoms (for instance, via photoionization). Although
the field is associated with the process of atomic transition, which requires quantum me-
chanical theory to describe fully [155], it is shown that such light fields, and in general,
any thermal radiation2 can be satisfactorily modeled by a classical collision-broadening
theory, where the radiation is emitted from excited atoms undergoing random collision
[153]. Such a field produced by N excited radiating atoms is modeled by the sum E(t) =
E0e

−iω0t
{∑N

i e
iφi(t)

}
, where φi(t) describes the random change in the phase of the radia-

tion when a collision occurs.
The field correlator is directly computed as 〈E∗(t)E(t + τ) = NE2

0e
−γ|τ |, where γ is

the mean rate of collision3. It follows that

g(1)(τ) = e−γ|τ | (3.4)

The second-order coherence is computed similarly as4

g(2)(τ) = 1 + |g(1)(τ)|2 = 1 + e−2γ|τ | (3.5)

We see that g(2)(0) = 2 at zero delay for a thermal source, indicating that the average of
the joint intensity differentiates from the product of the average intensity measured at the
two detectors individually (〈I1(t)I2(t)〉 6= 〈I1(t)〉〈I2(t)〉), due to the thermally-induced
intensity fluctuation. In particular, the joint detection at zero delay is twice as that at
a large delay, at which point they become uncorrelated like a classical stationary wave.
More generally, it can be directly computed using the same classical model for a thermal
source that

〈I(t)l〉 = l!〈I(t)〉l

or g(l)(0, · · · , 0) = l! (3.6)

2Thermal light, also known as chaotic light, is emitted from sources in thermal equilibrium and can be
described by blackbody radiation passing through some linear filter such as a cavity [156].

3To take the statistical average of the product of E∗(t) and E(t + τ), we note that the phase change
φi is random, hence the cross terms with different values of i vanishes on average. The field correlator is
thus reduced to 〈E∗(t)E(t + τ)〉 = N〈E∗i (t)Ei(t + τ)〉 ∝ 〈ei(φi(t+τ)−φi(t))〉. Again only the atoms that
do not get collided before time τ contribute to the last term, and the probability of which is described by∫∞
τ
p(τ)dτ = (1/τc)e

−τ/τcdτ , where τc is the mean time between collision [153].
4Cross terms involving fields from different atoms i give an overall zero average. Assuming N is

very large such that only the terms with a leading factor of N2 dominate, we are left with only these

two terms in the intensity correlator,
∑N
i 6=j

〈
E∗i (t)E∗j (t + τ)Ej(t + τ)Ei(t)

〉
→ N2

〈
E∗i (t)Ei(t)

〉2
,

and
∑N
i6=j

〈
E∗i (t)E∗j (t + τ)Ei(t + τ)Ej(t)

〉
→ N2

〈
E∗i (t)Ei(t + τ)

〉2
. Upon normalization to

N2
〈
E∗i (t)Ei(t)

〉2
and comparing to the form of g(1) we have equation 3.5 [153].
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3.1.2 Quantum optical coherence
We will now examine the coherences using the quantum description of light, where the
field is quantized through associating each field mode to a quantum harmonic oscillator
[157]. The classical electric field is replaced by the field operator Ê, which is written
as the sum of a positive and a negative frequency parts, analogous to the right- and left-
propagating travelling wave in a free classical field. The photon annihilation and creation
operators, â and â†, can be understood as the process of absorbing one photon from or
emitting one to the field mode they act upon, and are associated with the positive and
negative frequency parts of the field operator respectively5.

Photon detection in the quantum picture is described by the absorption of a photon
where the field transits to a final state |f〉 via â|i〉. The probability of photon detection
using one single photon detector is thus the sum of the transitional probabilities to all final
states (which form a complete basis), given by∑

f

|〈f |â|i〉|2 =
∑
f

〈i|â†|f〉〈f |â|i〉 = 〈i|â†â|i〉 (3.7)

Measurements with two single photon detectors are thus analogously described by the
absorption of two photons with some time delay τ in between, â(t+ τ)â(t)|i〉,∑

f

|〈f |â(t+ τ)â(t)|i〉|2 =
∑
f

〈i|â†(t)â†(t+ τ)|f〉〈f |â(t+ τ)â(t)|i〉

= 〈i|â†(t)â†(t+ τ)â(t+ τ)â(t)|i〉 (3.8)

For the discussions relevant to this work, we assume the detectors are superimposed in
position as viewed by the field, and focus on the temporal correlation to characterize the
state of the oscillator. The field is thus evaluated at the same space points. It follows that
the l-fold time delayed detection is described by

〈i|â†(t)â†(t+ τ1) · · · â†(t+ τ1 + · · ·+ τl−1)â(t+ τ1 + · · ·+ τl−1) · · · â(t+ τ1)â(t)|i〉
(3.9)

The lth-order temporal coherence function defined using quantum operators is thus

g(l)(τ1, · · · , τl−1) ≡
〈â†0â

†
1 · · · â

†
l−1âl−1 · · · â1â0〉

〈â†0â0〉 · · · 〈â†l−1âl−1〉
(3.10)

where âi = â(t+ τ1 + · · ·+ τi).
For the aforementioned thermal source discussed in section 3.1.1, where a large num-

5The electric field operator is expressed as Ê(r, t) = Ê+(r, t) + Ê−(r, t). The positive frequency
part is given by Ê+(z, t) ∝

∫∞
0

√
~ωâ[ω]e−iωteikzdω, and the negative frequency part is Ê−(z, t) ∝∫ 0

−∞

√
~ωâ[ω]eiωte−ikzdω =

∫∞
0

√
~ωâ†[ω]eiωte−ikzdω, where we use â[−ω] = â†[ω] [157]. For sim-

plicity the field operator described here is projected onto a single polarized direction and quantized along
the z-axis.
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ber of modes are excited through some broadening process, the field acquires a continuous
spectrum with some finite bandwidth. More generally, the power spectral density (PSD),
or the mean energy per angular frequency of any stationary and stochastic process, where
the radiative broadening process is homogeneous (i.e., atoms absorb and emit light at the
same frequency), can be described by a Lorentzian lineshape6, given by

fF[ω] =
N

π

γ

γ2 + ω2
(3.11)

in the rotating frame of the field center frequency ω0, and N = 〈â†(t)â(t)〉 is the total
mean energy in the field. By the Wiener-Khintchine theorem [156], the autocorrelation of
â(t) (describing a stationary random process), 〈â†(t)â(t + τ)〉, forms a Fourier transform
pair with its PSD, such that

〈â†(t)â(t+ τ)〉 =

∫ ∞
−∞

f [ω]e−iωτdω =
N

π

∫ ∞
−∞

γ

γ2 + ω2
e−iωτ = Ne−γ|τ | (3.12)

The corresponding first-order temporal coherence for a thermal state is thus

g(1)(τ) =
〈â†(t)â(t+ τ)〉
〈â†(t)â(t)〉

= e−γ|τ | (3.13)

We can also examine the frequency correlation of the thermal state via the continuous
mode operator in frequency, defined as the inverse Fourier transform of â(t), â[ω] =

1√
2π

∫∞
−∞ â(t)eiωtdt. It follows that

〈â†[ω]â[ω
′
]〉 =

〈 1

2π

∫ ∞
−∞

dt

∫ ∞
−∞

dt′ â†(t)e−iωtâ(t
′
)eiω

′
t
′〉

=
1

2π

∫ ∞
−∞

dt ei(ω
′−ω)t

∫ ∞
−∞

dτ 〈â†(t)â(t+ τ)〉eiω
′
τ

=
1

2π
δ(ω − ω′)

∫ ∞
−∞

dτ 〈â†(t)â(t+ τ)〉eiωτ = δ(ω − ω′)f [ω] (3.14)

where we apply the Wiener-Khintchine theorem again in the last step by the inverse of
equation 3.12, such that

f [ω] =
1

2π

∫ ∞
−∞

dτ 〈â†(t)â(t+ τ)〉eiωτ (3.15)

6F (t) is said to be a random or stochastic process of t when F does not depend on t deterministically.
F (t) can thus only be described by its ensemble average or expectation value 〈F (t)〉 =

∫
Fp(F, t)dF ,

associated to some probability density. The autocorrelation function is thus given by 〈F (t1)F (t2)〉 =∫
F1F2p2(F2, t2;F1, t1)dF1dF2, where p2 is the two-fold joint probability density. And such a process

is then considered as statistically stationary if the properties of its fluctuations do not change with t. Its
autocorrelation is thus invariant under a translation of the origin of time and only depends on the delay in
between, and is Hermitian, equivalent to 〈F ∗(t)F (t+ τ)〉 = 〈x∗(t)x(t− τ)〉∗ [156].
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To compute the higher-order correlation, it is useful to apply Wick’s theorem which
reduces arbitrary products of the operators to sums of the products of operator pairs
[158][159]. For any Gaussian state, we can express the second-order correlation func-
tion as

〈â†(t)â†(t+ τ)â(t+ τ)â(t)〉 = 〈â†(t)â(t)〉〈â†(t+ τ)â(t+ τ)〉+
〈â†(t)â(t+ τ)〉〈â†(t+ τ)â(t)〉 (3.16)

and in frequency domain as

〈â†[ω]â†[ω
′
]â[ω

′
]â[ω]〉 = 〈â†[ω]â[ω]〉〈â†[ω′ ]â[ω

′
]〉+

〈â†[ω]â[ω
′
]〉〈â†[ω′ ]â[ω]〉 (3.17)

Using equation 3.12, we thus compute the second-order correlation and coherence function
as

〈â†(t)â†(t+ τ)â(t+ τ)â(t)〉 = N2(1 + e−2γ|τ |) (3.18)

g(2)(τ) =
〈â†(t)â†(t+ τ)â(t+ τ)â(t)〉
〈â†(t)â(t)〉〈â†(t+ τ)â(t+ τ)〉

= 1 + e−2γ|τ | (3.19)

Similarly, the third-order correlation function can be written as

〈â†0â
†
1â
†
2â2â1â0〉 = 〈â†0â0〉〈â†1â1〉〈â†2â2〉+ 〈â†0â0〉〈â†1â2〉〈â†2â1〉+ 〈â†2â2〉〈â†0â1〉〈â†1â0〉

+ 〈â†0â2〉〈â†1â1〉〈â†2â0〉+ 〈â†0â1〉〈â†1â2〉〈â†2â0〉
+ 〈â†0â2〉〈â†1â0〉〈â†2â1〉 (3.20)

where âi = â(t+ τ1 + · · ·+ τi). Plugging 3.20 into the third-order coherence functions

g(3)(τ) =
〈â†0â

†
1â
†
2â2â1â0〉

〈â†0â0〉〈â†1â1〉〈â†2â2〉
(3.21)

with the relation in equation 3.18 such that 〈â†i âj〉〈â
†
j âi〉 = 〈â†i â

†
j âj âi〉 − 〈â†â〉2, it is easy

to show that the first three terms in expanded g(3)(τ) is 1+e−2γ|τ2|+e−2γ|τ1|+e−2γ(|τ1+τ2|).
Furthermore, we have the remaining terms such as

〈â†0â1〉〈â†1â2〉〈â†2â0〉
〈â†â〉3

= e−2γ(|τ1+τ2|) (3.22)

All higher order coherences can be calculated via the Wick’s therorem as such, and we
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have

g(3)(τ) =
〈â†0â

†
1â
†
2â2â1â0〉

〈â†0â0〉〈â†1â1〉〈â†2â2〉
= 1 + e−2γ|τ2| + e−2γ|τ1| + 3e−2γ(|τ1+τ2|) (3.23)

g(4)(τ) =
〈â†0â

†
1â
†
2â
†
3â3â2â1â0〉

〈â†0â0〉〈â†1â1〉〈â†2â2〉〈â†3â3〉
= 1 + e−2γ|τ1| + e−2γ|τ2| + e−2γ|τ2| + e−2γ(|τ1+τ3|)

+ 3e−2γ(|τ1+τ2|) + 3e−2γ(|τ2+τ3|)

+ 9e−2γ(|τ1+τ2+τ3|) + 4e−2γ(|τ1+2τ2+τ3|) (3.24)

It is thus obvious that for a thermal state, the join detection at zero delay is
g(l)(0, · · · , 0) = l!, agreeing with the derivation in section 3.1.1.

A thermal state can also be described by a statistical mixture described by a density
operator ρ̂, in place for the correlation function in the continuum frequency space. For a
thermal state in thermal equilibrium with a bath at temperature T , the state is represented
by ρ̂th =

∑∞
0 p(n)|n〉〈n|, where p(n) is the probability that the field mode contains n

photons, given by the Bose-Einstein distribution

p(n) =
e−En/kbT∑
n e
−En/kbT

= (1− P )P n = 〈n〉n/(1 + 〈n〉)n+1 (3.25)

We take P = e−~ω/kbT and the mean photon number of the state is 〈n〉 = 1/(P−1 − 1).
Replacing the state vector |i〉 in equation 3.9 by ρ̂, we calculate the expectation value of
the l-fold time-delayed joint detection as

〈â†0â
†
1 · · · â

†
l−1âl−1 · · · â1â0〉 = Tr{ρ̂â†0â

†
1 · · · â

†
l−1âl−1 · · · â1â0} (3.26)

As shown with the semi-classical theory in equation 3.6, there exhibits higher order cor-
relations with a thermal state at zero delay which decays with some functions of γ. We
again compute g(l)(0, · · · , 0) with the thermal state ρth

7 such that

g(l)(0, · · · , 0) =
〈(â†)lâl〉
〈â†â〉l

=
Tr{ρ̂th(â

†)lâl}
nl

(3.27)

Note that the numerator of g(2)(0) can be written as

〈â†â†ââ〉 = 〈â†(ââ† − 1))â〉 = 〈n̂(n̂− 1)〉 (3.28)

7Note that we have ρ̂th = (1−P )
∑∞

0 Pn|n〉〈n| = (1−P )P n̂ = (1−P )P â
†â. For Hermitian operator

n̂ = â†â and n̂ =
∑∞
n=0 n|n〉〈n|, we can use the power-series expansion to write en̂ =

∑∞
l=0 n̂

l/l! =∑∞
n=0

∑∞
l=0(n

l

l! )|n〉〈n| =
∑∞
n=0 e

n|n〉〈n|, thus P n̂ = en̂ lnP =
∑∞
n=0 P

n|n〉〈n|.
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It follows that the numerator of g(l)(0, · · · , 0) can be written as

〈(â†)lâl〉 = 〈n̂(n̂− 1)(n̂− 2) · · · (n̂− l + 1)〉 (3.29)

Note that 〈n(n− 1)(n− 2) · · · (n− l + 1)〉 is the l-th factorial moment of the probability
distribution p(n) such that

〈n(n− 1)(n− 2) · · · (n− l + 1)〉 =
∞∑
n=0

n(n− 1)(n− 2) · · · (n− l + 1)(1− P )P n

=
∞∑
n=0

n!P n

(n− l)!
(1− P )

= l!P l(1− P )
∞∑
n=l

(n− l)!P n−l

(n− l)!

= l!P l(1− P )
∞∑
n=0

P n (3.30)

Substituting 〈n〉 = 1/(P−1 − 1), we have

〈n(n− 1)(n− 2) · · · (n− l + 1)〉 = l!〈n〉l (3.31)

We again have that

g(l)(0, · · · , 0) =
l!〈n〉l

〈n〉l
= l! (3.32)

Assume in an actual experiment with a measurement efficiency η, the photon number
distribution of the state, or the probability to measure n photons for a system characterized
by ρ, given by

Pn = Trρ̂|n〉〈n| =
∑
n

p(n) (3.33)

for the thermal state, is obviously compromised by η. The actual detected distribution for
the state with an expected value of n photons is

Pm =
∑
n

P (n)
m p(n) =

∑
n

((n
m

)
ηm(1− η)n−m

)
p(n) (3.34)

where P (n)
m is the probability of detectingm photons for an expectation value of n photons.

However, by the definition of photon coherences in equation 3.10, the dependence on mean
photon flux is removed by the normalization, which is thus a photon statistics of a state
independent of detection efficiency.
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3.2 Coherences for various states

We can now examine the photon coherence g(l)(τ ) at zero delay as well as its time depen-
dence as defined in 3.10 for some other states. In particular, for the second-order coherence
at zero time delay g(2)(0), we can re-write equation 3.19 as

g(2)(0) =
〈â†â†ââ〉
〈â†â〉2

=
〈n2〉 − 〈n〉
〈n〉2

=
σ2
n − 〈n〉
〈n〉2

+ 1 (3.35)

where σ2
n = 〈n2〉 − 〈n〉2 is the fluctuations in photon number.

A coherent state is a pure state given by

|α〉 = D(α)|0〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 (3.36)

where the probability of detecting n photons is given by

Pn = Tr{ρ̂|n〉〈n|} = |〈n|α〉|2 = e−|α|
2α2n

n!

=
〈n〉ne−〈n〉

n!
(3.37)

where we use 〈n〉 = 〈â†â〉 = |α|2. Note that this is a Poissonian distribution where the
expectation value and variance are both given by σ2

n = 〈n〉 = |α|2. Plugging into equation
3.35, we thus have

g(2)(0) = 1 (3.38)

for a coherent state, or any state with a Poissonian number distribution with σ2
n = 〈n〉.

High-order coherence for a Gaussian state can be calculated via the Wick’s Theorem as
done in section 3.1.2.

For a Fock state |n〉, we simply have σ2
n = 〈n2〉 − 〈n〉2 = 0, such that

g(2)(0) = 1− 1

〈n〉
(3.39)

We therefore note that there exists a correspondence between the probability distri-
bution of the state in the Fock state basis and the classical or quantum nature of the state.
Assume a constant mean photon emission rate is λ, the probability of detecting one photon
in time dt is thus λdt. And assume all the detection events are all independent and occur
at separate time, the probability of detecting n photons in time interval ∆t is thus given by
the binomial distribution,

P (n,∆t) = lim
∆t/dt→∞

((∆t/dt

n

)
(λdt)n(1− λdt)(∆t/dt−n) =

e−λdt(λdt)n

n!
(3.40)
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In the limiting case where ∆t/dt → ∞, it is reduced to the Poissonian distribution. We
thus classify the number distribution of a given state by

Poissonian, σ2
n = 〈n〉 : g(2)(0) = 1, random (3.41)

Sub-Poissonian, σ2
n < 〈n〉 : g(2)(0) < 1, anti-bunching (3.42)

Super-Poissonian, σ2
n > 〈n〉 : g(2)(0) > 1, bunching (3.43)

Note that since for any arbitrary state g(2)(∞) → 1 as photon emission events are all
uncorrelated at large time delay. We thus describe the behavior of g(2)(τ1) > g(2)(τ2) for
τ1 < τ2 for a super-Poissonian distribution as bunching, where the photons tend to arrive
together. Similarly for a sub-Poissonian distribution where g(2)(τ1) < g(2)(τ2) for τ1 < τ2,
we describe the photons as anti-bunching which are less likely to arrive together than those
of a Possionian distribution. Here I assume that the dynamics of coherence is monotonic
over some time interval ∆t where we define whether the state is Poissonian [160].

3.3 Criteria for non-classicality
Quantum states can be fully described by functions of quasi-probability distribution, anal-
ogous to the classical probability distribution. However, unlike a classical distribution
which is always positive and definite, behaviors of the quasi-probability distribution of a
non-classical state exhibit features which cannot originate from a classical theory.

The Glauber-Sudarshan P -function is an example of the quasi-probability distribution.
Since observables are expressed in normal order in a P -function, it is a natural choice
used to describe light in phase space, where operators such as n̂ are in normal order. It is
formulated in [161] [162] by Sudarshan and Glauber, where the density operator is written
in terms of coherent state projection |α〉〈α| as

ρ̂ =

∫
P (α)|α〉〈α|d2α (3.44)

known as the P -representation of state ρ̂. Here we have d2α = d<{α})d={α}) and P (α)
being the Glauber-Sudarshan P -function. To determine P (α), we have

〈β|ρ̂|β〉 =

∫
P (α)〈β|α〉〈α|β〉d2α

= e−|β|
2

∫
P (α)e−|α|

2

eβα
∗−β∗αd2α (3.45)

Inverting the Fourier integral, We thus have

P (α) =
e|α|

2

π2

∫
〈β|ρ̂|β〉e|β|2e−βα∗+β∗αd2β (3.46)

And P (α) is normalized such that
∫
P (α)d2α = 1 [156].
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For a coherent state, we have

〈β|ρ̂|β〉 = e−|β|
2−|α′|2eβα

′∗+β∗α′ (3.47)

It follows that

P (α) =
e|α|

2

π2

∫
e−|α

′|2eβ(α
′∗−α∗)−β∗(α′−α)d2β = δ2(α− α′) (3.48)

which should be intuitive for coherent state in the |α〉 basis. It shows that for a coherent
state, the P -function is indeed positive and definite, and the coherent state has the same
phase space function as in the classical integral representation∫

δ(x− x0, p− p0)dxdp (3.49)

for a classical oscillator at (x0, p0). For a thermal state, it can be shown that

P (α) =
e−|α|

2/〈n〉

π〈n〉
(3.50)

which is positive everywhere as well.
For a non-classical state such as the Fock state [156], we have

〈β|ρ̂|β〉 =
e−|β|

2
(−|β|2)n

n!
(3.51)

where ρ̂ = |n〉〈n|. This yields

P (α) =
e|α|

2

n!π2

∫
−|β|2ne−βα

′∗+β∗αd2β

=
e|α|

2

n!

∂2n

∂α∗n∂αn
δ2(α) (3.52)

which involves the second derivative of the delta function, exhibiting singularity that clas-
sical probability distribution does not have.

3.3.1 Non-classical bound
In the field of quantum optics, non-classical states are generally defined as any states with
a P -function that has negativity somewhere which cannot be described by a mixture of
coherent states. And we can see that written in terms of photon coherence, when P (α) is
non-negative everywhere, this statement results in∫

d2αP (α)(|α|2 − 〈â†â〉)2 ≥ 0 (3.53)
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which is equivalent to

g(2)(0) = 〈â†â†ââ〉 − 〈â†â〉2 − 〈â†â〉 ≥ 1 (3.54)

We thus have the classical bound g(2)(0) ≥ 1 where a violation to it is sufficient to prove
the state is non-classical and its P -function has some negativity.

3.3.2 Cauchy-Schwarz inequality

While the phonon coherence g(l) as we so far has discussed evaluates the auto-correlation
of photons from the same state, in order to verify correlations between different modes we
need to access their cross-correlations to examine their joint probability distribution.

The Cauchy-Schwarz inequality states that for any classical probability distribution,

|〈u, v〉|2 ≤ 〈u, u〉 · 〈v, v〉 (3.55)

where 〈·, ·〉 is the expectation value of the inner product [153].
We denote the cross-coherence between mode a and b as g(l)

a,b, such that

g
(2)
a,b =

〈â†b̂†b̂â〉
〈â†â〉〈b̂†b̂〉

(3.56)

for the second-order coherence. Comparing it with the auto-coherences where

g(2)
o,o =

〈ô†ô†ôô〉
〈ô†ô〉〈ô†ô〉

, ô = â or b̂ (3.57)

it is straightforward to see that

g
(2)
a,b(τ)2 ≤ g(2)

a,a(τ)g
(2)
b,b (τ) (3.58)

since we have

〈â†b̂†b̂â〉2 ≤ 〈â†â†ââ〉〈b̂†b̂†b̂b̂〉 (3.59)

by the Cauchy-Schwarz inequality for any classical joint probability distribution. A viola-
tion of equation 3.58 thus directly verifies the non-classicality of the joint state. This is a
standard criteria in quantum optics to verify the fidelity of entanglement, for instance for
photon-phonon entanglement [24], phonon-phonon [26], or Hanbury-Brown-Twiss exper-
iment for a single phonon state [25] in a silicon microbeam optomechanical system.

3.4 Hierarchy of non-classical effects
There exists a hierarchy of non-classical effects, each is associated to stronger quantum
effects which the states in the lower non-classicality tier do not have [89] [163] [164]
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[165].
We discuss the non-classical bound in the previous section, which is the lowest tier of

hierarchy. Negativity in P -function distinguishes it from arbitrary mixtures of coherent
states, which are considered as the most classical quantum states, setting the boundary
between classicality and non-classicality.

The next tier is categorized to be the non-Gaussian quantum states, which cannot be
described by the statistical mixture of any pure Gaussian states. We can consider a general
Gaussian state given by

ρ̂α,ξ,〈n〉 ≡ D̂(α)ρ̂ξ,〈n〉D̂†(α) = D̂(α)Ŝ(ξ)ρ̂〈n〉Ŝ†(ξ)D̂†(α) (3.60)

which is a thermal state squeezed by ξ and displaced by α, with D̂(α) and Ŝ(ξ) being
the displacement and squeezing operators respectively, and ρ̂〈n〉 is the density matrix of a
thermal state with occupancy 〈n〉. At maximum amplitude squeezing, it is shown [166]
that

g(2)(0) = 1 +
2|α|2(d− s) + s2 + d2

(|α|2 + d)2
(3.61)

where

〈n〉tot = |α|2 + d (3.62)

d = Tr[ρ̂ξ,〈n〉â
†â] (3.63)

s = Tr[ρ̂ξ,〈n〉ââ
†] (3.64)

Conditions on displacement (thermal occupancy) and squeezing can reduce g(2)(0) < 1,
below the classical threshold set by the coherent state g(2)(0) = 1. Gaussian states can
thus be non-classical, while the non-Gaussian states are a subset of non-classical states
which exhibit more quantum features.

Furthermore, since Wigner function of any Gaussian state is positive anywhere, a vio-
lation of the Wigner-function positivity is considered as the highest tier in non-classicality.
An example of a non-Gaussian state that has a positive Wigner function is a single-photon
state in the presence of large optical loss, destroying its robustness [167] [168]. It is shown
that any quantum circuits that can be described by postitive Wigner function can be calssi-
cally efficently simulated [19], indicating that a non-negative Wigner function is essential
to achieve true quantum advantage in quantum computing.
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Chapter 4

Measurement Setup

The purpose of this chapter is to give a detailed description of the measurement setup
of the experiment. I will describe the optical paths and electrical circuits configured to
realize the single photon counting experimental scheme introduced in Chapter 2.4. Then I
will describe the measurement and data acquisition procedure used to record single photon
scattered by the acoustic mode.

4.1 Optical setup
The optical schematic is illustrated in Figure 4.1, as well as in the frequency domain in
Figure 4.2. The optical beam paths are divided into two configurations: the lock configu-
ration depicted in green, and the drive configuration in orange. We alternate between the
two during the experiment. During the lock period, a lock tone is prepared to lock all the
optical components to the desired frequencies. During the drive period, most of the optical
components are free-running without active feedback, while a drive tone is sent to the op-
tomechanical cavity (OMC) and the sideband photons scattered by the acoustic mode are
collected for analysis. A series of MEMS optical switches1 are used to alternate between
the optical paths of the two configurations, and the time sequence is described in section
4.2.

The lock tone is produced by a diode tunable laser (TL)2. It is prepared in region
(A) in Figure 4.1, and is described in detail in section 4.1.1. The lock tone enters an IQ
modulator (MIQM)3 operating in the single-sideband carrier-suppressed mode (SSBCS),
such that the output contains only one tone that is downshifted in frequency from ωTL to a
frequency that will be locked to the OMC resonance at ωc, via feedback to the MIQM (see
section 4.1.1).

An Erbium-doped fiber amplifer (EDFA)4 amplifies the lock tone exiting the MIQM

1Thorlabs 1× 2 MEMS fiber-optic switches; Model: OSW12-1310-SM.
2ID Photonics CoBrite DX1; Model: PPCL200.
3EOspace QPSK modulator; Model: IQ-ODKS-25.
4Thorlabs Erbium-doped fiber amplifier; Model: EDFA100S
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anti-Stokes Stokes

OMC
Signal filters

Drive tones Lock tone

Acoustic
sidebands

Figure 4.2: Spectrum of optical tones and components showing the frequencies of the
drive tones (BL, RL), the lock tone (TL), the optomechanical cavity (OMC), the Stokes-
and anti-Stokes-scattered acoustic sidebands, and the signal filters (FC1, FC2).

from 5 µW to 1.4 mW. The following broadband filter5 suppresses the amplified sponta-
neous emission (ASE) noise produced by the EDFA. A total of ∼ 0.5 mW of lock tone
power is then split6 into a portion to be used for the locking of the drive tones (90%), and
a portion used to lock the TL and the signal filters (FC1, FC2) (10%). The latter passes
through an electro-optic modulator (EOM)7 which produces a pair of sidebands on the
lock tone for standard Pound-Drever-Hall (PDH) locking (see appendix A.1), and 10% of
which is then sent to a monitor filter cavity (MFC)8. The transmission of the piezo-tuned
MFC is detected on a photodetector (PD)9 to monitor the spectrum of the lock tone exiting
the MIQM and to tune its control voltages for its optimal operation in the SSBCS regime
(see section 4.1.1).

The rest of the 90% is further split into three parts, which are sent to the OMC and
the two signal filter cavities (FC110, FC211). The TL gets locked to the OMC centering
at ωc, and the FCs are simultaneously locked to the TL, as illustrated in Figure 4.2. Even
though the lock tone is switched off during data acquisition under the drive configuration,
it is further attenuated to an optical power of ∼ 0.1 µW before being sent to the OMC to
minimize residual heating on the acoustic resonator. Reflection from the OMC is obtained
via a circulator12 as the error signal for the PDH lock. It is detected after being amplified
by an EDFA13 by a factor of ∼ 20 in order to improve the SNR of the signal, which will

5OZ Optics tunable filter; Model: TF-100-11; linewidth ∆λbroadband ≈ 0.3 nm.
6All optical couplers/splitters used in our setup: Thorlabs’ SM/PM 1× 2 or 2× 2 fiber couplers series.
7EO Space phase modulator; Model: PM-OKS-10.
8Made in-house; κMFC/2π ≈ 200 MHz; free spectral range ∆ωMFC/2π ≈ 1.5 THz.
9All photodetectors used in our setup are from the Thorlabs’ PDA10CS series unless otherwise specified.

10Micron Optics FFP-SI FF24U8; κFC1/2π = 1.71 ± 0.02 MHz; ∆ωFC1/2π ≈ 1 GHz
11Micron Optics FFP-SI FF24U7; κFC2/2π = 1.21 ± 0.05 MHz; ∆ωFC2/2π ≈ 1 GHz
12Thorlabs SM fiber optic circulator. Model: 6015-3-APC.
13NuPhoton EDFA; Model: EDFA-CW-LNF-RS-10-40-FCA.
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otherwise be dominated by the amplifier noise on the PD output. The amplified reflected
beam is filtered by a broadband filter14 to suppress the ASE noise. FC1 and FC2 are
similarly locked on reflection via PDH locks that operate by sending feedback to their
piezos (see appendix A.1).

The drive tones are prepared in region (B) in Figure 4.1, and is described in detail in
section 4.1.2. The two drive lasers, BL and RL15, are used to produce the lock tone. They
can be current-, temperature-, and piezo-tuned via their controller16. They are continuously
frequency-offset locked by approximately +ωac and−ωac from the lock tone at ωc as shown
in Figure 4.2, such that only the scattered acoustic sideband photons can transmit through
the signal filters centering at ωc. The two drive tones are combined to the common drive
optical path (depicted in orange) via a 50/50 fiber coupler to drive the OMC. The pair of
shutters17 are used to determine whether the BL or the RL drives the OMC. The shutter
suppresses the input by 55 dB in its closed state, thus ensuring that only one drive tone
can reach the OMC when one shutter is kept closed. The shutter have a fast response time
of ∼ 100 ns and a repetition rate greater than 1 MHz, which are suitable to set the desired
pulse sequence for pulsed measurements (see section 5.4).

During the drive configuration, sideband photons that are scattered by the acoustics
are sent to the FCs, along with the unscattered drive photons that account for a dominating
majority (∼ 1 per 109 of the drive photons is scattered) of the photons exiting the OMC.
The two FCs combined in series suppress those unscattered photons that are ±ωac away
from their resonance at ωc by a factor of 10−10. An optical isolator (ISO)18 is inserted to
prevent a poor finesse cavity from forming in between the two FCs which would disturb
the locking of the individual cavities.

The sideband photons exiting the FCs are collected by a pair of SNSPDs19. The setup
in region (C) in Figure 4.1 is described in detail in section 4.3. It allows for the opti-
mization of the polarization of photons entering the SNSPDs, as their quantum efficiency
is polarization-dependent. It also calibrates the overall efficiency of the photon detection
chain. We note that the SNSPDs have a dead time < 50 ns, which is much shorter than
the coherence time of our acoustic resonator (10 - 100 µs). Multiple scattering events
occurring during the coherence time are thus detectable by each of the SNSPDs individu-
ally. Therefore, the photon arrival times recorded by the two SNSPDs are combined into
a single record for the analysis presented in this work.

Since the OMC and the FCs are highly birefringent, each input to the cavity is pre-
ceded by a manual polarization controller (PC)20 to adjust the input polarization to one
of the polarization eigenstate of the cavities. The EOM is polarization-sensitive as well
which requires the polarization of the input light to be aligned to the optical axis of its

14OZ Optics tunable filter; Model: TF-100-11; linewidth ∆λbroadband ≈ 0.6 nm.
15Toptica grating stabilized tunable single-mode diode laser; Model: DLPro.
16Toptica DLC pro laser controller.
17BATi Nanona ultra-fast optical switch; Model: FOS 3220.
18Thorlabs fiber isolator; Model: IO-F-1550APC.
19Quantum Opus 1550 nm superconducting nanowire single-photon detectors.
20Thorlabs 3-paddle polarization controllers; Model: FPC032.
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Figure 4.3: Lock tone preparation Green solid lines denote the optical fibers, and gray
lines denote the electrical connections. The tunable laser (TL) is continuously locked to the
reference filter cavity (LFC) to enhance frequency stability of the TL output. The lock is
implemented via microwave feedback to an IQ modulator (LIQM) serving as a frequency
shifter of the TL output. Control voltages (DC1, DC2, DC3) are adjusted such that the
LIQM operates in the SSBCS regime. A voltage-controlled oscillator (VCO) serves as the
LO that sets the frequency shift by converting the error correction in voltage generated by
the PID module into a microwave output.

crystal. The variable optical attenuators (VOA)21 are voltage controlled and located in
various junctions of the optical path to set the desired power for monitoring, testing and
measurement purposes. In particular, the power of the drive tones are continuously locked
via feedback to the VOAs in their respective paths. The error signal is generated by the
difference between the desired optical power setpoint and the power detected at the drive
power PDs, while the feedback signal is generated by a proportional-integral-derivative
(PID) module22.

4.1.1 Lock tone preparation
A schematic for the preparation of a frequency-stabilized lock tone (region (A) in Figure
4.1) is shown in Figure 4.3. The output of the TL is continuously locked to a free-running
(no feedback to its piezo) reference cavity (LFC)23 before being sent to the OMC. The LFC
is temperature stabilized (see appendix A.2) to stabilize its resonant frequency, allowing
it to serve as a frequency stabilizer for the TL, which otherwise would wander over a few

21Thorlabs eletronic variable optical attenuator; Model: V1550A; Max attenuation 30 dB.
22Liquid Instruments Moku-Lab; Instrument: PID controller.
23Micron Optics FFP-SI FF24WZ; κLFC/2π ≈ 2 MHz, ∆ωLFC ≈ 1 GHz.
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GHz on the scale of a day due to thermal drift.
The optical path is shown by solid green lines in Figure 4.3. The TL passes an ISO

to prevent back-reflection into the laser which impairs its frequency stability and causes
damage to the diode. It then enters an IQM operating in the SSBCS regime (LIQM)24.
The output is a single tone downshifted in frequency. It is split 90/10, where the 90%
exits region (A) into the MIQM as the stabilized lock tone. The 10% path is sent to an
EOM25, which adds a pair of sidebands to generate the error signal for a PDH lock. The
TL operates at a constant power around 15 mW. Upon entering the EDFA in Figure 4.1, the
lock tone power reduces to 5 µW after tone preparation in region (A) and passing through
the MIQM.

The electrical connections are shown by gray lines in Figure 4.3. To implement the
lock via feedback to the IQ modulator, a PDH error signal is obtained from the reflection
off the LFC of the phase-modulated lock tone (see appendix A.1). A feedback signal is
then generated using a commercial PID controller26. The feedback voltage is converted
to a correction in frequency with the use of a voltage-controlled oscillator (VCO)27. The
low-pass filtered28 feedback signal drives the VCO which outputs a microwave signal LO
at ωVCO. The fast response time and wide tuning range of the VCO are ideal for imple-
menting locks with large bandwidth and allow for a large accumulated correction in laser
frequency drift. The depth of modulation at the LIQM is determined by the amplitude
of the LO, and is tuned by a voltage-controlled variable attenuator (VVA)29 followed by
a fixed-gain amplifier30 and a low-pass filter31 to eliminate higher order harmonics in the
amplified output. Bias voltage to the VVA (VDC) is manually tuned to eliminate higher
order harmonics in the LIQM output.

To implement the lock where the IQM serves as a frequency shifter, it must operate in
the SSBCS regime such that the output of the modulator contains strictly one frequency-
shifted tone. An IQM consists of two Mach-Zehnder interferometers combined in parallel
as illustrated in Figure 4.4. One arm of each of the interferometers has a tunable phase
(φ1, φ2) set by a bias voltage (DC1, DC2), along with a small amplitude fast modulation
set by Q(t) and I(t). The output of each interferometer is then recombined with one side
gaining another tunable phase φ3 set by DC3. It can be shown that to operate the IQM in
an ideal SSBCS regime, φ1 = φ2 = π and φ3 = π/2 need to be satisfied to suppress the
carrier, and the output of the IQM is then described as

aIQM(t) = aTLe
−iωTLt(I(t) + iQ(t)) (4.1)

where Q(t) and I(t) are of small amplitude and known as the in-quadrature and in-phase
signal, and aTLe

−iωTLt is the input tone the IQM[39]. Bias voltages (DC1,2,3) are manually

24Photline Dual Parallel Mach Zehnder Modulator; Model: MXIQ-LN-40. Vπ = 7V.
25Thorlabs 10GHz Lithium Niobate Phase Modulator; Model: LN65S-FC.
26New Focus PI controller; Model: LB1005.
27Mini-Circuits ZX95-1410-S+; Frequency tuning range: 850 - 1410 MHz.
28Stanford Research System low-pass filter; Model: SIM 965.
29Mini-Circuits variable voltage attenuator; Model: ZX73-2500-S+.
30Mini-Circuits ZHL-2-12; 15 dB gain.
31Mini Circuits VLF-1350+.
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input output

IQM

Figure 4.4: IQM operating in the SSBCS regime consisting of two Mach-Zehnder inter-
ferometers combined in parallel. Control signals into its ports, including DC1,2,3 (slow,
large amplitude ) and Q(t) and I(t) (fast, small amplitude), set the phase changes in their
corresponding interferometer arms to produce the phase and amplitude modulation of in-
terest.

set by an analog output module32 which are then amplified by a home-built low noise
amplifier, such that the tuning range is large enough to cover the Vπ of the IQM, which is
the voltage required to induce a π-phase shift.

In addition, forQ(t) and I(t) of equal amplitude and 90°out of phase, such thatQ(t) =
β sin (ωVCOt) and I(t) = β cos (ωVCOt), equation 4.1 becomes

aIQM(t) = aTLe
−iωTLt(β cos (ωVCOt) + iβ sin (ωVCOt)) = aTLβe

−i(ωTL−ωVCO)t (4.2)

where the output of the VCO is split by a 90° splitter33 as the I and Q inputs into the
LIQM shown in Figure 4.3. The LIQM now outputs exactly one downshifted tone as the
stabilized lock tone at frequency ωLFC = ωTL − ωVCO as set by the VCO.

To lock this stabilized lock tone to the OMC, another IQ modulator (MIQM) is used
to downshift its frequency from ωLFC to ωc. The electrical setup on the MIQM (not shown
in Figure 4.3) is identical to that of the LIQM.

Output of the two IQMs in series is monitored via its transmission through the MFC,
in order to individually and manually tune the bias voltages to the IQMs to set the desired
phases for them to operate in the SSBCS regime. A typical transmission of the piezo-swept
MFC is given in Figure 4.5, showing the spectra of the lock tone when the IQMs operate
in different regimes. The top spectrum contains the carriers and pairs of sidebands from
both IQMs. By turning off the modulation depth on the MIQM, the LIQM is optimized
individually first such that only a single sideband tone is visible. The middle of Figure 4.5
shows the spectrum after LIQM optimization and the modulation on MIQM is turned back
on. The extra small peak indicates a non-negligible output in the higher order harmonics,
and can be eliminated by reducing the modulation depth via the VVA. The right-hand
figure shows an ideal spectrum of both IQMs operating in their ideal SSBCS regime.

32National Instrument static analog output device. Model: PXI-6704.
33Mini-Circuits power splitter; Model: ZX10Q-2-12-S+.
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Figure 4.5: Optimizing control voltages of the IQMs The spectrum of the lock tone exit-
ing the LIQM and subsequently MIQM is monitored via its transmission through the MFC.
The plots show the regime where (left:) both IQMs are operating away from the SSBCS
regime, (middle:) LIQM is optimized and its single sideband output acts as the carrier for
the unoptimized MIQM, and (right:) both IQMs are operating in the ideal SSBCS regime
with a single downshifted stabilized lock tone locked to the OMC.

The extra tones are suppressed by a factor of 45 dB via this method, which is limited by
the amplifier noise on the MFC PD output, but sufficient to achieve stable locks for our
measurement. Note that the IQMs are temperature stabilized such that the TL lock lasts
at least 48 hours without active feedback to the IQM bias voltages. After this period, they
could deviate significantly from the SSBCS regime and introduce extra tones that interrupt
the locks.

4.1.2 Drive tone preparation
A schematic for the preparation of the drive tones (region (B) in Figure 4.1) is shown in
Figure 4.6. The BL and RL are continuously locked to the lock tone at ωc with a frequency
offset of ∼ ±ωac. 10% of each laser is used to implement the beat lock. Each combines
with the lock tone via a 50/50 coupler and the detected beat note is used to generate the
error signals for a beat lock 34. The implementation of such a lock is described in detail
in the following section 4.1.2. The BL and RL can be sent to the OMC directly via the
monitor tap-off, and the reflection from the OMC is detected by sweeping the laser piezo
to monitor the drive tone spectrum directly. This is particularly useful when the lasers
experience mode-hopping and need to be tuned manually to operate in single mode.

Before reaching the OMC, each drive laser passes through a fiber-optic cavity (BFC,
RFC)35 to get rid of the broadband classical noise of the lasers. BFC and RFC are locked
to BL and RL respectively on transmission via thermal tuning of the cavities. The error
signal is generated by the difference between the setpoint (∼80% of the max transmission
through VFC and RFC on resonance) and the actual transmitted optical power detected
on the photodetectos in the tap-off arms (BFC PD, RFC PF). The feedback loop is im-
plemented digitally via LabView36, and the feedback voltage is converted into a control

34Thorlabs photodetector DET 01CFC; Maximum bandwidth 1.2 GHz� ωac, which is required to detect
the beat note of frequency ωac.

35Micron Optics FFPI, κBFC, RFC/2π ≈ 30 MHz, ∆ωBFC, RFC ≈ 12.5 GHz.
36National Instrument NIUSB6210.
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Figure 4.6: Preparation of drive tones The BL and RL are constantly locked to the lock
tone at ωc with a frequency offset via a beat lock. Each drive tone passes through a filter
cavity (BFC, RFC) for boradband noise filtering before entering the OMC.
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Figure 4.7: Drive laser noise filtering Count rate detected by the SNSPDs and normalized
by drive power is plotted against the offset frequency of the BL from ωc, which exhibits an
overall frequency-dependent descending background counts. It decays following the tail
of the filter cavity transfer function, and is significantly reduced with the addition of the
broadband drive laser noise filter cavity BFC.
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Figure 4.8: Schematic of the drive laser beat lock Gray lines show the electrical connec-
tions. The optical beat tone is detected by a PD and mixed down to generate a frequency
dependent error signal via a frequency-to-voltage (FTV) converter, which makes use of
the amplitude response of a high pass filter.

current to the cavities via a temperature controller37.
To characterize the laser noise suppression, the BL is sent to drive the OMC either

following or bypassing the BFC. The photon count rate detected by the SNSPDs is nor-
malized by drive power and plotted in Figure 4.7, as a function of the offset frequency
of the BL ∆ωBL from ωc. Here, the offset frequency is locked at discrete steps over a
wide frequency range to examine the pattern in the overall background in particular. As
illustrated in Figure 4.2, there exists a narrow acoustic sideband feature centered at ωac ≈
315 MHz (denoted by the vertical line). A detailed description and characterization of the
acoustic sideband as well as the other peaks exhibited in Figure 4.7 will be presented in
section 5.1. These signatures appear on top of a frequency-dependent descending back-
ground, which corresponds to the tail of the transfer function of FC1 and FC2 in series in
the detection chain, and either with or without the addition of the BFC. The background
is fit to ∆ωBL

−α. The addition of BFC increases the best-fit value of α from 2.1 to 2.4. At
the frequency of interest (∆ωBL ≈ ωac), the background count rate is reduced from 39 to
13 s−1µW−1.

Drive tone beat lock

A schematic of the beat lock is shown in Figure 4.8, where the gray lines indicate electrical
connections. As discussed before, the a beat lock PD detects a beat at ∼ ωac. The beat
signal is mixed down38 with a LO39. The mixed-down tone is amplified by 17 dB and then
low-pass filtered to eliminate higher-order harmonics from the amplifier. In order to gen-
erate the error signal for a frequency offset lock, a frequency-to-voltage (FTV) converter
is implemented to produce a frequency dependent error signal [169].

One way to achieve this goal is to utilize the amplitude response of an electronic high

37Stanford Research Systems programmable temperature controller PTC10.
38Mini-Circuits mixer. Model:ZX05-10L-S+.
39Vaunix RF signal generator. Model: LMS-451D.
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Figure 4.9: Error signal obtained from the frequency-to-voltage (FTV) converter,
where the voltage output of the FTV circuit is plotted against the beat frequency sent
into the FTV. The setpoint at zero-point voltage crossing is around 24 MHz for our circuit.

pass filter (HPF)40 that has a sharp slope around its cutoff frequency fHPF [170]. The LO is
set to frequency ωac + ωFTV such that the mixed-down tone serves as the input to the FTV
converter and has a frequency ωFTV ≈ fHPF. It is split 50/50 into two branches. One branch
passes through the HPF, while the other is attenuated by 3 dB directly. The two branches
are sent into the positive and negative input ports of the FTV respectively, which consist of
diodes of opposite direction that produce a positive and negative DC signal respectively.
The sum of these DC signals are used as the error signal. A detailed schematic of the
home-built FTV circuit is described in appendix A.3. Figure 4.9 shows an example of the
error signal produced by the FTV circuit as a function of the beat frequency input. The
circuit produces a steep slope with near-linear dependence around the lock point at the
zero voltage crossing, ωFTV ≈ 25 MHz, hence allowing for a feedback loop that keeps the
drive tones frequency-offset locked to the TL. The error signal is sent to a commercial PID
module41 that generates the voltage correction sent to the drive laser piezo.

4.2 Measurement time sequence
During a continuous wave (CW) measurement, which is the main protocol for obtaining
the results presented in this work, we alternate between the two configurations, lock and
drive, as discussed in the previous section. A detailed time sequence regulating the switch-
ing of the optical paths, the locking and the data acquisition procedure is shown in Figure
4.10.

A master TTL (transistor-to-transistor logic) signal is used as the main trigger for reg-
ulating the time sequence of the experiment. It is a 5 Hz square wave with a 50% duty
cycle. The drive configuration corresponds to the high state of the TTL in our experiment.
The master TTL is used as the trigger for a field-programmable gate arrays-enabled in-
put/output(I/O) device (FPGA)42. It is programmed to send out subsequent triggers and

40Mini-Circuits LC high pass filter. Model: BHP-25+.
41Liquid Instruments Moku-Lab; Instrument: PID controller.
42National Instrument PXI multifunction reconfigurable I/O module: PXI-7854R.

52



Master TTL

Lock-Hold 
trigger

SW A/B
(Drive tone)

Lock tone

SW A

SNSPD gate/
DAQ

a

c

e

b
d

e

f f
g

Figure 4.10: Measurement time sequence showing the master TTL regulating the drive
and lock cycles, the lock-hold trigger controlling the lock feedback to the lock tone and
signal filters, the control signal to the optical switches which set the optical paths under
different configurations, and the triggering of the SNSPD and data acquisition ( DAQ)
window. See text for the exact time offsets between these control signals.

control signals, upon triggering from the master TTL, to various instruments with precise
control on their timing and synchronization.

The first control signal is a lock-hold (LH) trigger sent to the PID controllers used for
locking the lock tone and the signal filters. As the lock tone gets switched out of the optical
path under the drive configuration, the PID controllers no longer receive information on
the error signal. The LH trigger (high state) signals the PID controllers to stop performing
error correction and hold their current states so that the lock is preserved when the lock
tone is switched back on. The LH trigger lags ta = 1 ms behind the master TTL. It remains
in the high state for tb = 97.6 ms, during which the feedback signals to the lock tone and
the signal filters are held as they are free-running from the OMC.

The switching between sending either a lock tone or a drive tone into the OMC is
controlled by optical switches SW A and SW B as illustrated in Figure 4.1. The TTL signal
used to control them is shown in orange in Figure 4.10, where the switches are switched
to the drive configuration path when the TTL is in the high state. The time during which
the lock tone is sent to the OMC is shown in green as a mirror image of the drive tone
control signal. The FPGA outputs the orange control signal, which lags tc = 30 µs behind
the LH trigger. This is to ensure that the locks do not lose the error signal produced by
the lock tone before the PID controllers are set to the hold state. For the same reason, SW
A and B are switched back to the lock configuration td = 1.1 ms before the LH trigger
turns off to ensure that the switches have had enough time to switch back43, such that only
the lock tone is being sent to the cavities and the correct error signals have been generated

43The switches (Thorlabs OSW12-1310-SM) are measured to have a max switching time < 1 ms.
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when the PID controllers are turned back on. Note that the digital I/O ports of the FPGA
cannot provide sufficient current for multiple switches, the control signal (orange) is thus
sent to a function generator44 as the trigger for it to output a 5V square wave (identical to
the orange TTL) as the control signal to the optical switches.

The rest of the optical switches (denoted by SW Ā) are controlled via the same scheme.
The control signal (yellow) lags te = 780 µs behind that of SW A and B. This is to account
for the switching time of SW A and B and ensure that the lock tone is completely switched
out of the optical path so that it will not pass the signal filter FCs. Under the drive config-
uration, the output of the FCs in series is connected to the SNSPDs, and the huge photon
flux of the lock tone on resonance with the FCs could damage the SNSPDs. TTL for SW
Ā also switches off te = 780 µs before the SW A TTL. This is also to ensure that the optical
path to the SNSPDs is cut out (by the switching of SW Ā) completely before SW A and B
switch the lock tone back on.

Finally, a control signal is used to gate the SNSPDs (dark blue), such that the SNSPDs
are only enabled during gate high state. The control signal is identical to the master TTL.
The photon detected by the SNSPDs are time tagged by the time-correlated single photon
counting (TCSPC) electronics45. With the gate signal, each photon’s time tag of detection
can be labeled by the relative time of arrival with respect to each master TTL trigger and
the photon counts are histogrammed over a large number of drive-and-lock cycles. The
triggering and histogramming of the photon counts allow for long averaging times, which
improve the SNR. An example of the photon arrival histogram is shown in Figure 4.11.
The detected counts are histogrammed by 0.5 ms of relative time window over 16000 drive
and lock cycles, then normalized by the total time in each window to obtain the count rate.
The erratic count rate shown in the first 5 ms and last 5 ms during the drive window are due
to switching between the optical paths and lasers. Hence as shown by the data acquisition
(DAQ) window (dashed blue line), only the photons arriving during the middle 90 ms
of the drive period are kept for data analysis for the CW measurement presented in this
work. This also ensures that only a steady flux of acoustic sideband photons of interest
are analyzed when characterizing the acoustic resonator in thermal equilibrium to exclude
transient behavior (due to heating and optomechanical backaction).

4.3 Detection efficiency calibration
The overall efficiency along the detection chain is routinely optimized and calibrated dur-
ing the experiment via the setup illustrated in Figure 4.12 (region (c) in Figure 4.1).

Independent measurements of the signal FCs gives their maximum transmittivity as
17% and 40% individually, corresponding to an overall transmittivity in series of ∼ 7%.
These values are highly polarization-dependent. As a result, the input polarization is ad-
justed by the two PCs preceding the FCs. The transmittivity is calibrated via the “Trans
In PD” photodiode at the input of the detection chain and the “Trans PD”46 at the out-

44Rigol arbitrary waveform generator DG1022
45PicoQuant TCSPC and MCS board with PCIe interface; Model: TimeHarp 260.
46Thorlabs fixed gain amplified detector; Model: PDF10C.
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Figure 4.11: Histogrammed count rate detected by the SNSPDs is plotted as a func-
tion of the time of detection relative to the SNSPDs trigger. The detected counts are
histogrammed by 0.5 ms of relative time window over drive and lock cycles. Dashed lines
show the master TTL signal (also the SNSPDs gate) and the DAQ window.

put. Sideband photon signal is too weak to be measured on standard PDs, hence the
on-resonance lock tone is routinely (usually every 1 to 5 minutes during an experiment)
sent through the FCs to track any slow changes in their transmittivity (which is mainly due
to temperature-induced changes in the polarization and lock quality). During the trans-
mittivity calibration, the drive-and-lock timing sequence is identical to that of an actual
experiment, only with SW B being kept continuously in the low state to allow the lock
tone into the drive configuration path while the FCs are free-running in frequency, and
the SNSPDs are disabled to avoid detecting the huge flux of lock photons. The overall
transmittivity measured via this setup is typically ∼ 5%.

Other losses in the detection chain following the exit of sideband photons from the
OMC originate from intermediate optical components along the path, including optical
fibers, circulator, isolator, and splitters. The total efficiency of these components is inde-
pendently calibrated to be ∼ 0.55.

The quantum efficiencies of the SNSPDs are highly dependent on the input polariza-
tion of the photons, which is optimized prior to each experiment. A very weak lock tone
from the 0.1% tap-off is sent to the SNSPDs after passing a PC, a polarization beam split-
ter (PBS)47 followed by another PC. The PC and attenuators preceding the PBS ensure
the lock tone does not saturate the SNSPDs during optimization. The PBS then splits or-
thogonal polarizations into two polarization-maintaining (PM) output ports, such that the
input polarization to the SNSPDs is maintained by the output of the PBS, regardless of
the source and polarization of the input photons. The “PBS PD” photodiode detects the
amount of light in the other orthogonal polarization, which is minimized by adjusting the
PC at the output of the FCs to allow maximum transmittivity via the PBS. The PCs fol-
lowing the PBS output are then adjusted to maximize detection efficiency of the SNSPDs,

47Thorlabs polarization beam splitter; Model: PBC1550SM-APC.
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Figure 4.12: Setup for the calibration and optimization of detection efficiency (shown
as region (c) in the full optical schematic 4.1). A polarization beam splitter is used to
maintain and control the input polarization into the SNSPDs to maximze their quantum
efficiency. Multiple tap-off and PDs are used to chracterize the efficiency of the detection
chain.

which is ∼ 0.9 according to the specification. The overall efficiency of the detection chain
is thus estimated to be ηdet, est = 2.5%. The detection efficiency is alternatively inferred
from sideband photon count rates and modeling of the effective phonon occupancy of the
mechanical resonator, which will be discussed in more detail in the next chapter.
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Chapter 5

Device Characterization

The purpose of this chapter is to give a detailed characterization of our optomechanical
resonator. I will first describe how we probe the acoustic mode via photon counting spectra
constructed from the sideband scattered photons. Then I will present our characterization
of the device temperature via phonon thermometry. We model the effective mean phonon
occupancy of the acoustics as a function of the superfluid helium bath temperature and the
drive power incident on the device. Finally we employ a pulsed drive scheme to probe and
model the transient behavior of the acoustics during a pulse, such as parametric instability
and acoustic ringdown.

5.1 Photon counting spectrum
In this section I will describe the characterization of a photon counting spectrum, which
measures the photon detection rate as a function of the drive frequency. We determine
the optomechanical scattering rate via such a spectrum which provides information on the
damping rate γac, and the mean phonon occupancy nac of the acoustics, as well as the
single photon optomechanical coupling rate g0.

Figure 5.1 shows an example of a photon counting spectrum. The blue spectrum cor-
responds to the sideband photons Stokes-scattered by the acoustics with a blue-detuned
drive laser (∆ ∼ +ωac). The red spectrum corresponds to the anti-Stokes scattered pho-
tons from a red-detuned drive laser at ∆ ∼ −ωac. Photon detection events are registered
by the SNSPDs as ∆ is stepped and measured by the beat frequency between the drive
tone and the lock tone (as described in section 4.1.2). The photon counting rates are thus
measured by binning the recorded ∆ and calculated as [total number of photon detection
events registered]/[total time spent] in each bin of ∆. The measured rates are shown as
solid circles with a bin size of (2π) 0.4 MHz in the example shown in Figure 5.1.

The fits (solide lines) of the photon counting spectrum will be described in detail in
the rest of this section. It includes a frequency-independent background, consisting of
dark counts of the SNSPDs (gray), stray photons leaking into the detection chain (purple)
and photon leakage around the signal filters (orange). It also exhibits a broad signature
(green) around |∆/2π| ∼ 322 MHz, which is caused by the guided acoustic wave Brillouin
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Figure 5.1: A typical photon count rate spectrum which shows the detected photon count
rate (solid circles) as a function of the drive laser detuning frequency. Fits of the spectrum
include contribution from a frequency-independent background (orange, purple and gray),
a guided acoustic wave Brillouin scattering signature (green) and the narrow sidebands
arising from photons Stokes (blue) and anti-Stokes (red) scattered by the acoustic mode.

scattering (GAWBS) of the drive photons in the optical fibers, and is described in detail
in section 5.1.1. Finally it exhibits a narrow signature around ∆ ≈ ± ωac, which is the
Stokes (anti-Stokes) sideband of the acoustic mode, and the amplitude of which is the
rate of acoustically scattered photons of interest. Under low drive power (Pin ∼ 400 nW
in Figure 5.1) where optomechanical backaction is negligible, the difference between the
two sidebands is attributed to the quantum sideband asymmetry and is discussed in detail
in section 5.2.

To characterize each of the aforementioned sources of detected photons in a photon
counting spectrum, we acquire such spectrum at various values of the drive power Pin,
ranging from 0.1 µW to 5 µW, with a blue-detuned and a red-detuned drive respectively
as shown in Fig.5.2.

The broad signature around 322 MHz due to GAWBS can be described by a Lorentzian,

fG(∆) =
1

1 + 4
( |∆|−ωG

κG

)2 (5.1)

It centers at the GAWBS mode frequency ωG with a linewidth κG independent of Pin (see
section 5.1.1). Since GAWBS arises from the scattering of drive photons, the amplitude of
the GAWBS signature RG varies with Pin as shown in Figure 5.2. The contribution from
GAWBS is thus described by fG(∆)RG(Pin).

Photons scattered by the acoustic mode are detected after passing through the two
cascaded signal filters (FC1, FC2) centering around ωc. Since their linewidths κFC1, κFC2

are much narrower than the linewidth of the optical mode of the device (κc/2π = 47.2
± 0.5 MHz), the acoustic sideband signature can be characterized by the product of the
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Figure 5.2: Photon counting spectrum at various drive power, which are each fit to a sum
of a frequency-independent background, a product of two Lorentzians characterizing the
signal filters that pass through the sideband photons, and centering around ωac, as well as
a Lorentzian describing the GAWBS feature and centering around ωG ≈ 322 MHz.
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Figure 5.3: Background photon counts as a function of drive power for the blue- and
red-detuned drive.

transfer function of FC1 and FC2,

ffilter(∆) =
1[

1 + 4
( |∆|−ωac

κFC1

)2
][

1 + 4
( |∆|−ωac

κFC1

)2
] (5.2)

where κFC1/2π = 1.71± 0.02 MHz and κFC2/2π = 1.21± 0.05 MHz. Rates of the Stokes
and anti-Stokes scattered photons RS and RAS are given by the amplitudes of the side-
band signatures and vary with Pin, thus the contribution from optomechanical scattering is
described by ffilter(∆)RS/AS(Pin). Each photon counting spectrum is thus fit to the form,

Rtot(∆) = Rbkg(Pin) + ffilter(∆)RS/AS(Pin) + fG(∆)RG(Pin) (5.3)

where Rtot is the total photon count rate, and Rbkg describes the background photon count
rate which is independent on ∆ but varies with Pin. The fitting parameters are Rbkg(Pin),
RS/AS(Pin), RG(Pin), ωac, ωG, and κG.

Resulting fits are shown in Figure 5.2. We notice the acoustic sideband signatures are
centered around slightly different frequencies for the blue-detuned and the red-detuned
drives (ωS/2π = 315.04 ± 0.01 MHz, ωAS/2π = 315.11 ± 0.01 MHz). This can be ex-
plained by the signal filters being slightly offset locked from the center of the optical cavity
of the device.

Figure 5.3 shows the fit-extracted Rbkg as a function of Pin, which consists of three
sources: (1) the SNSPDs’ darks counts, (2) stray photons leaking into the detection chain
from the surrounding environment, and (3) unfiltered drive photons leaking around the
signal filters, which is linearly proportional to Pin. The filter leakage seems to be dependent
on the drive photon polarization resulting in different proportionality constants for BL and
RL. Rbkg(Pin) is thus fit to Rbkg,0 + Rbkg,blue/redPin, giving Rbkg,red = 9.1 ± 0.2 s−1µW−1

and Rbkg,blue = 12.0 ± 0.4 s−1µW−1. Rbkg,0 = 12.4 ± 0.8 s−1 consists of photons from
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Figure 5.4: GAWBS-induced photon counts as a function of drive power for the blue-
and red-detuned drive.

sources (1) and (2). We further measure the SNSPDs’ dark counts by acquiring the count
rate when the input ports directly in front of the detectors are blocked, which is found to
be 7 ± 1 s−1. The rate of stray photons detection is thus 5 ± 1 s−1.

The fit-extracted RG(Pin) as a function of Pin is shown in Figure 5.4. Detection rates
of GAWBS-induced photon counts do not differentiate between a blue- and a red-detuned
drive. RG(Pin) is thus fit simultaneously with both sets of the data to the form linearly
increasing with drive power, RG,1Pin. This gives RG,1 = 28.5 ± 0.3 s−1µW−1.

The fit-extracted optomechanical scattering rate RS/AS(Pin) as a function of Pin is
shown in Figure 5.5 (squares). Measurements of RS/AS(Pin) allow us to to probe impor-
tant properties of the optomechanical device, such as its temperature, damping rate and
optomechanical coupling. A complete model that characterizes its dependence on drive
power is given in section 5.2 and 5.3.

To acquire one spectrum as shown in Figure 5.2 and determine the scattering rateRS/AS

at low Pin, it requires an averaging time of ∼ 10 minutes. To increase data acquisition
efficiency, we show that we can produce the fit and measure RS/AS with high precision
via a five-point detuned frequency fit as shown in Figure 5.6, as opposed to the fifty-point
detuned frequency fit as shown in Figure 5.2. By picking ∆ away from the GAWBS
signature, we modify equation 5.3 and fit instead to the form

Rtot(∆) = Rbkg(Pin) + ffilter(∆)RS/AS(Pin) (5.4)

by neglecting the GAWBS contribution. From fits yielded in Figure 5.2, the GAWBS
signature has a FWHM of 5.51 ± 0.05 MHz centering 321.5 ± 0.1 MHz. The five data
points of ∆/2π used for the simplified fit are 310.2, 311.8, 315.0, 315.4, 315.8 MHz, at
least one FWHM away from the GAWBS signature, as shown by hollow circles in Figure
5.6. The simplified fit-extractedRS/AS are shown in Figure 5.5 (circle) in comparison to the
results obtained from a full fit (square). The difference is negligible, showing the reliability
of the simplified method and the minimal influence of the GAWBS peak on this analysis.
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Figure 5.5: Optomechanically scattered photon counts as a function of drive power
for the blue- and red-detuned drive. The measurements are obtained either with a full fit
including the GAWBS signature according to equation 5.3, or with a simplified five-point
fit neglecting the GAWBS signature according to equation 5.4.

This method increases the data acquisition efficiency by ten times, and the optomechanical
scattering rates results presented in this chapter were acquired using this approach.

5.1.1 Guided acoustic-wave Brillouin scattering
This section gives a detailed characterization of the signature of guided acoustic-wave
Brillouin scattering (GAWBS) exhibiting in the photon counting spectrum.

GAWBS is a well-studied interaction between the light propagating in an optical fiber
and the thermally populated transverse acoustic modes of the fiber [171] [172]. The ther-
mally excited vibrations produce strain on the fiber core made of fused silica, resulting in
a change on its refractive index profile and modulates the transmitted light.

Thermal excitations in a fiber are described by the vibrational eigenmodes of a cylinder,
while scattering of the optical field is mainly caused by the transverse displacement of the
cylinder in the radial direction. In particular, the dominant source of GAWBS is the radial
modeR0m (second index m is the number of vibrational nodes; first index is its dependence
on angular coordinates and is 0 for a pure radial mode). It induces pure phase noise on the
propagating optical field, as the drive photons and the frequency shifted photons forward
scattered by the R0m mode are coupled and shows up as a Stokes or anti-Stokes sideband
on the photon counting spectrum.

Resonant frequencies for the R0m mode are determined by boundary conditions corre-
sponding to the fiber,

(1− α2)J0(ym)− α2J2(ym) = 0 (5.5)
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Figure 5.6: Five-detuning points fits for a photon counting spectrum, neglecting the
GAWBS signature. The fits are done with only the data points shown in hollow circles,
away from the GAWBS signature.
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Figure 5.7: A wide detuning range photon counting spectrum showing multiple resonances
of theR0m radial GAWBS modes. Dashed lines indicate the fit-extracted resonant frequen-
cies.

where Jn(ym) is the nth order Bessel function of the first kind and ym are the mth zero
of the equation. Resonant frequency for the mth R0m mode is fG, m = (ymVd)/a. For
our fibers made of fused silica at room temperature, fiber radius a = 62.5 µm, velocity
of longituidinal wave Vd = 5996 m/s, velocity of transverse wave Vs = 3740 m/s, and
α = Vs/Vd = 0.624.

To verify that the phenomenon agrees with our observation, a spectrum is measured
with a frequency detuning ∆/2π varying from 150 MHz to 450 MHz as shown in Figure
5.7. A few Lorentzian-like signatures are exhibited and expected to be arising from the
R0m GAWBS resonance. Due to the large binning in the detuning ∆, the acoustic sideband
is not visible in this wide range spectrum. The overall descending background corresponds
to the tail of the cascaded signal filter transfer function. We fit it to the form,

ffilter(∆) = (A0 + A|∆|−xbkg) +
m=9∑
m=4

RG, m

1 + 4
( |∆|−ωG,m

κG,m

)2 (5.6)

where the first term accounts for the overall descending background, decaying with an
arbitrary power xbkg, and the summation accounts for the six Lorentzian-like signatures,
each individually fit with an amplitude RG, m, a centered frequency ωG, m and a FWHM
κG, m.

The fit-extracted resonant frequencies ωG, m/2π are indicated by the dashed lines in
Figure 5.7. They are found to be in close agreement to the theoretically predicted frequen-
cies calculated from equation 5.5 with mode index ranging from m = 4 to m = 9, as shown
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Figure 5.8: Resonant frequencies of the R0m radial GAWBS modes. The fit-extracted
peak frequencies shown in black squares are in close agreement to the calculated frequen-
cies shown in red circles. The discrepancies are shown in the bottom panel.

in Figure 5.8 (circle) . This verifies that the broad signature exhibited in the photon count-
ing spectrum is indeed induced by the fiber’s transverse acoustic mode R0m vibrating in
the radial direction.

5.2 Phonon thermometry
Fundamental asymmetry between the rates of absorption and emission of a phonon in the
acoustic mode provides a way to calibrate the mean phonon occupancy of the acoustics.
In this section I will describe our characterization of the device temperature by measuring
the Stokes and anti-Stokes scattering rates.

Optomechanical interaction imprints the acoustic motion onto the drive optical field,
which phase modulates and creates a pair of sidebands ±ωac away from the drive field.
For a Stokes scattering process, one photon is scatterd into the lower energy sideband
as one phonon is created into the acoustics. The process is described by â†b̂†|0, nac〉 =√
nac + 1|1, nac +1〉, at a rate proportional to |〈1, nac +1|â†b̂†|0, nac〉|2 = nac +1. Similarly

for an anti-Stokes scattering process, one phonon is annihilated in the acoustics as one
photon gains the energy and is scattered into the higher energy sideband. This process
â†b̂|0, nac〉 =

√
nac|1, nac − 1〉, which has a transition rate of nac. The difference between

the two rates of one phonon is known as the quantum sideband asymmetry (QSA).
As formulated in section 2.1.3, in the sideband-resolved regime where ωac � κc, for

a drive at ∆ =∼ ±ωac, only the Stokes (anti-Stokes) process is enhanced by the optical
cavity while the anti-Stokes (Stokes) process is suppressed. Recall that the anti-Stokes
process corresponds to δâb̂ ∝ b̂, and the Stokes process corresponds to δâb̂† ∝ b̂†. From
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equation 2.31, we can write

δâb̂[ω] = −ig0āχc[ω + ∆]δb̂[ω] (5.7)

δâb̂† [ω] = −ig0āχc[ω + ∆]δb̂†[ω] (5.8)

Assume the mechanical sidebands are on resonance, we have

δâb̂[ω] = −i2g0āδb̂[ω]/κc (5.9)

δâb̂† [ω] = −i2g0āδb̂
†[ω]/κc (5.10)

We write the rate of anti-Stokes sideband photon production as

˙̂nb̂ = δâ†
b̂
δ̇âb̂ = (i2g0ā

∗δb̂†/κc)(−ig0āδb̂)

= 2g2
0nc/κcδb̂

†δb̂ (5.11)

where the sideband amplitude is given by δ̇âb̂ = −ig0āδb̂ [39]. Similarly, for the rate of
Stokes sideband photon production, we have

˙̂nb̂† = δâ†
b̂†
δ̇âb̂† = (i2g0ā

∗δb̂/κc)(−ig0āδb̂
†)

= 2g2
0nc/κcδb̂δb̂

† (5.12)

We thus have the difference in their rate as

˙̂nb̂† − ˙̂nb̂ ∝ (δb̂δb̂† − δb̂†δb̂)
= [δb̂, δb̂†] = 1 (5.13)

The difference between the scattering rates of the two sidebands is known as the quantum
sideband asymmetry which originates from the commutation relation.

By equation 2.20 and 2.21, we can now model the Stokes sideband scattering rate as
γacC(nac,eff + 1), where C = 4g2

0nc/(κcγac) is the multi-photon cooperativity of the op-
tomechanical device, g0 the single-photon coupling rate, nc the intracavity photon number
and nac,eff the effective phonon occupancy of the acoustics. The rate of Stokes-scattered
photons leaking out from the cavity and getting detected by the SNSPDs is thus written as

RS = γacC(nac,eff + 1)ηκηdet (5.14)

where κin is the input coupling rate of the optical cavity, κc is the total optical damping
rate 1, and ηκ = κin/κc

2 is the coupling efficiency of the optical cavity which accounts
for the efficiency at which the sideband photons exit the cavity. Finally ηdet accounts for
the detection efficiency, including losses in optical components, transmittivity through the
signal filters and detection efficiency of the SNSPDs. Similarly, the detection rate of anti-

1κc/2π = 47.2 ± 0.5 MHz. See appendix B.1 for characterization of the optical cavity.
2κin/2π = 13.6 ± 0.2 MHz, and ηκ = 0.29. See appendix B.1 for characterization of the optical cavity.
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Figure 5.9: Power-normalized sideband scattering rates as a function of bath temperature.
Optomechanical backaction is negligible here with low drive power. The constant differ-
ence between the Stokes (blue) and the anti-Stokes (red) scattered rate is known as the
quantum sideband asymmetry.

Stokes-scattered photons is

RAS = γacCnac,effηκηdet (5.15)

To characterize the magnitude of QSA in our system, we measure RS and RAS (ex-
tracted from photon counting spectrum via procedure described in section 5.1) as a func-
tion of the dilution fridge mixing chamber temperature TMC, as shown in Figure 5.9. We
consider the situation where optomechanical backaction is negligible with low drive power
Pin = 250 nW. The optical heating on the acoustics is also negligible here and the acoustics
is in thermal equilibrium with the He bath at mixing chamber (MC) temperature, such that
nac,eff = nth = (e~ωac/kBTMC − 1)−1. As shown in Figure 5.9, we fit the power-normalized
sideband counts simultaneously to the form

R̄S = αMC(nth + 1) = αMC((e~ωac/kBTMC − 1)−1 + 1) (5.16)

R̄AS = αMC(nth + 1) = αMC(e~ωac/kBTMC − 1)−1 (5.17)

where TMC is measured independently with a RuO2 thermometer and is varied with a
heater attached to the MC. Since the thermometer is not calibrated for a temperature lower
than 50 mK, the fit only uses data points for TMC > 50 mK. αMC = γacCηκηdet/Pin =
(ηκηdet/Pin)4g

2
0nc/κc is the only fitting parameter which characterizes the magnitude of

the power-normalized QSA. To determine the value of each individual parameter included
in αMC, other experimental settings besides TMC need to be varied. A complete model
characterizing detection efficiency, acoustic mode temperature and single photon optome-
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chanical coupling rate is described in section 5.3.
Qualitatively, RS and RAS increases approximately linearly with TMC (except at the

lowest TMC) as expected, and the difference between the two rates is relatively constant.
This verifies that nac,eff under this experimental setting (Pin � 1 µW) is primarily deter-
mined by the bath temperature TMC, where optomechanical backaction and optical heating
of the acoustics are negligible, and the splitting between the Stokes and anti-Stokes scat-
tering rates is dominated by the QSA.

5.3 Modeling the phonon occupancy
In this section I will describe our model for determining the acoustic mode temperature,
which accounts for the effects of optomechanical backaction and absorption-induced op-
tical heating.

Figure 5.10 shows the power-normalized R̄S and R̄AS at a wider range of Pin. Quali-
tatively, the difference between the rates at an effective zero drive power 3 is the power-
normalized QSA. While the bath temperature is kept at constant by the dilution fridge
cooling (TMC ≈ 20 mK) in this measurement, thermal phonon nth increases as the increas-
ing Pin induces optical heating. In the absence of backaction, the difference between the
two rates remains constant as illustrated by the dashed lines. As Pin increases, we also
observe that the difference between R̄S and R̄AS starts to diverge from the constant QSA,
which is due to the dynamical backaction of optomechanics derived in section 2.2.1.

In particular, for a blue-detuned drive at ∆ ∼ +ωac, the modification to the bare acous-
tic damping γac in equation 2.41, denoted as optomechanical damping rate γopt, is negative,
resulting in a reducing acoustic linewidth. The resulting anti-damping effect or optome-
chanical amplification is evident from the increase in R̄S from the blue dashed line, illus-
trated as blue shade in Figure 5.10. Alternatively for a red-detuned drive at ∆ ∼ −ωac,
γac,eff increases which corresponds to an extra damping effect (positive γopt) and results
in optomechanical cooling. It is exhibited as a decrease in R̄AS from the red dashed line,
illustrated in red shade.

The effective phonon occupancy nac,eff of the acoustic mode takes into account of the
optical heating effect, RPSN and optomechanical backaction in addition to nth. It can be
written as

nac,eff = 〈δ̂b
†
δ̂b〉 =

g2
0ncκc|χc[−ωac,eff + ∆]|2 + γacnth

γopt + γac
(5.18)

where γopt = −2=(Σ[ωac,eff]) = ∓4g2
0nc/κc, or equivalent to γacC in terms of coopera-

tivity, when the drive is at ∆ = ±ωac. And the intracavity photon number nc is given

3The data at Pin = 0 are measured using pulsed laser excitations and extrapolating the detection rates to
zero laser power. See section 5.4.4 for more details on the measurement setup.
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Figure 5.10: Drive power depedence of the sideband scattering rates showing the
increasing effects of absorption-induced optical heating and optomechanical backaction
(ampflication with a blue drive and cooling with a red drive) increasing with Pin.

by

nc[∆] =
Pinκin

~ωc
|χc[∆]|2 (5.19)

For blue-detuned drive ∆ = +ωac, equation 5.18 becomes

nac,eff =
|γopt|+ γacnth

γopt + γac
(5.20)

And for a red-detuned drive ∆ = −ωac, we have

nac,eff =
|γopt|( κc

4ωac,eff
)2 + γacnth

γopt + γac
(5.21)

which is a weighted average of its coupling to the thermal bath and the radiation pressure
force bath.

Finally we will express nth to account for the heating of the fibers induced by optical
absorption of the drive photons. To model the heating effect, we assume that the thermal
conductivity of the fiber is a power law in temperature with exponent k such that κfib(T ) ∝
T k. By the thermal conductivity law,

Q̇ = −κfib∇T ∝
∫ TMC

Tfib

T kdT = T k+1
MC − T

k+1
fib (5.22)
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We then assume a heat load Q̇ proportional to Pin on the fiber, such that the fiber tempera-
ture is given by

T k+1
fib = T k+1

MC + βk+1Pin (5.23)

where β characterizes the amount of heat generated by a given Pin. We then assume bal-
listic transport of heat from the heated fiber via the helium channel inside the cavity to the
bath equilibrated to TMC, which is expected to remain at base dilution fridge temeprature
independent of Pin. The bare mechanical damping rate γac can be written as

γac = γac0 + γball (5.24)

where γac0 is the intrinsic mechanical damping rate at effectively zero temperature origi-
nating from only the acoustic loss into the fibers. And γball accounts for the three phonon
loss rate at some bath temperature, such that γball/2π = aballT

4
MC, where aball = 2.7×106 Hz

T−4 [38]. γac/2π is measured to be 3.25×103 Hz via independent measurement 4. We can
now express nth as a weighted average of its coupling to the local heating of the fiber and
the He bath thermalized to the MC, such that

nth =
nfibγac0 + nMCγball

γac0 + γball
(5.25)

where nfib = 1/(e~ωac/(kBTfib)-1) and nMC = 1/(e~ωac/(kBTMC)-1).
The power-normalized sideband count rates as a function of drive power are thus fit to

R̄S = |γopt|(nac,eff + 1)(ηκηdet/Pin) = α(nac,eff + 1) (5.26)

R̄AS = |γopt|nac,eff(ηκηdet/Pin) = αnac,eff (5.27)

as shown in 5.11. Multiple iterations of the drive power sweep are simultaneously fit with
common fitting parameters TMC, β, k, and optomechanical coupling g0, which are expected
to remain constant under the same experimental setting. We note that detection efficiency
varies across different days mainly due to varying transmittivity through the two signal
filters, hence each iteration (one set of RS and RAS taken alternatively on the same day) is
fit with an individual ηdet. Solid lines show the best fit to the model described above with
data sets combined from seven iterations.

The extracted fitting parameters are shown in Table 5.1. The model determines a bath
temperature TMC of 24.4 ± 0.4 mK, equivalent to 1.61 ± 0.03 phonons. The thermal
conductivity of the fiber follows a power law in temperature with an exponent k = 1.09
± 0.03, suggesting a predominantly metallic thermal conductance between the device and
MC (k = 1 for metals [140]) 5. The fit also gives a single photon coupling rate of g0/2π =

4See section 5.4 for characterization of the bare mechanical damping rate.
5See Appendix B.2 for a detailed characterization of the path of heat transport from the experimental

device to the thermal bath of the mixing chamber.
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Figure 5.11: Model for sideband scattering rates accounting for the effect of optical
heating and optomechanical backaction as a function of Pin. Solid lines show a global fit
to 7 data sets taken on different days, each with an individual detection efficiency.

TMC 24.4 ± 0.4 mK
β 0.54 ± 0.03 K/W1/(k+1)

k 1.09 ± 0.03
g0/2π 4752 ± 8 Hz

Table 5.1: Fit parameters for the acoustic mode temperature model returned by the best-fit
shown in Figure 5.11.
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Figure 5.12: Different iterations of data and the sideband scattering rates fit results are
normalized from Figure 5.11 to an ηdet = 1.

4.752± 0.008 kHz.
The fitted ηdet varies from 4% to 22% which is mainly attributed to loss through the

signal filters. Different iterations of data and the fit results are normalized to an ηdet = 1
for display in Figure 5.12. We show that the model presented in this section extracts the
effective acoustic mode’s temperature under various Pin in Figure 5.13, using the fitted pa-
rameters and equation 5.18. The acoustic is prepared in an initial state with 1.61 phonons
in the absence of optical drive via cooling of the dilution fridge. And as we drive on the
red-detuned side, nac,eff gradually plateaus with increasing Pin, due to a combined effect of
the increasing absorptive-induced optical heating and increasing optomechanical cooling.

5.4 Pulsed drive scheme
In this section, I will present further characterization on the acoustics by using a pulsed
drive scheme, under which we apply short pulse of drive tone to the device and probe its
transient behavior, as opposed to the steady state occupancy discussed in previous sections
under a continuous wave (CW) drive scheme.

5.4.1 Optomechanical parametric instability
In this section we will characterize the threshold behavior of the optomechanical ampli-
fication interaction, also known as the optomechanical parametric instability [32] [173].
When a tone is placed at ∆ = +ωac, eff, an instability occurs under large Pin if optome-
chanical damping γopt ≥ γac, such that γac,eff = γac + γopt = γac − 4g2

0nc/κc ≤ 0. The
effective negative damping rate amplifies the thermal fluctuation and leads to exponentially
increasing scattering rates.
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Figure 5.13: Effective phonon occupancy as a function of drive power calculated using the
model presented in this section. The acoustic is initiaed with 1.61 phonons in the absence
of the optical field.

6000

5000

4000

3000

2000

1000

0
20015010050

Pin [μW]
 1
 2
 3
 4
 5
 8
 10
 12
 14
 16
 18

102

103

104

105

4003002001000

Figure 5.14: Transient during acoustic ringup showing count rates as a function of the
time during a blue-detuned pulse at various drive power. Data is fit to an exponential form
shown by the dashed lines.
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Figure 5.15: Extracted effective acoustic damping rate from acoustic ringup showing
the acoustic mode transitioning into parametric instability.

To observe the transient behavior, we bin the number of photon detection events by
their arrival time as we lock and fix the blue-detuned laser (BL) at ∆ ∼ +ωac, eff. R̄S

as a function of the time duration after the start of the pulse at various Pin is shown in
Figure 5.14 (left), where R̄S is measured by [total number of counts detected in each time
bin]/[duration of each bin]. A 2 µs bin is used in the data shown here. A shutter is used
to control the pulse sequence (illustrated in Figure 4.1), such that each pulse lasts 150 µs
to 200 µs. BL is then turned off (blocked by shutter and attenuator) for 4 ms in between
pulses to make sure the acoustic mode has enough time to cool down, and is initiated in
the same lowest occupancy state at the beginning of each pulse. Data from the first 4 µs
is discarded to account for the switching time of the shutter. Each trace in Figure 5.14 is
acquired as the averaging of ∼ 105 of such pulses.

The transient during the acoustic ringup is thus fit to the form y0 + Ae−2πγac,efft, where
y0 and A are arbitrary fitting parameters to account for the offset and amplitude. The data
and the corresponding best-fits (dashed line) are shown in log scale in Figure 5.14 (right).
We sow the extracted γac,eff as a function of Pin in Figure 5.15. It decreases linearly with
increasing Pin and is fit to the expected form of γac,eff = γbare + bPin derived in the linear
optomechanics regime (equation 2.41). We thus extract that the bare acoustic damping
rate at base bath temperature is γbare/2π = 3250 ± 20 Hz, and the threshold for instability
occurs at Pthreshold = 11.23 µW at γac,eff = 0. We also extract g0/2π = 4770 Hz from slope
b which is in agreement with the extracted value from section 5.3.

The optomechanical antidamping amplifies the initial small thermal fluctuation and
rings up the acoustics to a dynamically unstable state, which can result in self-induced
steady-state amplitude oscillation, analogous to mechanical or phonon lasing [23]. To
observe the nonlinear effect and the saturation behavior after the initial exponential growth,
the pulse is left on for 45 ms and the corresponding nac,eff during the ringup and saturation
is shown in Figure 5.16. Note that the data was taken with 30dB attenuation at the SNSPDs
to avoid saturating the detectors. As a result, the count rates with a Pin below threshold and
at the beginning of the pulse have low signal-to-noise ratio after attenuation and are hard
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Figure 5.16: Beyond the parametric instability threshold, the effective mean phonon occu-
pancy saturates after the initial exponential growth.
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Figure 5.17: Saturation amplitude as a function a drive power in the dynamically unstable
state.
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Figure 5.18: A weak red-detuned tone is used to probe the ringdown of the acoustic res-
onator following its self-oscillation in a dynamically unstable state.

to resolve in this figure. After the initial ringup stage, we observe a relatively fixed large-
amplitude motion of the acoustic mode for Pin > Pthreshold. To focus on the saturation
behavior, we show the phonon occupancy at saturation as a function of Pin/Pthreshold in
Figure 5.17, which is fit to a linear form for Pin/Pthreshold ≥ 1. Since amplitude of the
self-induced oscillation is given by √nac,eff, the amplitude is proportional to the radiation
pressure force in this case, and is driven up to√nac,eff ∼ 3× 103.

5.4.2 Acoustic ringdown
The acoustic ringdown can be directly probed by a red-detuned tone following the ringup
stage by a strong blue-detuned tone as discussed in the previous section. Since the acoustic
state will be initially driven up to a high motional amplitude, the high sideband count rate
during the ringdown is ideal for an accurate extraction of the bare mechanical linewidth
with only a weak red-detuned tone that has minimal effect on the acoustic mode.

Figure 5.18 shows the sideband count rate during such a pulse sequence, where a blue-
detuned tone of Pin = 12 µW is turned on for 2 ms. A red-detuned tone of Pin = 1 µW
is turned on at t = 2 ms. The count rate is binned by 2 µs time window. Count rate
during the red pulse from t1 = 2.01 ms to t2 = 4 ms is fit to the form y0 + Ae−2πγact.
Note that t1 is chosen such that the data during shutter turning on/off 6 is discarded. It also
ensures sufficient time after the blue-detuned tone turned off such that the optomechanical
backaction is turned off and the acoustic resonator rings down at its bare damping rate
(∆ > 1/ωac). We thus extract a bare acoustic damping rate of γac/2π = 3240 ± 10 Hz in
agreement with the result shown in Figure 5.15.

5.4.3 Pulsed phonon thermometry
We repeat the phonon thermometry measurement under a pulsed scheme. From the tran-
sient behavior of the sideband count rates during a pulse, we are able to extrapolate nac,eff

6Shutter has a rise or fall time of ∼ 2 µs.
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Figure 5.19: Drive power sweep with a pulsed scheme. (top:) Sideband count rates
during a 5µs pulse at various Pin. (bottom:) The average of count rates during the time
window shown by the dashed lines in the top figure are plotted and show no effects of
optical heating and backaction with increasing Pin.

at the beginning of the pulse regardless of the drive power, where the acoustic mode is
indeed initiated in its lowest occupancy nac,eff = nth in equilibrium to the He bath at TMC.

Pulsed power sweep

This assumption is first verified by repeating the power sweep shown in Figure 5.10. Side-
band count rate is measured as a function of Pin with a td = 5 µs wide pulse. Since
td � 1/γac, 1/γopt, nac,eff is expected to remain constant during each pulse. Figure 5.19
(top) shows the averaged count rate during a pulse at various Pin. The data is binned with
50 ns time window. The rising and falling counting rates during the beginning and after the
end of the pulse is mainly attributed to the rise and fall time of the shutters. The average
count rates during the time window shown by the dashed lines are plotted as a function
of Pin in Figure 5.19 (bottom), which remain relatively constant. As compared to Figure
5.10, the effects of optical heating and optomechanical backaction are absent under the
pulsed scheme.

Rethermalization time

We determine the rethermalization time required in between pulses such that the acoustic
mode is initialized in its lowest occupancy before applying each pulse. This is useful for
determining the experimental settings for preparing non-Gaussian quantum states using a
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Figure 5.20: Phonon occupancy as a function of pulse-off time. Initial phonon occu-
pancy is extracted by linearly extrapolating the count rate during a pulse to zero time,
which decreases as cooling time increases.

pulsed scheme, such as generating a photon-phonon entangled state or a single phonon
Fock state[24] [25].

Scattering rates are measured during a td = 50 µs wide pulse at Pin = 5 µW with
various repetition period tr and shown in Figure 5.20 (a)-(b), where cooling time is the
pulse-off time in between pulses (tr− td). The scattering rates increase approximately lin-
early during the pulse (marked by the time window in between the dashed lines) excluding
the shutter rise time, which allows us to extrapolate the count rate at time zero through a
linear fit as shown in Figure 5.20 (c)-(d). Extracting y-intercepts of such fits is equivalent
to probing the acoustic state’s occupancy with an effective Pin = 0 7.

The fit-extracted initial count rates are shown as a function of cooling time in Figure
5.20 (e). The acoustic state initiates at a higher mode temperature with lower cooling

7The 0-power data points in Figure 5.12 are measured via such linear extrapolation.
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Figure 5.21: Pulsed phonon thermometry showing the linearly extrapolated sideband
scattering rates at zero pulse time, and the inferred nth calibrated from the QSA, as a
function of MC or the He bath temperature.

time, suggesting the time in between pulses is not sufficient for the acoustic mode to
rethermalize with the He bath at TMC. The initial occupancy follows approximately an
exponential decay with a decay time ∼ 250 µs (extracted from the red-detuned data).

Phonon thermometry

Based on the characterizations of pulsed measurements from previous sections, we use
a 5 µW, 25 µs pulse with a 400 µs repetition period to extract phonon occupancy via
calibration of the QSA. The count rates are measured at various TMC as shown in Figure
5.21.

By linearly extrapolating the count rates to zero time, we obtain the Stokes and anti-
Stokes scattering rates, RS and RAS, which correspond to an acoustic mode temperature of
nth = 1/(e~ωac/(kBTMC)−1). The extrapolated count rates are simultaneously fit to α(nth +1)
and αnth, where α is the common fitting parameter, as shown in Figure 5.21 (c). We can
thus infer nth directly from the QSA, where

nth =
RAS

RS −RAS
=

αnth

α(nth + 1)− αnth
(5.28)

The inferred nth is shown in Figure 5.21 (d), where the dashed line is the nth computed
directly from TMC.

In comparison with the measurements shown in section 5.2, drive power used in the
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pulsed scheme is 20 times as large, resulting in a detection rate ∼20 times as large. It
allows for more efficienct data acquisition and better signal-to-noise ratio without intro-
ducing undesired optical heating and optomechanical backaction in the measurement.

5.4.4 Modeling the evolution of nac,eff

In this section we model the response of the effective mode occupancy to the thermal bath
and the optical bath as we apply an optical tone to the system.

We assume the thermal bath for the acoustics has a linear response to the incident
optical power with a damping rate of γth. Under a pulse train of width td, repetition period
tr and power Pin, the response of the thermal bath temperature Tth is described by

Ṫth,rise(t) = [TMC + αthPin − Tth,rise(t)]γth for 0 < t ≤ td (5.29)

Ṫth,fall(t) = [TMC − Tth,fall(t)]γth for td < t ≤ tr (5.30)

where t is the time during a pulse sequence, and αth accounts for the contribution of optical
heating due to the incident power Pin. We denote Tth,rise as the rising bath temperature dur-
ing the pulse-on window, and Tth,fall the decreasing bath temperature during the pulse-off
window. Since the pulse is periodic, we solve the equations with the boundary conditions
that Tth,rise(td) = Tth,fall(td) and Tth,rise(0) = Tth,fall(tr). The solutions are given by

Tth,rise(t) = (TMC + αthPin) + e−γtht[Tth,eq − (TMC + αthPin)] (5.31)

Tth,fall(t) = TMC + e−γtht[Tth,eq − (TMC + αthPin(1− etdγth))] (5.32)

where Tth,eq = Tth,rise(0) is the equilibrium temperature of the bath at the beginning of each
pulse, given by

Tth,eq =
TMC(etrγth − 1) + αthPin(e

tdγth − 1)

etrγth − 1
(5.33)

The response of the effective acoustic mode temperature can thus be modelled as

ṅac,rise(t) =


[
|γopt|+nth(t)γac

γac,eff
− nac,rise(t)

]
γac,eff for a blue drive

[
|γopt|( κc

4ωac,eff
)2+nth(t)γac

γac,eff
− nac,rise(t)

]
γac,eff for a red drive

(5.34)

for 0 < t ≤ td. Note that the first term in the bracket is the steady state effective mode
occupancy derived in equation 5.20 and 5.21. We calculate nth(t) = 1/(e~ωac/(kBTth(t)) − 1)
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Figure 5.22: Transient response of the acoustics as a function of pulse width.

using equation 5.31 and 5.32. During the pulse-off window, we have

ṅac,fall(t) = (nth(t)− nac,fall(t))γac (5.35)

for td < t ≤ tr. The equations of nac(t) are analytically solved with the boundary condi-
tions nac,rise(td) = nac,fall(td) and nac,rise(0) = nac,fall(tr). Notice that since κc � γth, γac,
we approximate the response of the optical bath as a step function here, such that the
optomechanical backaction turns on and off instantly with the rise and fall of the pulse
(γac,eff = γac + γopt → γac when the pulse turns off)8. We also assume a constant bare
acoustic damping rate γac. Although the contribution from the three phonon loss process
γball (equation 5.24) has a T 4

th dependence, the effect of the variation in Tth at low temper-
ature (below 50 mK) is negligible.

We apply a periodic pulse of Pin = 5 µW and tr = 400 µsec with a detuning of
∆ = ±ωac to the cavity. We vary the width of the pulse from td = 5 µsec to td =
390 µsec, and measure the count rate during the pulse-on window as shown in Figure
5.22. The count rates are histogrammed with ∆t = 50 ns bin and plotted as a function
of t from the beginning of each pulse. Counts where t < 2 µs are discarded due to the
rising time of the shutters. The count rates are related to the solution of equation 5.34 by
RS(t) = α(nac,rise +1) andRAS(t) = αnac,rise for the blue and red tones respectively, where
α is a fitting parameter to normalize the phonon occupancy to sideband scattering rates.

The parameters involved in the solution of nac,rise(t) include td, tr, TMC, αth, γth, γac

and γopt. Using TMC = 24.4 mK9, γac/2π = 3250 Hz10, and |γopt| = 4g2
0/nc/κc with

g0/2π = 4750 Hz11, we examine the response of the thermal bath as a function of αth and
γth. Based on equation 5.31, αth determines how much Tth increases due to optical heating
and γth determines how fast Tth equilibrates to the steady state temperature (TMC + αthPin)

8This approximation agrees with the acoustic ringdown measurement shown in section 5.4.2, where we
measure the bare acoustic damping rate right after the blue drive tone turns off.

9Results from Table 5.1.
10Results from Figure 5.15.
11Results from Table 5.1
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Figure 5.23: Transient resposne of the acoustics and the thermal bath with different ther-
mal bath damping rates γth.

under a continuous Pin. Figure 5.23 shows the computed nac(t) and nth(t) under a td =
200 µs wide pulse with the same αth and different values of γth(t). The solution shows that
with relatively slow thermal bath damping (left), nth rises gradually (relative to td), and
there exists an initial cooling of the acoustics due to optomechanical backaction with a red
drive before it gets cancelled out by the increasing optical heating. It also arises from not
having sufficient cooling time in between the pulses for the thermal bath to rethermalize
with the MC.

We fit the count rates data shown in Figure 5.22 for td = 50, 100, 200 and 390 µs si-
multaneously to the analytic expression of nac,rise(t), where α (the count rate normalization
factor), g0 (variable in the expression for γopt), γac, αth and γth are the fitting parameters.
The data are smoothed by taking a moving average of 20 and the larger td data are down-
sampled such that each data set has the same number of data points as shown in Figure
5.24. The fit captures the overall trend; however it does not quantify the initial temperature
of the acoustics very well especially for shorter duration pulse. The fit returns a γac/2π =
2306 ± 1 Hz and g0/2π = 4121 ± 1 Hz which do not accurately describe the properties
of the device.
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Figure 5.24: Fit to the solution of nac,rise(t) where g0, γac, αth and γth are the fitting
parameters. Solid lines show the fits during the pulse-on window, and the dashed lines
show the simulated decay of nac,fall(t) during the pulse-off window.
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Figure 5.25: Fit to the solution of nac,rise(t) where αth and γth are the fitting parameters.
g0, γac are fixed by using the independently determined values.

An alternative fit done by fixing γac and g0 to their expected values is shown in Figure
5.25, where it returns a thermal bath damping rate of γth = 5530 ± 10 Hz. The fit does
not capture the initial behavior accurately where it shows an initial decaying mode tem-
perature, as the fit-extracted γth is slow comparing to the pulse duration and the rethermal-
ization time. It suggests that the thermal bath response model we use is an over-simplified
approximation and its evolution cannot be completely captured by a single time constant.
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Chapter 6

Phonon coherences

In this chapter, I will discuss how we use the statistical properties, in particular, the tem-
poral coherence functions to probe the motional state of the acoustic resonator in thermal
equilibrium. Following the formulation of quantum optical coherences motivated in chap-
ter 3, I will first describe the correspondence between photon and phonon coherences, al-
lowing us to access quasi-probability distribution of the acoustic state through the optical
field. While in the last chapter, the measurement of the photon counting spectrum (or the
mean flux) is effectively a measurement of the first-order coherence of the motional state,
I will present in the following our measurements of the phonon coherences of the thermal
acoustic state up to the fourth-order. We also prepare and measure the phonon statistics of
a phonon-added or -subtracted out-of-equilibrium thermal state via a heralding protocol,
where we post-select on photon detection events [174].

6.1 Correspondence between photon and phonon coher-
ences

We probe the thermal acoustic state by measuring the statistical properties of the acous-
tically scattered photons. In this section, I will derive the correspondence between the
detected photon coherence and the phonon coherence of interest.

The bare acoustic oscillator is described by

ẍ(t) + γacẋ(t) + ω2
acx(t) = F (t) (6.1)

where γac is the linewidth of the acoustic oscillator, ωac the resonant frequency and F (t)
the force acting on the oscillator. Correspondingly, in the frequency domain we have

−ω2x[ω] + iωγx[ω] + ω2
0x[ω] = F [ω] (6.2)
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And the PSD of the acoustic oscillator is given by

Sxx[ω] = |x[ω]|2 =
SFF[ω]

(ω2
ac − ω2)2 + ω2γ2

ac
(6.3)

The corresponding creation and annihilation operators where x = xZPF(b+b†)1 is described
by the Langevin equation

ḃ = −
(γac

2
− iωac

)
b+
√
γacηth (6.4)

with the corresponding spectrum of the acoustic field described by

Sxx[ω] = x2
ZPF(Sb†b[ω] + Sbb† [ω]) (6.5)

Note that ηth is the thermal noise operator which has the following correlators,

〈η†th(τ)ηth(0)〉 = nacδ(τ) (6.6)

〈ηth(τ)η†th(0)〉 = (nac + 1)δ(τ) (6.7)

with nac = 〈b†(t)b(t)〉. It follows that

b(τ) =
√
γac

∞∫
−∞

dt′e−(γac/2−iωac)(τ−t′)ηth(t
′) (6.8)

Applying the noise operator correlators, we have

〈b†(τ)b(0)〉 = nace
−(γac/2+iωac)τ (6.9)

〈b(τ)b†(0)〉 = (nac + 1)e−(γac/2−iωac)τ (6.10)

Note that this is slightly different from the expression in equation 3.12, where we now
have γ → γac/2. The exact expressions of phonon coherences of a thermal acoustic state
are thus

g(2)(τ) = 1 + e−γac|τ | (6.11)

g(3)(τ) = 1 + e−γac|τ1| + e−γac|τ2| + 3e−γac(|τ1+τ2|) (6.12)

1xZPF is the zero-point fluctuation of the acoustic oscillator.
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g(4)(τ) = 1+e−γac|τ1| + e−γac|τ2| + e−γac|τ3| + e−γac(|τ1+τ3|) + 3e−γac(|τ1+τ2|)

+ 3e−γac(|τ2+τ3|) + 9e−γac(|τ1+τ2+τ3|) + 4e−γac(|τ1+2τ2+τ3|) (6.13)

where we simply replace γ by γac/2 in equation 3.19, 3.23 and 3.24.
We can thus calculate the field spectrum components Sb†b[ω] and Sbb† [ω] as

Sb†b[ω] = 〈b†[ω]b[−ω]〉 =

∞∫
−∞

dτ eiωτ 〈b†(τ)b(0)〉

=
nacγac

(γac/2)2 + (ω + ωac)2

= nacγac|χac[−ω]|2 (6.14)

And similarly

Sbb† [ω] = 〈b[ω]b†[−ω]〉 =

∞∫
−∞

dτ eiωτ 〈b(τ)b†(0)〉

=
(nac + 1)γac

(γac/2)2 + (ω − ωac)2

= (nac + 1)γac|χac[ω]|2 (6.15)

where we write in terms of the acoustic susceptibility

χac[ω] = 1/(−i(ω − ωac) + γac/2) (6.16)

Note that Sb†b[ω] in equation 6.14 is only nonzero around ω ≈ −ωac, hence corresponding
to the anti-Stokes scattering events with a red-detuned drive. And Sbb† [ω] in equation 6.15
is only nonzero around ω ≈ +ωac, corresponding to the Stokes scattering events with a
blue-detuned drive.

We can now examine the cavity output field from the cavity o(t) and the corresponding
field detected by the SNSPDs p(t). We have o(t) related to the cavity field a(t) as such

o(t) = ξin(t)−
√
κina(t) (6.17)

where ξin and κin are the fluctuations and coupling rate to the input (output) port. In the
rotating frame of optical drive frequency at ωc + ∆ (the cavity resonant frequency plus the
drive detuning), we can write the cavity field as

a[ω] = χc[ω + ∆](−ig0āb[ω] +
√
κinξin[ω]) (6.18)

and the output field as

o[ω] = ξin[ω] + i
√
κinχc[ω + ∆]g0āb[ω] (6.19)
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where the cavity susceptibility is χc[ω] = 1/(κ/2− iω). We can thus write

So†o[ω] = 〈o†[ω]o[ω]〉
= κing

2
0nc|χc[−ω]|2Sxx[ω]

= κing
2
0nc|χc[−ω]|2(Sb†b[ω] + Sbb† [ω]) (6.20)

which is the field induced by optomechanical coupling, and nc = 〈a†a〉 and g0 are the in-
tracavity photon number and the single photon optomechanical coupling rate respectively.

The output field is detected after passing through a series of filters, where the loss and
filter transmission function are described by ffilt[ω], centered around +ωac when a red-
detuned drive is used and around −ωac when a blue-detuned drive is used. The detected
field p(t) can thus be written as

p(t) =

∞∫
−∞

dω

2π
e−iωtffilt[ω]o[ω] (6.21)

Plugging in equation 6.20, we have the correlations of the detected field as

〈p†(t+ τ)p(t)〉 =

∞∫
−∞

dω

2π
e−iωτ |ffilt[−ω]|2So†o[ω]

= κing
2
0nc

∞∫
−∞

dω

2π
e−iωτ |ffilt[−ω]|2|χc[−ω]|2(Sb†b[ω] + Sbb† [ω]) (6.22)

With a red-detuned drive, we are left with the terms

〈p†(t+ τ)p(t)〉 = κing
2
0nc|χc[ωc]|2

∞∫
−∞

dω

2π
e−iωτSb†b[ω]

∝ 〈b†(t+ τ)b(t)〉 (6.23)

showing that the normally ordered correlations of the detected anti-Stokes scattered field
corresponds to the normally ordered correlations of the acoustic oscillator. We assume a
sideband-resolved regime here such that γac � κc. Also we assume the filter linewidth
is larger than the acoustic linewidth, and much smaller than κc, such that ffilt[ω] is well-
approximated by a constant around detuning ∆ ≈ ±ωac. Similarly, we can show that with
a blue-detuned drive, we have

〈p†(t+ τ)p(t)〉 = κing
2
0nc|χc[−ωc]|2

∞∫
−∞

dω

2π
e−iωτSbb† [ω]

∝ 〈b(t+ τ)b†(t)〉 (6.24)
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such that the normally ordered correlations of the detected Stokes scattered field corre-
sponds to the anti-normally ordered correlations of the acoustic oscillator. Note that the
constants in these correlation functions account for detection efficiency, damping and the
parameters of the optomechanical system, and the coupling efficiency, which however gets
normalized in the coherence functions by the mean detected flux. The measurement of the
statistics is therefore unaffected by system and detection inefficiency.

Thus, there exists a one-to-one correspondence between the coherence functions of
the detected optical field and the acoustic oscillator. As the detection of each photon
scattered by the acoustics heralds the creation or annihilation of a single phonon, it allows
us to directly probe the state of the acoustics through measuring statistics of the detected
photon field.

6.2 Measurement of coherence functions

6.2.1 Construction of a delay histogram

In order to measure the phonon coherences g(l)(τ1, · · · , τl−1) as defined in equation 3.10,
we construct a histogram of the delays between the arrivals of l-detected photons, denoted
as C(l)

AS(S)(τ), where AS describes anti-Stokes scattered photons and S describes Stokes-
scattered photons.

Consider the most straightforward case for the normally-ordered second-order phonon
coherence g(2)

ac (τ). As shown in section 6.1, it is equivalent to the normally ordered second-
order coherence g(2)

AS (τ) of anti-Stokes scattered photons and its corresponding photon
delay histogram C

(2)
AS (τ).

As described in section 4.2, the arrival time of each photon detected by the SNSPDs
is tagged by the time-correlated single photon counting (TCSPC) electronics. To gather
enough statistics we repeat the lock and drive sequence in a continuous wave measurement
that is repeated at a rate of 5 Hz. For a typical measurement of coherences up to the
fourth-order, we repeat the 200 ms sequences ∼ 500, 000 times. A gate signal is sent to
the SNSPDs at the beginning of each drive period as shown in figure 4.10. To combine
the data from each cycle, we thus first obtain the time tag of each photon detection event
relative to each gate signal. Figure 6.1 shows a typical relative time tag of photon detection
events in one drive period.

To obtain its corresponding delay histogram C(2)(τ), we compute the list of delays
between each pair of photons {tj − ti}∀j > i. By histogramming the list of delays from
figure 6.1, we obtain its corresponding C(2)(τ) as shown in figure 6.2. Here we use a
bin size of 2 µsec and a maximum delay of τ = 500 µs, which is much greater than the
coherence time of the acoustic oscillator (∼ 500 µs), after which the arrivals of the photons
are expected to be uncorrelated.

Individual delay histograms such as the ones shown in figure 6.2 are summed up to
obtain a typical cumulative C(2)

AS (τ) shown in figure 6.3, where we repeat the drive periods
by ∼ 20,000 times. Here we use a red-detuned drive at a drive power of Pin ∼ 5 µW. We
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Figure 6.1: Timing of photon detection events in one drive period. Each red dot represents
a photon detection event registered by the TCSPC, and tj is the relative time tag describing
the time difference between the time of detection from the gate signal occurring at the
beginning of each drive period.
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 Figure 6.2: A typical delay histogram obtained from one drive period, with a bin size of 2
µsec and a maximum delay of τ = 500 µs.
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Figure 6.3: A typical second-order cumulative delay histogram, where the drive period is
repeated ∼ 50,000 times with a red-detuned drive at a drive power of Pin ∼ 5 µW.
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thus effectively measure the second-order time correlation 〈â†(t)â†(t+ τ)â(t+ τ)â(t)〉.

6.2.2 Background subtraction
As described in section 5.1, some portion of the detected photons are from background
photons, which need to be excluded from the delay histogram of sideband scattered pho-
tons of interest. In this section, I will describe our method to correct for the effect of
background photon detection on the time correlation of sideband photons.

Note that in a CW measurement, the denominator of g(2)(τ) is just the square of the
mean photon flux 〈â†â〉2 since 〈â†(0)â(0)〉 = 〈â†(τ)â(τ)〉. It follows that in the presence
of background photons, the second-order coherence function

g(2)(τ) =
〈â†(0)â†(τ)â(τ)â(0)〉
〈â†(0)â(0)〉〈â†(τ)â(τ)〉

=
〈â†(0)â†(τ)â(τ)â(0)〉

〈â†â〉2
(6.25)

is in fact described by

g(2)
meas(τ) =

〈[â†(0) + ξ̂†(0)][â†(τ) + ξ̂†(τ)][â(τ) + ξ̂(τ)][â(0) + ξ̂(0)]〉
〈[â†(0) + ξ̂†(0)][â(0) + ξ̂(0)]〉〈[â†(τ) + ξ̂†(τ)][â(τ) + ξ̂(τ)]〉

(6.26)

where we denote the sideband photon with â and the background photon with ξ̂. To sim-
plify the expression, we note that the sideband photons and background photons are inde-
pendent of each other. The cross correlations between them thus vanish such that

〈â†ξ̂〉 = 〈ξ̂†â〉 = 0 (6.27)

and the background photons are uncorrelated with each other such that

〈ξ̂†(0)ξ̂†(τ)ξ̂(τ)ξ̂(0)〉 = 〈ξ̂†(0)ξ̂(0)〉2 = 〈ξ̂†(τ)ξ̂(τ)〉2

= 〈ξ̂†ξ̂〉2 (6.28)

It is useful to define the ratio of mean background photon flux in each measurement, such
that

ε =
〈ξ̂†ξ̂〉
〈â†â〉

=
Rbkg

RAS(S)
(6.29)

where Rbkg and Rbkg are the rates of detection of background photons and acoustically
scattered photons respectively. Note that sources of the background photon counts include
stray light from the environment, leakage photons through the filter cavities, and the dark
counts of SNSPDs. We assume the total flux of which to remain approximately constant
throughout each measurement. Using these relations, the denominator of g(2)

meas(τ) in equa-
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tion 6.26 is simplified as

〈[â†(0) + ξ̂†(0)][â(0) + ξ̂(0)]〉〈[â†(τ) + ξ̂†(τ)][â(τ) + ξ̂(τ)]〉
= (〈â†(0)â(0)〉+ 〈ξ̂†(0)ξ̂(0)〉) + (〈â†(τ)â(τ)〉+ 〈ξ̂†(τ)ξ̂(τ)〉)
= 〈â†â〉2 + 2〈â†â〉〈ξ̂†ξ̂〉+ 〈ξ̂†ξ̂〉2 = 〈â†â〉2(1 + ε)2 (6.30)

where all the cross correlation terms vanish by equation 6.27. Similarly, we simplify the
numerator of g(2)

meas(τ) as

〈[â†(0) + ξ̂†(0)][â†(τ) + ξ̂†(τ)][â(τ) + ξ̂(τ)][â(0) + ξ̂(0)]〉
= 〈â†(0)â†(τ)â(τ)â(0)〉+ 〈â†(0)ξ̂†(τ)ξ̂(τ)â(0)〉

+ 〈ξ̂†(0)â†(τ)â(τ)ξ̂(0)〉+ 〈ξ̂†(0)ξ̂†(τ)ξ̂(τ)ξ̂(0)〉
= 〈â†(0)â†(τ)â(τ)â(0)〉+ 2〈â†â〉〈ξ̂†ξ̂〉+ 〈ξ̂†ξ̂〉2 (6.31)

We thus have

g(2)
meas(τ) =

〈â†(0)â†(τ)â(τ)â(0)〉+ 2〈â†â〉〈ξ̂†ξ̂〉+ 〈ξ̂†ξ̂〉2

〈â†â〉2(1 + ε)2

=
〈â†(0)â†(τ)â(τ)â(0)〉
〈â†â〉2(1 + ε)2

+
1

(1 + ε)2
(
2〈ξ̂†ξ̂〉
〈â†â〉

+
〈ξ̂†ξ̂〉2

〈â†â〉2
)

=
g(2)(τ) + 2ε+ ε2

(1 + ε)2
(6.32)

To obtain the actual sideband acoustic photon correlation from the measurement, we thus
use the relation

g(2)(τ) = g(2)
meas(τ) + 2(g(2)

meas(τ)− 1)ε+ (g(2)
meas(τ)− 1)ε2 (6.33)

For the measured cumulative delay histogram shown in figure 6.3, we have

C
(2)
AS, meas(τ) = g(2)

meas(τ)Rmeas =
g(2)(τ)RAS

1 + ε
+

(2ε+ ε2)Rmeas

(1 + ε)2

=
C

(2)
AS (τ)

1 + ε
+

(2ε+ ε2)Rmeas

(1 + ε)2
(6.34)

where Rmeas = Rbkg +RAS(S).
Note that as discussed in section 5.1 (shown in figure 6.4), the rate of detected back-

ground counts is dependent on the drive tone setting, mainly from drive photons leaking
through the filters. ε thus has to be measured for each experiments with varying drive
powers and filter transmission. While a red- or blue-detuned drive (∆ = ∓ωac) is used for
generating acoustically scattered photons in the CW phonon coherence experiment dis-
cussed in this chapter, we also use a drive tone of the same power as the red or blue drive,
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Figure 6.4: A red- or blue-detuned drive (∆ = ∓ωac) is used for generating acousti-
cally scattered photons in the CW phonon coherence experiment discussed in this chapter.
Another drive tone of the same power as the red and blue drive is used to calibrate the
background photon count rate at a detuning of ∆bkg/2π = ∓308 MHz.
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Figure 6.5: A typical background count rate Rbkg measurement, which is recorded period-
ically during a CW phonon coherence measurement.

at a detuning of ∆bkg/2π = ∓308 MHz, to calibrate the background count rate for each
experimental setting of drive tones of various powers.

We find that the GAWBS contribution at ωac is negligible (section 5.1.1), while the
sideband photon contribution at |∆bkg| is also negligible as |∆bkg| � γac. The background
count rate is measured periodically during an experiment. Figure 6.4 shows a typical
record of background count rate measured over a ∼ 5 hour experiment corresponding to
the delay histogram (uncorrected for background counts) shown in figure 6.3, where a red-
detuned drive of Pin ∼ 5 µW is used, and we measure a relatively stable mean background
photon flux of Rbkg = 47.0± 0.4 s−1. The corresponding ε in this measurement is 0.154.
For the drive powers used in the results presented in this chapter (1µW ≤ Pin ≤ 5µW),
the ratio of the background photon flux ranges from 0.04 . ε . 0.2. We also examine that
the statistics of the background photon counts is indeed uncorrelated in time following a
Poisson distribution, as we assume in equation 6.28 (see appendix C.1 for more detail).

We apply this correction in equation 6.34 to figure 6.3 to obtain the delay histogram of
anti-Stokes scattered photons which is corrected for the contribution from the background
photons, as shown in figure 6.6. This background-corrected sideband photon coherence
corresponds to the normally ordered phonon coherence of the acoustic oscillator in thermal
equilibrium. According to equation 6.11, it follows the functional formA+Be−γacτ , where
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Figure 6.6: Darker red trace shows the delay histogram after background correction ac-
cording to equation 6.34, which is fit to the functional form of A + Be−γacτ as expected
for a thermal acoustic oscillator.

A is a normalization factor accounting for the mean photon flux and B/A = 1. The black
dashed line shows the best fit of corrected C(2)

AS to this form, where A, B and γac are the
fitting parameters. It returns an acoustic damping rate of γac/2π = 5300± 100 Hz, which
is optomechanically broadened by the red-detuned drive from its bare damping rate of
γbare/2π = 3250 ± 20. The time decay of the phonon coherences will be examined in
more detail in the next section.

For higher order coherences, we apply similar calculation used for g(2)
meas to correct for

the background photon counts. For the third-order coherences, we have

g(3)
meas(τ1, τ2) =

〈(â†0 + ξ̂†0)(â†1 + ξ̂†1)(â†2 + ξ̂†2)(â0 + ξ̂0)(â1 + ξ̂1)(â2 + ξ̂2)〉
〈(â† + ξ̂†)(â+ ξ̂)〉3

(6.35)

For the denominator, we have

〈(â† + ξ̂†)(â+ ξ̂)〉3 = 〈â†â〉3 + 〈ξ̂†ξ̂〉3 + 3〈â†â〉2〈ξ̂†ξ̂〉+ 3〈â†â〉〈ξ̂†ξ̂〉2

= (〈â†â〉+ 〈ξ̂†ξ̂〉)3 (6.36)

Since

(1 + ε)n =
(〈â†â〉+ 〈ξ̂†ξ̂〉)n

〈â†â〉n
(6.37)

we have in general that the denominator of g(l)
meas(τ1, τ2, · · · , τl − 1) is equivalent to (1 +

ε)l〈â†â〉l.
After expanding and eliminating the cross correlation terms, numerator of equation
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6.35 becomes

〈(â†0 + ξ̂†0)(â†1 + ξ̂†1)(â†2 + ξ̂†2)(â0 + ξ̂0)(â1 + ξ̂1)(â2 + ξ̂2)〉
=〈â†0â

†
1â
†
2â2â1â0〉+ 〈ξ̂†0ξ̂

†
1ξ̂
†
2ξ̂2ξ̂1ξ̂0〉

+ 〈ξ̂†ξ̂〉(〈â†0â
†
1â1â0〉+ 〈â†1â

†
2â2â1〉+ 〈â†0â

†
2â2â0〉)

+ 〈ξ̂†ξ̂〉2(〈â†0â0〉+ 〈â†1â2〉+ 〈â†2â2〉) (6.38)

We thus have

g(3)
meas(τ1, τ2) =

〈â†0â
†
1â
†
2â2â1â0〉

(1 + ε)3〈â†â〉3
+

〈ξ̂†ξ̂〉3

(1 + ε)3〈â†â〉3

+
ε

(1 + ε)3

〈â†0â
†
1â1â0〉+ 〈â†1â

†
2â2â1〉+ 〈â†0â

†
2â2â0〉

〈â†â〉2
+

3ε2

(1 + ε)3

=
g(3)(τ1, τ2) + ε3 + 3ε2 + ε(g(2)(τ1) + g(2)(τ2) + g(2)(τ1 + τ2))

(1 + ε)3
(6.39)

where â0 ≡ â(0), â1 ≡ â(τ1), â2 ≡ â(τ2) respectively. Similarly, we can further write that

g(4)
meas(τ1, τ2, τ3) =

1

(1 + ε)4

(
g(4)(τ1, τ2, τ3) + ε4 + 4ε3

+ ε2
∑

g
(2)
j ∈G(2)

g
(2)
j + ε

∑
g
(3)
i ∈G(3)

g
(3)
i

)
(6.40)

where G(2) and G(3) are sets of coherence functions of the second- and third-order as a
function of various time delays, such that

G(2) = {g(2)(τ1), g(2)(τ2), g(2)(τ3), g(2)(τ1 + τ2), g(2)(τ2 + τ3), g(2)(τ1 + τ2 + τ3)}
G(3) = {g(3)(τ1, τ2), g(3)(τ1 + τ2, τ3), g(3)(τ1, τ2 + τ3), g(3)(τ2, τ3)}

6.3 High order phonon coherences
In this section, I will show our measurement of phonon coherences up to the fourth-order
of our acoustic oscillator in a thermal state, using the result and protocol discussed in
previous sections. We use both red and blue drive tones at various drive power to probe
the dynamics of the acoustic oscillator.

As discussed in section 6.1, correlations of the anti-Stokes scattered photon from a red
drive correspond to the normally ordered phonon coherence, denoted by g(l)

ac such that

g(l)
ac ≡

〈(b̂†)lb̂l〉
〈b̂†b̂〉l

=
〈(â†)lâl〉
〈â†â〉l

≡ g
(l)
AS (6.41)
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And we have the anti-normally ordered phonon coherence,

h(l)
ac ≡

〈b̂l(b̂†)l〉
〈b̂†b̂〉l

=
〈(â†)lâl〉
〈â†â〉l

≡ g
(l)
S (6.42)

6.3.1 Second-order phonon coherences
The second-order coherences of phonons measured for the acoustic oscillator in thermal
equilibrium is shown in figure 6.7.

The measured as well as the background-corrected C(2)
AS and C(2)

S are shown in figure
6.7(a)-(b) for the anti-Stokes and Stokes scattered photons respectively. Delay τ is binned
by a 2 µs window, and is histogrammed up to τ = 1 ms to show the time dependence. Total
experimental time2 for collecting both sets of data shown here is∼3.5 hours, during which
the anti-Stokes data is collected for 1820 sec with a red-detuned drive of an average power
Pin = 5.24 µW. The rate of measured photons (including both sideband and background
photons) is Rmeas = 756 s−1, whereas the background photon rate is Rbkg = 101 s−1,
yielding ε = 0.154. The Stokes data is collected for 857 sec with a blue-detuned drive of
an average power Pin = 5.09 µW. The rate of total measured photons is Rmeas = 2334 s−1,
whereas the background photon rate is Rbkg = 108 s−1, yielding ε = 0.049.

The background-corrected C
(2)
AS and C

(2)
S are fit to the form A + Be−γacτ according

to equation 6.11 as shown by the black dashed lines, where A, B, γac are the fitting pa-
rameters. A is an overall normalization factor used to convert the histogram to phonon
coherences g(2)

ac (τ) and h
(2)
ac (τ), and the corresponding g(2)(0) and h(2)(0) are given by

1 + B/A. Figure 6.11(c)-(d) shows g(2)
ac (τ) = C

(2)
AS /A and h

(2)
ac (τ) = C

(2)
S /A and the

corresponding fits 1 + (B/A)e−γacτ . The fits return

g(2)
ac (0) = 2.006± 0.004 (6.43)

h(2)
ac (0) = 2.03± 0.02 (6.44)

with corresponding damping rates of γac, AS/2π = 5300±100 Hz and γac, S/2π = 1780±10
Hz, which are increased and decreased respectively due to the optomechanical effects.
g

(2)
ac (τ) and g(2)

ac (τ) are also shown on a logarithmic scale in figure 6.11(e) and (f) to demon-
strate their exponential form.

The measurements are repeated for different Pin. In general, the amount of detected
second-order coincidence counts scale by ∼ R2

meas. Hence, to achieve the same signal-to-
noise ratio to examine the feature of g(2)

ac (0) and h(2)
ac (0) at zero coincidence in particular,

the total DAQ time scales inversely with ∼ R2
meas. The experimental settings and results

are summarized in table 6.1. g(2)
ac (0) and h(2)

ac (0) as a function of drive power are plotted
in figure 6.8. The stated uncertainty corresponds to one standard deviation of the best-fit
parameter to the functional form of coherences of a thermal state. The thermal acoustic

2This includes the lock period, the drive and DAQ period, the background photon measurement period,
and the calibration period that measures filter transmission.

95



4000

3000

2000

1000

0
1.00.80.60.40.20.0

Background photons
 Uncorrected for
 Corrected for 

1.00.80.60.40.20.0

0.50.40.30.20.10.0

1.0 1.0

2.02.0

2.0

1.001

1.1

1.01

2.0

1.001

1.1

1.01

0.50.40.30.20.10.0

0.50.40.30.20.10.0 0.50.40.30.20.10.0

20

15

10

5

0

x103

 

 

Background photons
 Uncorrected for
 Corrected for

(a) (b)

(c) (d)

(e) (f)

Figure 6.7: (a)-(b): Measured and background-corrected delay histograms, C(2)
AS and C(2)

S ;
(c)-(d): Phonon coherences of the second-order g(2)

ac and h(2)
ac ; (e)-(f): g(2)

ac and h(2)
ac shown

on a logarithmic scale. Time delay τ is histogrammed by 2 µs window. A drive power of
Pin = 5.24 µW and Pin = 5.09 µW is used on the red- and blue-detuned side respectively.
g

(2)
ac and h(2)

ac are fit to the form 1+B0e
−γacτ , yielding g(2)

ac (0) = 2.006±0.004 and h(2)
ac (0) =

2.03± 0.02.
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Set Side Pin [µW] DAQ time [s] Rmeas [s−1] ε g(2)ac (0) or h(2)
ac (0)

1 S 5.75 12520 2245 0.049 2.007 ± 0.001
2 AS 5.26 156570 885 0.120 1.98 ± 0.002
3 AS 5.26 12625 612 0.189 1.967 ± 0.008
4 AS 5.24 1820 756 0.154 2.03 ± 0.02
5 S 5.09 857 2334 0.049 2.006 ± 0.004
6 AS 4.21 4923 597 0.163 1.94 ± 0.01
7 AS 4.16 68517 496 0.203 1.964 ± 0.005
8 S 4.10 2676 1509 0.064 1.995 ± 0.004
9 AS 3.13 7277 432 0.188 1.97 ± 0.01

10 S 3.05 2569 901 0.089 1.983 ± 0.007
11 AS 2.13 19984 285 0.236 1.97 ± 0.01
12 S 2.08 4808 505 0.148 2.03 ± 0.01
13 AS 0.96 40183 127 0.414 1.98 ± 0.02
14 S 0.93 9725 179 0.278 2.01 ± 0.03

Table 6.1: Summary of experimental settings and results for the second-order phonon
coherences measurements shown in Figure 6.8.

oscillator indeed exhibits a super-Poissonian distribution showing the bunching effect at
zero coincidence and decays in an exponential form.

Note that we can also show the decoherence of the phonon coherences directly via the
equation of motion of the acoustic mode, which is given by

˙̂
b = −(iωm +

γm

2
)b̂+

√
γmη̂ (6.45)

We compute the correlations directly (derived from equations 2.20 and 2.21) and find that

〈b̂†(t′)b̂(t)〉 = nthe
−(γac/2+iωac)(t′−t) (6.46)

〈b̂(t′)b̂†(t)〉 = (nth + 1)e−(γac/2+iωac)(t′−t) (6.47)

for t′ > t. The time evolution of the second-order phonon coherence of our acoustic state
is directly formulated to be

g(2)
ac (τ) = h(2)

ac (τ) = 1 + e−γacτ (6.48)

Note that this is a direct result of the Langevin equation of motion of the acoustic motional
state formulated by the input-output theory, where the noise operators are treated as weakly
coupled to a Markovian bath. Our measurements demonstrate that the decoherence of the
motional acoustic state does obey that of a state having a Markovian coupling to its thermal
bath.
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Figure 6.8: g(2)
ac (0) and h(2)

ac (0) as a function of drive power from Pin ∼ 1 µW to ∼ 6 µW.

Figure 6.9: Two-time delay histogram C
(3)
AS(S) as a function of τ1 and τ2. The histogram is

binned by a 5 µs time window.

6.3.2 Third-order phonon coherences
We can further construct the third-order phonon coherences. Statistics presented in this
section are obtained from the same set of experiments discussed in previous sections and
summarized in table 6.8.

As described in section 6.2.1, to obtain the third-order phonon coherence we first con-
struct a two-time delay histogram. For C(3)

AS(S)(τ1, τ2), we compute the matrix of delays
between the arrival times of each triplet of photons {{tj − ti}∀j > i, {tk − tj}∀k > j}.
The histogram is then background-corrected following equation 6.39. Figure 6.9 shows an
example of C(3)

AS (τ1, τ2) after background photon subtraction, which is histogrammed by a
bin size of 5 µs. The example shown here are computed from data sets 2 and 1 in table 6.8,
with a drive power of Pin = 5.26 µW and 5.75 µW for the red and blue side respectively.

The background-corrected C(3)
AS(S)(τ1, τ2) are then fit to the form

C
(3)
AS(S)(τ1, τ2) = A+B(e−γacτ2 + e−γacτ1 + 3e−γac(τ1+τ2)) (6.49)

according to equation 6.12, where A and B are fitting parameters that account for the
normalization of flux of photon detection and the behavior at zero delay respectively. γac
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Figure 6.10: g(3)
ac and h(3)

ac plotted as a function of τ1 and τ2, obtained by normalizing the
histogram shown in figure 6.9.

Figure 6.11: g(3)
ac and h(3)

ac shown with the fits in the form of equation 6.49 normalized by
the fitting parameter A. It is plotted as a surface on top of the scattered data plot. The
corresponding residuals are shown underneath.
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Figure 6.12: g(3)
ac (0, 0) and h(3)

ac (0, 0) as a function of drive power from Pin ∼ 1 µW to
∼ 6 µW, showing the phonon bunching effect of a thermal acoustic state.

is a fitting parameter showing the time decay of the phonon coherences. The third-order
phonon coherences (corresponding to the cumulative histograms shown in figure 6.9) are
shown in figure 6.10 where the normally ordered g

(3)
ac (τ1, τ2) = C

(3)
AS (τ1, τ2)/A and the

anti-normally ordered h(3)
ac (τ1, τ2) = C

(3)
S (τ1, τ2)/A. The resulting fits are plotted on top

of the data in figure 6.11 shown as a solid surface. The corresponding residuals are shown
underneath in gray.

For the third-order coherence, we have g(3)
ac (0, 0) = h

(3)
ac (0, 0) ≈ 6 at zero delay as

expected for a thermal acoustic state in thermal equilibrium to the bath. More precisely
from the fitting function in equation 6.49, we find g(3)

ac (0, 0) = h
(3)
ac (0, 0) = 1 + 5B/A.

The fitting results for each data set are summarized in table 6.2 and plotted in figure 6.12
to demonstrate the bunching effect of a thermal state at zero delay. g(3)(0, 0) indicates that
comparing to the uncorrelated arrivals with large delay in between (τ ≫ τac), triplet of
thermal phonons are 6 times more likely to arrive jointly.

Furthermore, by setting one of the delays to τ = ∞, we retrieve the one-dimensional
g

(2)
ac . For the third phonon that arrives with a large delay (τ → ∞), its arrival becomes

uncorrelated to the other pair of phonon. The resulting coherence is thus reduced to
the probability of measuring the pair of phonons with a delay τ in between such that
g

(3)
ac (τ1,∞) = g

(3)
ac (∞, τ2) = g

(2)
ac (τ). Mathematically, we can easily see that from the

functional form of g(3)
ac as

g(3)
ac (τ1 =∞, τ2) = g(3)

ac (τ1, τ2 =∞) = 1 + e−γacτ2 + e−γacτ1 + 3e−γac(τ1+τ2)

= 1 + e−γacτ = g(2)(τ) (6.50)

It follows that g(3)
ac (∞, 0) = g

(3)
ac (0,∞) = g

(2)
ac (0) = 2.

6.3.3 Damping dynamics
The thermal acoustic oscillator exhibits a super-Poissonian distribution which decays on a
timescale set by the damping rate of the acoustic oscillator. From the fits obtained from the
second and third-order coherences in previous sections, we show the fit-extracted γac as a
function of drive power Pin in figure 6.13. γac extracted from g

(2)
ac are shown as circles, and
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Set g(3)ac (0, 0) or h(3)
ac (0, 0) g

(3)
ac , h

(3)
ac (0,∞) = g

(3)
ac , h

(3)
ac (∞, 0)

1 6.023 ± 0.002 2.023
2 5.843 ± 0.007 1.843
3 5.75 ± 0.05 1.75
4 6.22 ± 0.09 2.22
5 6.024 ± 0.009 2.024
6 5.52 ± 0.07 1.52
7 5.74 ± 0.03 1.74
8 5.93 ± 0.01 1.93
9 5.72 ± 0.09 1.72

10 5.86 ± 0.03 1.86
11 5.7 ± 0.1 1.7
12 6.22 ± 0.06 2.22
13 5.6 ± 0.4 1.6
14 6.6 ± 0.3 2.6

Table 6.2: Summary of experimental settings and results for the third-order phonon coher-
ences measurements shown in Figure 6.12.

those extracted from g
(3)
ac are shown as squares, and are consistent with each other within

the standard deviation of the best-fit parameter.
As discussed in section 5.3, the effective acoustic damping rate is subjected to the

optomechanical backaction. When the optical cavity is driven by a laser at detuning ∆ =
±ωac, we have

γac,eff = γac ∓ 4g2
0nc/κc

= γac ∓ {4g2
0
κin

κc~ωc
|χc[±ωac]|2}Pin (6.51)

The effective damping rate under optomechanical backaction thus varies linearly with
drive power Pin. We fit the extracted γac from both detuning sides simultaneously to the
form γac,eff(Pin) = A∓BPin, where A and B are the fitting parameters, as shown in figure
6.13.

We thus extract the bare acoustic damping rate in absence of optomechanical interac-
tion at approximately the base temperature (∼ 20 mK) to be γac/2π = 3307± 8 Hz 3.
The fit also returns B = 4g2

0κin|χc[ωac]|2/(κc~ωc), where all parameters are known or are
measured to high precision via independent methods (see section 5.2) except for the single
photon optomechanical coupling g0. We can thus extract g0 via the time dependence of
phonon coherences which yields g0/2π = 4700± 50 Hz.

3The bare acoustic damping rate at fridge base temperature extracted from various methods are summa-
rized in appendix B.4
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Figure 6.13: γac extracted from the time decay of the second- and third-order phonon
coherences. γac extracted from g

(2)
ac are shown as circles, and those extracted from g

(3)
ac are

shown as squares.

6.3.4 Fourth-order phonon coherences
We further construct the fourth-order phonon coherences following the same procedure.
Data shown in this section are obtained from data set 2 and 1 in table 6.1 for the anti-Stokes
and Stokes side respectively. Note that large DAQ time is needed to construct higher order
coherences in order to detect 4-fold joint detection here. We also use a larger time bin of
10 µs to acquire larger number of joint detection (within a time bin).

To construct the three-time delay dependent g(4)
ac (τ1, τ2, τ3) and h(4)

ac (τ1, τ2, τ3), a three-
dimensional matrix is constructed from the time delays between the arrival times of each
quadruple of photons {{tj − ti}∀j > i, {tk − tj}∀k > j, {tm − tk}∀m > k}. In order
to display the three-dimensional data sets, we decompose it into sets of two-dimensional
slices.

Figure 6.14 shows the 2D slices of g(4)
ac (τ1, 0

+, τ3) and h(4)
ac (τ1, 0

+, τ3). Data are shown
in scattered plots in the top row, where we show the subset of data in the bin of 5 µs< τ1 <
15 µs, denoted by τ1 = 0+. Solid surfaces shown in the middle row are the best-fits to
the entire three-dimensional data sets following equation 6.13 with proper normalization
factor, such that

C
(4)
AS(S)(τ1, τ2, τ3) = A+B

{
e−γacτ1 + e−γacτ2 + e−γacτ3 + e−γac(τ1+τ3)

+ 3e−γac(τ1+τ2) + 3e−γac(τ2+τ3) + 9e−γac(τ1+τ2+τ3)

+ 4e−γac(τ1+2τ2+τ3)
}

(6.52)

It follows that g(4)
ac (τ1, τ2, τ3) = C

(4)
AS /A and h

(4)
ac (τ1, τ2, τ3) = C

(4)
S /A. For a thermal

acoustic state, we expect g(4)
ac (0, 0, 0) = h

(4)
ac (0, 0, 0) = 4! = 1 + B/A. Fits to each three

dimensional data set return g(4)
ac (0, 0, 0) = 1 + B/A = 23.01 ± 0.03 and h(4)

ac (0, 0, 0) =
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Figure 6.14: 2D slices from the fourth-order phonon coherences, g(4)
ac (τ1, 0

+, τ3) and
h

(4)
ac (τ1, 0

+, τ3), binned by 10 µs window, where τ = 0+ represents the smallest delay
bin with 5 µs < τ < 15 µs. Fits to the 2D slices are shown in the middle row.

Figure 6.15: 2D slices from the fourth-order phonon coherences, g(4)
ac (0+, τ2, τ3) and

h
(4)
ac (0+, τ2, τ3), binned by 10 µs window, and the corresponding fits shown in solid sur-

faces. τ = 0+ represents the smallest delay bin with 5 µs < τ < 15 µs.
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1 +B/A = 23.98± 0.01 respectively. Note that in figure 6.14, data is shown from a finite
delay bin of 5 µs< τ2 < 15 µs. Hence, the measured coherence does not reach g(4)

ac (0, 0, 0)

and h(4)
ac (0, 0, 0) as (τ1, τ3) → (0, 0). The solid surface is plotted with τ2 = 10 µs with

the best-fit parameters of A, B and γac, such that g(4)
ac (0, 0+, 0) = h

(4)
ac (0, 0+, 0) = 1 +

B/A(5 + 18e−γacτ2).
Similarly, we show g

(4)
ac (0+, τ2, τ3) and h(4)

ac (0+, τ2, τ3) in figure 6.15, where the subset
of data in the delay bin of 5 µs< τ1 < 15 µs is plotted. The solid surface is plotted with the
best-fit parameters and τ1 = 10 µs, where g(4)

ac (0+, 0, 0) = h
(4)
ac (0+, 0, 0) = 1 + B/A(5 +

18e−γacτ1). 2D slices of g(4)
ac (0+, τ2, τ3), h(4)

ac (0+, τ2, τ3), g(4)
ac (τ1, 0

+, τ3), h(4)
ac (τ1, 0

+, τ3),
g

(4)
ac (τ1, τ3, 0

+), and h(4)
ac (τ1, τ3, 0

+) all display the same behavior, where

g(4)
ac , h

(4)
ac → 24, as (τi, τj)→ (0, 0)

g(4)
ac , h

(4)
ac → 6, as τi → 0 and τj →∞ for i 6= j

g(4)
ac , h

(4)
ac → 2, as (τi, τj)→∞ (6.53)

As we set one of the delays to zero, these features are consistent with the four-fold, three-
fold, two-fold bunching behavior of a thermal state.

Figure 6.16 shows the 2D slices of g(4)
ac (τ1,∞, τ3) and h(4)

ac (τ1,∞, τ3) on the left, and
g

(4)
ac (τ1, τ2,∞) and h

(4)
ac (τ1, τ2,∞) on the right, where we plot the subset of data in the

large delay bin of τ > 10τac, denoted by τ = ∞. The solid surfaces are plotted with
the best-fit parameters from the three-dimensional fit and the corresponding residuals are
shown underneath.

For g(4)
ac (τ1,∞, τ3) and h(4)

ac (τ1,∞, τ3), as τ2 → ∞, which is the delayed arrival time
of the third photon from the second in the quadruple of photons, we have that the arrival
times between the pair of the first and second photons, and the pair of the third and forth
photons, are thus uncorrelated. g(4)

ac (τ1,∞, τ3) and h(4)
ac (τ1,∞, τ3) is thus equivalent to the

product of the coincidence of one pair of photons arriving with a delay of τ1, and the
coincidence of another pair of photons arriving with a time delay of τ3. From equation
6.13, it is indeed straightforward to show that

g(4)
ac (τ1,∞, τ3) = h(4)

ac (τ1,∞, τ3) = 1 + e−γacτ1 + e−γacτ3 + e−γac(τ1+τ3)

= g(2)
ac (τ1)g(2)

ac (τ3) = h(2)
ac (τ1)h(2)

ac (τ3) (6.54)

Figure 6.16(left) shows

g(4)
ac , h

(4)
ac (τ1,∞, τ3)→ 4, as (τ1, τ3)→ (0, 0)

g(4)
ac , h

(4)
ac (τ1,∞, τ3)→ 2, as (τ1, τ3)→ (0,∞) or (∞, 0)

g(4)
ac , h

(4)
ac (τ1,∞, τ3)→ 1, as (τ1, τ3)→ (∞,∞) (6.55)

as expected.
For g(4)

ac (τ1, τ2,∞) and h(4)
ac (τ1, τ2,∞) when we set τ3 → ∞, the arrival time of the

fourth photon becomes uncorrelated to the first three photons. This is equivalent to the

104



Figure 6.16: 2D slices from the fourth-order phonon coherences, g
(4)
ac (τ1,∞, τ3),

h
(4)
ac (τ1,∞, τ3), g(4)

ac (τ1, τ2,∞), and h(4)
ac (τ1, τ2,∞), binned by 10 µs window. Correspond-

ing fits shown in solid surfaces. τ = ∞ represents large delay bin where τ > 10τac at
least.
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third-order coherence for measuring the coincidence of a triplet of photons, where the first
two arrive with a time delay of τ1 and the last two with τ2. From equation 6.13, we have

g(4)
ac (τ1, τ2,∞) = h(4)

ac (τ1, τ2,∞) = 1 + e−γacτ1 + e−γacτ2 + 3e−γac(τ1+τ2)

= g(3)
ac (τ1, τ2) = h(3)

ac (τ1, τ2) (6.56)

as shown in figure 6.16(right).

6.4 Phonon-subtracted and -added thermal state
In the previous section, we demonstrate that phonon coherences of the acoustic state are
consistent with those of a state in thermal equilibrium with a bath, such that its energy fluc-
tuations have a Gaussian distribution up to at least the fourth cumulant. One related state
of interest is a phonon-subtracted or -added thermal acoustic state, where k-quanta of ther-
mal excitations are subtracted from or added to the state in thermal equilibrium, and the
resulting state could acquire an non-Gaussian phase-space distribution depending on the
initial state [30]. Such a state could yield richer information that potentially creates quan-
tum advantage in quantum enhanced metrology and sensing[22]. The cooled or heated
state is also useful in quantum thermodynamics, as the state is out of equilibrium from its
thermal environment, and can be used to perform work and carry information[175].

The optical equivalents of such states have been well studied in the field of nonlin-
ear quantum optics where photon-subtracted and -added optical states are prepared and
probed. Interesting results are demonstrated by conditional measurements enabled by the
quantum detectors on non-classical as well as classical states, as each single photon de-
tection event heralds the subtraction or addition of exactly one quanta excitation. For
instance, weak conditional measurement is used to prepare a Fock state from a coherent
state by quantum feedback via cavity quantum electrodynamics[176][177]. In the field of
quantum information and thermodynamics, a photonic Maxwell’s demon[178] is realized
with a highly thermal source, where work is extracted by conditional measurement on ther-
mal light modes leading to a difference in their average energy[179]. With a weak thermal
source, quantum-enhanced interferometry have been demonstrated[180]. It has also been
shown that a single-photon-added thermal state displays a negative Glauber-Sudarshan P
function[181]. Furthermore, highly non-classical states (states with a negative Wigner
function) have been prepared and probed via single photon detection and heralded mea-
surement, such as a Schrödinger cat state prepared from a photon-subtracted squeezed
optical state[182], or a single photon Fock state via photon addition in a parametric down-
conversion[183].

I will show in the following sections that states prepared by heralded single photon
detection in our experiment gives the ability to generate and probe the statistics of an
acoustic state out of thermal equilibrium, giving potential access to preparing more non-
classical states in the mechanical domain [30, 184, 29].
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6.4.1 Mean occupancy upon phonon subtraction or addition
One interesting, and perhaps counter intuitive property of these states is that the mean en-
ergy of the heralded state increases upon the conditioned operation of phonon subtraction
or addition. Consider an acoustic thermal state described by

ρ̂th =
∞∑
m=0

pm|m〉〈m| (6.57)

where

pm =
nmth

(nth + 1)m+1
,

nth =
1

eβ − 1
(6.58)

and β = ~ωac/kBT .
Detection of a single anti-Stokes scattered photon corresponds to the subtraction of a

single phonon from the acoustic state which transforms the density matrix ρ̂th to

ρ̂-1 =
b̂ρ̂thb̂

†

Tr{b̂ρ̂thb̂†}
=

b̂ρ̂thb̂
†

Tr{ρ̂thb̂†b̂}
=
b̂ρ̂thb̂

†

nth

=
1

nth

∞∑
m=0

pmm|m− 1〉〈m− 1|

=
1

nth

∞∑
m=0

pm+1(m+ 1)|m〉〈m| (6.59)

where we have the updated probability distribution

pm|−1 =
m+ 1

nth
pm+1 (6.60)

The unconditioned state has a mean phonon occupancy of nth = 〈b̂†b̂〉ρ̂th = Tr{ρ̂thb̂
†b̂},

whereas the state conditioned on one phonon subtraction has the mean occupancy of

〈b̂†b̂〉ρ̂−1 = Tr{ρ̂-1b̂
†b̂} =

Tr{b̂ρ̂thb̂
†b̂†b̂}

nth

= Tr
{ ∞∑
m=0

pm|−1|m〉〈m|
∞∑
n=0

n|n〉〈n|
}

=
∞∑
m=0

pm|−1m =
1

nth

∞∑
m=0

pmm(m− 1) (6.61)

We can solve this directly by defining a factor q = nth/(1+nth), such that pm = (1−q)qm.
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Equation 6.61 can thus be re-written as

〈b̂†b̂〉ρ̂−1 =
(1− q)q2

nth

d2

dq2

∑
qm =

(1− q)q2

nth

d2

dq2
(

1

1− q
)

= 2nth = 2〈b̂†b̂〉ρ̂th (6.62)

where we use d2

dq2
qm = m(m − 1)qm−2. Hence, upon subtraction of a single phonon,

the mean phonon occupancy of the conditioned state is twice as that of the unconditioned
thermal acoustic state.

Similarly, upon addition of a single phonon, the thermal density matrix is updated to

ρ̂+1 =
b̂†ρ̂thb̂

Tr{b̂†ρ̂thb̂}
=

b̂†ρ̂thb̂

Tr{ρ̂thb̂b̂†}
=

b̂†ρ̂thb̂

nth + 1

=
1

nth + 1

∞∑
m=0

pm(m+ 1)|m+ 1〉〈m+ 1|

=
1

nth + 1

∞∑
m=0

pm−1m|m〉〈m| =
∞∑
m=0

pm|+1m (6.63)

where we have the updated probability distribution

pm|+1 =
m

nth + 1
pm−1 (6.64)

It follows that the mean phonon occupancy of the conditioned state becomes

〈b̂†b̂〉ρ̂+1 =
1

nth + 1

∞∑
m=0

pm−1m
2

= (1− q)
∞∑
m=0

qm−1m2 =
1 + q

(1− q)2

= (1 + nth)(2nth + 1) = (2nth + 1)〈b̂†b̂〉ρ̂th (6.65)

From the Bayesian update for the probability distribution of the conditioned states in
equation 6.60 and 6.64, we can see that they are biased by a factor of (m + 1) and m.
The scattered photon is thus much more likely to occur from the Fock components with
higher-m, leading to the higher mean energy of the resulting conditional state. The up-
date of the density matrix during a heralding one-phonon-subtracted and -added thermal
acoustic state operation is summarized in figure 6.17. Subplot (a) shows the probability
distribution for a thermal state pm, where nth = 1. Figure 6.17(b) shows the distribution
of the state immediately following an anti-Stokes scattering event before detection, such
that the density matrix is updated as

∑∞
m=0 pm|AS|m − 1〉〈m − 1|, as shown in equation

6.59. Upon detection, a single-phonon-subtracted thermal state is heralded, which is de-
scribed by

∑∞
m=0 pm|−1|m〉〈m| in equation 6.60. Similarly, the distribution immediately
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Figure 6.17: Updated probability distribution of a phonon-subtracted and -added thermal
acoustic state during a conditional measurement. (a) shows that of a unconditioned ther-
mal state. (b), (d) show the distribution immediately following an anti-Stokes (Stokes)
scattering event before detection. (c), (e) show the distribution of a heralded one-phonon-
subtracted and -added thermal acoustic state upon a single photon detection.

following a Stokes scattering event and the state heralded by the detection of the Stokes
photon are shown in figure 6.17(d) and (e) respectively, corresponding to the density ma-
trix

∑∞
m=0 pm|S|m+ 1〉〈m+ 1| given by equation 6.63, and

∑∞
m=0 pm|+1|m〉〈m| given by

equation 6.64.
This result should be evident from the bunching feature in the phonon coherences of

a thermal state, such that g(l)(0) = l!. For g(2)(0) = 2, it predicts that the probability
of detecting another photon upon the detection of one photon doubles. Since the rate
of photon scattering events is proportional to nac for anti-Stokes scattering, and nac + 1
for Stokes scattering, mean phonon occupancy of the heralded state conditioned on one-
photon detection must follow

n−1
ac (0)

nac
=
n+1

ac (0) + 1

nac + 1
= 2 (6.66)

Experimentally, by appropriately post-selecting from all the counts registered by the
single photon detectors (the full data sets shown in previous section 6.3) to only those
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Figure 6.18: Mean phonon occupancy of a one-phonon-subtracted (red) and -added (blue)
thermal acoustic state.

that are followed immediately by the detection of one anti-Stokes or Stokes photons, one-
phonon-subtracted or -added thermal acoustic states are prepared and probed. Figure 6.18
shows the ratio of the mean phonon occupancy of a one-phonon-subtracted or -added state
over that of an unconditioned thermal acoustic state. n−1

ac (τ)/nac for a phonon-subtracted
state and n+1

ac (τ) + 1/(nac + 1) for a phonon-added state are plotted as a function of delay
τ .

At time τ , we have

n−1
ac (τ) = 〈b̂†(τ)b̂(τ)〉ρ−1 =

b̂(0)ρ̂th(τ)b̂†(0)

〈b̂†(0)b̂(0)〉ρ̂th

=
〈b̂†(0)b̂†(τ)b̂(τ)b̂(0)〉ρ̂th

〈b̂†(0)b̂(0)〉ρ̂th

(6.67)

n+1
ac (τ) + 1 = 〈b̂†(τ)b̂(τ)〉ρ+1 + 1 = 〈b̂(τ)b̂†(τ)〉ρ+1 =

〈b̂(0)b̂(τ)b̂†(τ)b̂†(0)〉ρ̂th

〈b̂(0)b̂†(0)〉ρ̂th

(6.68)

It follows that the ratio of the mean phonon occupancy is given by

n−1
ac (τ)

nac
=

n−1
ac (τ)

〈b̂†(0)b̂(0)〉ρ̂th

=
g

(2)
ac (τ)

g
(1)
ac (0)

(6.69)

n+1
ac (τ) + 1

nac + 1
=

n+1
ac (τ) + 1

〈b̂(0)b̂†(0)〉ρ̂th

=
h

(2)
ac (τ)

h
(1)
ac (0)

(6.70)

Explicitly, the data is evaluated as

n−1
ac (τ)

nac
=

g
(2)
ac (τ)

g
(2)
ac (∞)

=
C

(2)
AS (τ)/C

(2)
AS (∞)

C
(2)
AS (∞)/C

(2)
AS (∞)

(6.71)

n+1
ac (τ) + 1

nac + 1
=

h
(2)
ac (τ)

h
(2)
ac (∞)

=
C

(2)
S (τ)/C

(2)
S (∞)

C
(2)
S (∞)/C

(2)
S (∞)

(6.72)

For the single-phonon subtraction and addition case, it is straightforward to interpret this
expression, as the rate of detection at t = τ after heralding a single phonon subtraction or
addition at t = 0 is simply proportional to g(h)

(2)
ac (τ) or C(2)

AS(S)(τ), whereas the denomina-
tor is proportional to the normalized unconditioned count rate. Solid lines in figure 6.18
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Figure 6.19: Mean phonon occupancy of a two- and three-phonon-subtracted (red) and
-added (blue) thermal acoustic state.

show the theoretical predictions

n−1
ac (τ)

nac
= 1 + e−γac,ASτ (6.73)

n+1
ac (τ) + 1

nac + 1
= 1 + e−γac,Sτ (6.74)

which has a value of 2 at zero delay and decays by its acoustic damping rate γac.
We also look at the more general cases of k-phonon-subtraction and -addition. Anal-

ogous to equation 6.59 and 6.63, upon detection of k anti-Stokes or Stokes photons, ρ̂th is
transformed to

ρ̂-k =
(b̂)kρ̂th(b̂

†)k

〈(b̂†)k(b̂)k〉ρ̂th

(6.75)

ρ̂+k =
(b̂†)kρ̂th(b̂)

k

〈(b̂)k(b̂†)k〉ρ̂th

(6.76)

respectively. Equation 6.68 for the k = 1 case can thus be generalized to

n−kac (τ) = 〈b̂†(τ)b̂(τ)〉ρ−k =
〈b̂†(0)k b̂†(τ)b̂(τ)b̂(0)k〉ρ̂th

〈b̂†(0)k b̂(0)k〉ρ̂th

(6.77)

n+k
ac (τ) + 1 = 〈b̂†(τ)b̂(τ)〉ρ+k + 1 = 〈b̂(τ)b̂†(τ)〉ρ+k

=
〈b̂(0)k b̂(τ)b̂†(τ)b̂†(0)k〉ρ̂th

〈b̂(0)k b̂†(0)k〉ρ̂th

(6.78)
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It follows that

n−kac (τ)

nac
=

n−kac (τ)

〈b̂†(0)b̂(0)〉ρ̂th

=
g

(k+1)
ac (0⊗(k−1), τ)

g
(k)
ac (0)

=
g

(k+1)
ac (0⊗(k−1), τ)

g
(k+1)
ac (0⊗(k−1),∞)

=
C

(k+1)
AS (0⊗(k−1), τ)

C
(k+1)
AS (0⊗(k−1),∞)

(6.79)

n+k
ac (τ) + 1

nac + 1
=

n+k
ac (τ) + 1

〈b̂(0)b̂†(0)〉ρ̂th

=
h

(k+1)
ac (0⊗(k−1), τ)

h
(k)
ac (0)

=
h

(k+1)
ac (0⊗(k−1), τ)

h
(k+1)
ac (0⊗(k−1),∞)

=
C

(k+1)
S (0⊗(k−1), τ)

C
(k+1)
S (0⊗(k−1),∞)

(6.80)

where C(k+1)
AS(S) (0⊗(k−1), τ) are the data conditioned on the detection of k photons at time

t = 0. Corresponding post-selected data for k = 2 and k = 3 are shown in figure 6.19.
The ratio of the mean phonon occupancy of states heralded by the subtraction or addition
of k phonons over that of the unconditioned thermal state is shown to to be

n−2
ac (0)

nac
=
n+2

ac (0) + 1

nac + 1
= 3

n−3
ac (0)

nac
=
n+3

ac (0) + 1

nac + 1
= 4 (6.81)

and decays with a timescale set by γac.
Mathematically, the derivation for the k = 1 case given by equation 6.62 and 6.62 can

be generalized to arbitrary k, such that

ρ̂−k =
b̂k ρ̂thb̂

†k

Tr{ρ̂thb̂†kb̂k}
=
b̂k ρ̂thb̂

†k

k!nkac
(6.82)

It follows that

n−kac = 〈b̂†b̂〉ρ̂−k = Tr{ρ̂−kb̂†b̂}

=
1

k!nkac
Tr
{ ∞∑
m=0

pmm(m− 1) · · · (m− k + 1)|m− k〉〈m+ k|
∞∑
n=0

n|n〉〈n|
}

=
1

k!nkac
Tr
{ ∞∑
m=0

pm+k
(m+ k)!

m!
|m〉〈m|

∞∑
n=0

n|n〉〈n|
}

=
∞∑
m=0

pm|−km = (k + 1)nac (6.83)
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where

pm|−k =
1

nkac

(m+ k)!

m!k!
pm+k (6.84)

Similarly for a k-phonon-added state, we have

ρ̂+k =
b̂†k ρ̂thb̂

k

k!(nac + 1)k
(6.85)

It follows that

n+k
ac = 〈b̂†b̂〉ρ̂+k = Tr{ρ̂+kb̂

†b̂}

=
1

k!(nac + 1)k
Tr
{ ∞∑
m=0

pm−k
m!

(m− k)!
|m〉〈m|

∞∑
n=0

n|n〉〈n|
}

=
∞∑
m=0

pm|+km = (k + 1)nac + k (6.86)

where

pm|−k =
1

(nac + 1)k
m!

(m− k)!k!
pm+k (6.87)

Therefore, the mean phonon occupancy of a k-phonon-subtracted and -added thermal
acoustic state follows the property that

n−kac (0)

nac
=
n+k

ac (0) + 1

nac + 1
= k + 1 (6.88)

which is consistent with our experimental results shown up to k = 3 in figure 6.19. The
solid lines are the theoretical prediction derived in this section 1 + ke−γacτ .

6.4.2 Coherences of a k-phonon-subtracted and -added thermal state
We also construct the coherences of a k-phonon-subtracted and -added thermal acoustic
state via proper post-selection. The second-order coherence of a single-phonon-subtracted
state is given by

g(2)
ac

∣∣
−1

(τ) =
〈b̂†(0)b̂†(τ)b̂(τ)b̂(0)〉ρ̂−1

〈b̂†(0)b̂(0)〉ρ̂−1 〈b̂†(τ)b̂(τ)〉ρ̂−1

(6.89)

Plugging in ρ̂−1 from equation 6.59, the numerator becomes

〈b̂†(0)b̂†(0)b̂†(τ)b̂(τ)b(0)b(0)〉ρ̂th

〈b̂†(0)b̂(0)〉ρ̂th

= g(3)
ac (0, τ) 〈b̂†(0)b̂(0)〉2ρ̂th

(6.90)
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Figure 6.20: Second-order coherences of a single-phonon-subtracted (red) and -added
(blue) thermal acoustic state. Data is post-selected following equation 6.94 and 6.94,
whereas the solid lines show the theoretical predictions given by equation 6.96.

and the denominator is

〈b̂†(0)b̂†(0)b̂(0)b̂(0)〉ρ̂th〈b̂†(0)b̂†(τ)b̂(τ)b̂(0)〉ρ̂th

〈b̂†(0)b̂(0)〉2ρ̂th

= g(2)
ac (0) g(2)

ac (τ) 〈b̂†(0)b̂(0)〉2ρ̂th
(6.91)

We can therefore construct the second-order coherence of a single-phonon-subtracted state
by using combinations of the coherences of an unconditioned thermal acoustic state, given
by

g(2)
ac

∣∣
−1

(τ) =
g

(3)
ac (0, τ)

g
(2)
ac (0) g

(2)
ac (τ)

(6.92)

Similarly, we compute h(2)
ac
∣∣
+1

(τ) for a single-phonon-added state with ρ̂+1 in equation
6.63, such that

h(2)
ac

∣∣
+1

(τ) =
h

(3)
ac (0, τ)

h
(2)
ac (0) h

(2)
ac (τ)

(6.93)

Figure 6.20 shows g(2)
ac
∣∣
+1

(τ) and h(2)
ac
∣∣
+1

(τ) constructed from the post-selected data,
which are calculated by

g(2)
ac

∣∣
−1

(τ) =
g

(3)
ac (0, τ)

g
(2)
ac (0) g

(2)
ac (τ)

=
C

(3)
AS (0+, τ)/C

(3)
AS (∞,∞)[

C
(2)
AS (0+)/C

(2)
AS (∞)

][
C

(2)
AS (τ)/C

(2)
AS (∞)

] (6.94)

h(2)
ac

∣∣
−1

(τ) =
h

(3)
ac (0, τ)

h
(2)
ac (0) h

(2)
ac (τ)

=
C

(3)
S (0+, τ)/C

(3)
S (∞,∞)[

C
(2)
S (0+)/C

(2)
S (∞)

][
C

(2)
S (τ)/C

(2)
S (∞)

] (6.95)

where C(3)
AS(S)(0

+, τ) is the post-selected data conditioned on the detection of a pair of
photons at time t = 0+, heralding the subtraction or addition of two phonons for example.
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Delay τ = 0+ represents the smallest time bin used (1 µs ≤ τ ≤ 3 µs for g(2) and h(2),
and 2.5 µs ≤ τ ≤ 7.5 µs for g(3) and h(3)), and τ = ∞ represents the delay that is much
larger than the decoherence time of the oscillator, such that τ � 10τac. The finite time bin
at t = 0+ results in a slight shift from the actual theoretical prediction with t = 0+, which
is negligible on the scale of figure 6.20.

Solid lines show the theoretical predictions for g(2)
ac
∣∣
+1

(τ) and h(2)
ac
∣∣
+1

(τ), given by

g(2)
ac

∣∣
−1

(τ) = h(2)
ac

∣∣
+1

(τ) =
1 + 2e−γacτ

1 + e−γacτ
(6.96)

More generally, we compute the l-th order coherences of a k-phonon-subtracted or -
added thermal acoustic state, by using the density matrix ρ̂−k and ρ̂+k, given by equation
6.82 and 6.85. Upon detection of k-photons at t = 0, we have g(l)

ac
∣∣
−k(τ ) (where τ =

{τ1, · · · , τl−1}) is expressed as

g(l)
ac

∣∣
−k(τ ) =

〈b̂†(0) · · · b̂†(τl−1)b̂(τl−1) · · · b̂(0)〉ρ̂−k∏l−1
i=1〈b̂†(ti)b̂(ti)〉ρ̂−k

(6.97)

where ti is the cumulative delayed time to the first detected photon at t = 0. The numerator
can be written as

〈b̂†(0)k
∏l−1

i=1 b̂
†(τi)

∏l−1
i=1 b̂(τi)b̂(0)k〉ρ̂th

〈b̂†(0)kb̂(0)k〉ρ̂th

=
g

(k+l)
ac (0⊗k, τ )〈b̂†(0)b̂(0)〉l−1

ρ̂th

g
(k+1)
ac (0)

(6.98)

and the denominator can be written as∏i=l−1
i=1 〈b̂†(0)kb̂†(ti)b̂(ti)b̂(0)k〉ρ̂th

〈b̂†(0)kb̂(0)k〉l−1
ρ̂th

(6.99)

=

∏l−1
i=1 g

(k+1)
ac (0⊗k−1, ti)

(g
(k)
ac (0))l−1

〈b̂†(0)b̂(0)〉l−1
ρ̂th

(6.100)

Coherences of the k-phonon-added state are derived via the same procedure, where we
obtain

g(l)
ac

∣∣
−k(τ ) =

g
(k+l)
ac (0⊗k, τ )

(
g

(k)
ac (0)

)l−1

g
(k+1)
ac (0)

[∏l−1
i=1 g

(k+1)
ac

(
0⊗k−1, ti

)] (6.101)

h(l)
ac

∣∣
+k

(τ ) =
h

(k+l)
ac (0⊗k, τ )

(
h

(k)
ac (0)

)l−1

h
(k+1)
ac (0)

[∏l−1
i=1 h

(k+1)
ac

(
0⊗k−1, ti

)] (6.102)
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which are the general expressions for the l-th order coherences of a k-phonon-subtracted
and -added thermal acoustic state. Note that to calculate g(l)

ac
∣∣
−k and h

(l)
ac
∣∣
+k

via post-
selection of data, we need the coherences of the unconditioned thermal state of up to the
(k+l)-th order, where the resulting state is heralded on the joint detection of k+l photons.

These coherences reflect the properties of the distribution of the heralded state which
is out of thermal equilibrium, and display distinct behavior at zero delay from that of a
thermal state. From equation 6.101 and 6.102, it is easy to show that

g(2)
ac |−k(τ) =

1 + (k + 1)e−γacτ

1 + ke−γacτ
(6.103)

h(2)
ac |+k(τ) =

1 + (k + 1)e−γacτ

1 + ke−γacτ
(6.104)

such that we have in general

g(2)
ac |−k(0) = h(2)

ac |+k(0) = 1 +
1

k + 1
(6.105)

as shown in figure 6.20.
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Chapter 7

Multimode optomechanical coupling

As introduced in section 2.5.1, the simple geometry of the device allows for coupling
of one optical mode to exactly one acoustic mode. This is advantageous for correlation
measurements in particular, as it distinguish the source of the sideband photons and al-
lows for the generation of a pure state in the acoustic mode of interest. This is because
the optomechanical coupling arises from the overlap between the light intensity and the
density fluctuation of the helium inside the device, and since the boundary is formed by
the mirror-coated fiber ends, it simultaneously constrains both the optical and the acoustic
waves. The overlap, and hence the coupling, is thus nonzero only if their half-wavelength
wave numbers satisfy the condition, qac

λ/2 = 2qopt
λ/2 given by equation 2.79.

To test the validity of this unique single mode coupling approximation, we measure the
response across several acoustic free spectral ranges (FSRs) to characterize the couplings
of various acoustic modes to the optical mode with qopt

λ/2 = 93. This mode is mainly
coupled to the acoustic mode with qac

λ/2 = 2qopt
λ/2 = 186. However, several weakly coupled

acoustic modes are also found. I will describe in this chapter the experimental setup and
resulting measurements of weakly-coupled paraxial acoustic modes. We attribute these
weak couplings to (1) the non-hermiticity of the Hamiltonian arising from the optical and
acoustic losses; (2) the penetration of light into the DBR coatings resulting in difference
in their boundary conditions; and (3) the three-dimensional overlap of the optical and
acoustic modes is not strictly zero.

7.1 Characterization of multimode coupling

7.1.1 Driven acoustics setup
A schematic of the experimental setup is shown in Fig.7.1. It is adapted from the main
setup used for correlation measurements as described in figure 4.1. Since the couplings
to neighboring acoustic modes are expected to be weak and compared to that of the main
acoustic mode, we send an extra drive tone to the optomechanical cavity (OMC) to drive
the acoustics at frequency ωd around the main acoustic resonance ωac.
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Filter

P
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Figure 7.1: Experimental setup for measuring multimode coupling. A beat tone is gener-
ated to drive the acoustics directly around ac, which is produced by combining the unshifted
drive laser tone (yellow) with the tone frequency shifted by an acousto-optic modulator
(AOM) shown in blue. Another probe tone (red) is sent to the cavity to read out the driven
acoustic response. Sideband photons on resonance with the cavity are collected by the
SPD.

The drive tone is generated by a drive laser detuned by −ωac/2 from the cavity res-
onance ωc, as illustrated in the frequency schematic in figure 7.2. It then passes through
a drive laser filter to filter the broadband laser noise1. It is then split 50/50, where one
arm passes through an acousto-optic modulator (AOM)2, shifting it by frequency ωd

3. The
frequency-shifted arm shown in blue is recombined with the unshifted arm in yellow by
a 50/50 beamsplitter. The drive frequency ωd is thus the beat frequency between the two
arms, and is set around ωac. To readout the response from the driven acoustics, a probe
laser is sent to the cavity, detuned by −ωd from ωc as shown in red. Sideband photons
that are anti-Stokes scattered by the driven acoustics are thus on resonance with the opti-
cal cavity. The probe tone is combined with the drive tone by another 50/50 beamsplitter.
Only acoustically scattered photons are on resonance with the cavity and transmit through
the filter cavities centered at ωc shown in green. Sideband photons are finally collected by
the SPD.

1The lasers, filter cavities and other optical components used here are all the same from the standard
main setup described in chapter 4, only with the addition of the acousto-optic modulator (AOM).

2Brimrose fiber pigtailed acousto-optic frequency shifter. Model: IPF-325-1550-2FP.
3An RF signal generator, Vaunix LMS-451D, is sent to the AOM to set the shift frequency.
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Figure 7.2: Frequency diagram for tones used for multimode coupling measurements. The
acoustic is driven by the beat between the drive tone (yellow) and the AOM tone (blue) at
frequency ωd. A probe laser (red) is placed at −ωd away from ωc such that the anti-Stokes
scattered photons are on resonance with the optical cavity and the filter cavities (green).

7.1.2 Measurement of weakly-coupled paraxial acoustic modes
Solutions of the optical and acoustic modes inside a Fabry-Perot cavity are given by the
paraxial wave equation

∇2
⊥u(~r) + 2ik

∂u

∂z
= 0 (7.1)

under paraxial approximation4, where ∇2
⊥ is the transverse Laplacian operator ∂2

∂x2
+ ∂2

∂y2
.

u(~r) is the transverse profile of the beam propagating in the z direction such that ψ(~r) =
u(~r)e−ikz and k = ω/v is the wave number. A general solution to equation 7.1 is the
orthogonal set of Hermite-Gaussian modes given by [186]

un,m(~r) = u0
w0

w(z)
Hn

(√2x

w(z)

)
Hm

(√2y

w(z)

)
× exp

(
− r2

w(z)2

)
× exp

(
−i
[ kr2

2R(z)
− φ(n,m)

G (z) + kz
])

(7.2)

in a Fabry-Perot cavity, where w(z) is the beam radius, w0 = w(0) the beam waist radius
where we set the focal point of the beam at z = 0, R(z) the radius of curvature of the
wavefront, and r = x2 + y2 the distance from axis of propagation. Hn and Hm are n-th
and m-th order Hermite polynomials, and φ(n,m)

G is the Guoy phase shift5 given by

φ
(n,m)
G (z) = (1 + n+m)arctan

(
z
λ

πw2
0

)
(7.3)

4Paraxial approximation is assumed when the variation of transverse profile uz(~r) is much slower than
the wavelength (beam waist w0 � 1/ω)[185], such that∇2 = ∇2

⊥.
5Guoy phase is a phase shift acquired during the propagation of a Gaussian beam with respect to a plane

wave. [185]

119



where zR = λ/πw2
0 is known as the Rayleigh length. It is related to the beam size by

w(z) = w0

√
1 + (z/zR)2 (7.4)

We thus label each Hermite-Gaussian mode by its mode numbers, (q, n,m) where q is the
longituidinal mode number, or the number of half waves, such that k = πq/Lcav and Lcav is
the length of the cavity, and n,m are the transverse mode number describing its transverse
mode profile (known as the TEMnm mode).

While the geometry of the cavity ensures that the main optomechanical coupling to the
optical tone used here with qopt = 93 is the longituidinal acoustic mode with qac = 186,
we also drive neighboring longituidinal and transverse acoustics modes (qac + q

′
, n,m)

to characterize potential (presumably weak) couplings to those modes. To simplify the
notation, the neighboring modes are labeled by (q

′
, n,m) with respect to the main mode

in the rest of the work. Resonant frequencies corresponding to neighboring optical and
acoustic modes are determined by the optical FSR ∆ωopt, the acoustic FSR ∆ωac and the
transverse mode splitting δG, such that

ω
(q
′
,n,m)

opt = ωopt + q
′
∆ωopt + (n+m)δG,opt (7.5)

ω(q
′
,n,m)

ac = ωac + q
′
∆ωac + (n+m)δG,ac (7.6)

This is because each longituidinal mode is separated by an optical or acoustic FSR, whereas
each transverse mode is separated by (n + m) times of the transverse mode splitting δG

which is a constant proportional to the cumulative Guoy phase shift. Note that the main
(0, 0, 0) optical mode is at ωopt/2π = 193.63 ± 0.01 THz, and its corresponding acoustic
mode (0, 0, 0) is at ωac/2π = 315.40 ± 0.02 MHz, between which we have measured a
single optomechanical coupling of g0/2π = 4.58 kHz.

By scanning the laser frequency around ωopt, neighboring optical modes are found via
cavity reflection, and their frequencies are summarized in figure 7.3. From the splitting
between each longituidinal mode with the same transverse mode number, we measure
optical FSR ∆ωopt/2π = 2.08 ± 0.01 THz. Since ∆ωopt/2π = c/(2nHeLcav), where
the index of refraction is nHe = 1.0261 for liquid He, we extract cavity length Lcav =
70.3± 0.3 µm.

Note that the transverse mode splitting is related to the Guoy phase accumulated as the
transverse wave travels through the entire cavity. For a Fabry-Perot cavity with mirrors
that have radius of curvature R1 and R2, zR in equation 7.3 is related to them by

R1 = z1

(
1 +

(zR

z1

)2)
, R2 = z2

(
1 +

(zR

z2

)2)
(7.7)

where z1 and z2 are the distances from the beam waist to each mirror and Lcav = z1 + z2.
We thus write the total Guoy phase shift as

φG = φ
(0,0)
G (z2)− φ(0,0)

G (−z1) = arccos
(√

(1− nHeLcav

R1
)(1− nHeLcav

R2
)

)
(7.8)
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Figure 7.3: Measured frequencies of optical modes around mode (0,0,0) are shown by
the data points, which can be mapped to neighboring longituidinal and transverse modes
(q
′
, n,m) and agree with the specifications of the Fabry-Perot cavity. Corresponding

acoustic mode frequencies inferred from equation 7.6 are indicated by the right axis.

The transverse mode splitting is thus δG,opt = (φG/π)∆ωopt. From the measured splitting
between each degenerate transverse mode with (n+m), we extract φG/π = 0.194±0.002
and δG,opt/2π = 0.404 ± 0.004 THz. For our cavity with R1 ≈ 324.5 µm and R2 ≈
496.7 µm, we have an estimated φG/π = 0.196, which agrees with the measurement. From
equation 7.6, we estimate the frequencies of neighboring acoustic modes corresponding to
each of the measured (q

′
, n,m) optical mode, where we use the acoustic FSR ∆ωac/2π =

vHe/(2Lcav) = 1.695 MHz and δG,ac/2π = 0.194(∆ωac/2π) = 0.33 MHz. The inferred

ω
(q
′
,n,m)

ac is indicated by the right axis of figure 7.3.

By sweeping the AOM drive frequency ωd around ω(q
′
,n,m)

ac for {q′| − 6 6 q′ 6 6, q′ ∈
Z} and {(n,m)|0 6 n+m 6 6, (n,m) ∈ Z}, the driven response of each nearby paraxial
acoustic mode is probed with a tone placed at a deutning of −ω(q’,p)

ac . The count rate
spectrum of each of these modes is shown in figure 7.4 and 7.5. Each spectrum is acquired
under the same drive laser tone power Pdrive and AOM drive power PAOM, and probed
with a probe tone at Pprobe = 1 µW. Rdet is the power-normalized detected count rate, and
is plotted against the drive frequency detuned from the acoustic mode frequency, ωd −
ω

(q′,n,m)
ac . ωd is stepped by 200 Hz around the expected resonant frequency ω(q′,n,m)

ac , and
the count rate at each frequency step bin is acquired by averaging over > 60 sec of DAQ
time.

Each spectrum is fit to a Lorentzian form

Rdet = Rbkg +
RAS

1 +
(

2(ωd−ω
(q′,n,m)
ac )

γ
(q′,n,m)
ac

)2 (7.9)
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Figure 7.4: Counting spectrum of coupled paraxial acoustic modes (q′, n,m), where q′ ≥
0. All neighboring longituidinal modes are measured up to q′ = +6, and transverse modes
measured up to n + m = 6. The spectrum is fit to a Lorentazian form and the amplitude
of which characterizes the magnitude of the optomechanical coupling. Some of the modes
with negligible response are not all shown here.
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where the background detection rate Rbkg, sideband count rate RAS, frequency of the
(q′, n,m) acoustic mode ω(q′,n,m)

ac , and linewidth γ(q′,n,m)
ac are the fitting parameters. Cor-

responding fits are shown by the black lines. Note that for the spectrum where an acoustic
signature is not present or distinguishable from the background counts (such as modes
(0, 2, 0), (1, 0, 1), (2, 0, 2) etc.), the fit is done with the parameters Rbkg and γ(q′,n,m)

ac fixed
at the average detected count rate and the estimated value of γ(q′,n,m)

ac /2π = 3500 Hz. And
the fitting parameter ω(q′,n,m)

ac is constrained by ∼ 2π 20 kHz within the estimated ω(q′,n,m)
ac

calculated from equation 7.6 in order to extract an estimate of the corresponding RAS.
Examples of such fits are shown in the figure. Some of the other modes with negligible
responses are not shown here.

Transverse modes with the same m+n mode number are expected to be degenerate in
frequencies. The measured transverse modes appear to be degenerate, with the exception
of mode (0, 1, 0) and (0, 0, 1) in figure 7.4, where a split in frequency is observed. The
mode is fit to a double Lorentzian form,

Rdet = Rbkg +
RAS1

1 +
(

2(ωd−ω
(q′,n1,m1)
ac )

γ
(q′,n1,m1)
ac

)2 +
RAS2

1 +
(

2(ωd−ω
(q′,n2,m2)
ac )

γ
(q′,n2,m2)
ac

)2 (7.10)

with individual fitting sideband count rates, frequencies, and linewidths for each Lorentzian,
with (n1,m1) = (0, 1) and (n2,m2) = (1, 0).

Finally in figure 7.5, we measure the (−1,m+n = 6) mode centering at ω(−1,n+m=6)
ac /2π =

315.624 MHz. The acoustic mode coincides with the decaying tail of the main acoustic
mode (0, 0, 0), and is thus fit to

Rdet =
Rbkg

1 + ( ωd
γbkg

)2
+

RAS

1 +
(

2(ωd−ω
(q′,n,m)
ac )

γ
(q′,n,m)
ac

)2 (7.11)

where Rbkg and γbkg characterizes the background. All the fit-extracted R
(q′,n,m)
AS and

γ
(q′,n,m)
ac corresponding to modes with a distinguishable measured signature (extracted
RAS > 3σ, where σ is the standard error for a 95% confidence interval) are summarized
in table 7.1, and the corresponding modes are plotted in sequence in figure 7.6, where the
main acoustic mode (0,0,0) is included as well.

We characterize the single optomechanical coupling g(q′,n,m)
0 to each of these acoustic

modes from its corresponding sideband count rate R(q′,n,m)
AS . The rate at which the anti-

Stokes photons get scattered by the (q′, n,m) acoustic mode is proportional to the mean
phonon occupancy of the driven acoustic mode 〈n〉(q

′,n,m)
ac . The oscillating force generated

by the drive and the AOM tone is
√
PdrivePAOM. The force coupled and applied to the

acoustic is thus

F
(q′,n,m)
d =

√
PdrivePAOMf(g

(q′,n,m)
0 ) (7.12)

Note that f(g
(q′,n,m)
0 ) is some function describing the amount of optical drive gets coupled
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Figure 7.5: Counting spectrum of coupled paraxial acoustic modes (q′, n,m), where q′ <
0. All neighboring longituidinal modes are measured down to q′ = −6, and transverse
modes measured up to n + m = −6. The spectrum is fit to a Lorentazian form and the
amplitude of which characterizes the magnitude of the optomechanical coupling. Only the
modes showing a distinct signature are shown here.
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into the acoustics, which depends on the coupling strength with that mode. The driven
phonon number of any acoustic mode 〈n〉(q

′,n,m)
ac is thus given by

〈n〉(q′,n,m)
ac = 〈b†b〉 ∝ F

(q′,n,m)
d

2(
ωd − ω(q′,n,m)

ac
)2

+
(
γ

(q′,n,m)
ac /2

)2 (7.13)

where the driven amplitude is proportional to the square of the drive force. At zero detun-
ing where RAS is measured, we have

〈n〉(q′,n,m)
ac ∝ F

(q′,n,m)
d

2(
γ

(q′,n,m)
ac /2

)2 (7.14)

and the scattering rate is proportional to 〈n〉(q
′,n,m)

ac such that

RAS = 〈a†a〉d ∝ g
(q′,n,m)
0

2
〈n〉(q′,n,m)

ac (7.15)

Given the same drive tone power, we thus have

R
(q′,n,m)
AS

R
(0,0,0)
AS

=
(g(q′,n,m)

0

g0

)2 〈n〉(q
′,n,m)

ac

〈n〉ac
=
(g(q′,n,m)

0

g0

)2f(g
(q′,n,m)
0 )γac

f(g0)γ
(q′,n,m)
ac

(7.16)

where the sideband count rate is compared to that of the main coupled acoustic mode, such
that g(q′,n,m)

0 can be extracted as a ratio of the coupling to the (0,0,0) mode g0, which is
summarized in table 7.1 and figure 7.7. These results are obtained assuming f(g

(q′,n,m)
0 )

goes as (g
(q′,n,m)
0 )2, which is the amount of optical drive that gets coupled into the acoustic

mode. For longituidinal modes, we in general measure a more significant response for
even number of q′ except for the (1,0,0) mode.

We also obtain the spectrum of a wide frequency scan where the drive frequency ωd is
coarsely stepped (by 25 kHz) through six acoustic FSRs to examine the overall background
pattern, as shown in figure 7.8. The largest fluctuation centering around 321 MHz is likely
induced by the GAWBS signature (see figure 5.8). High variance in the background counts
limits our ability to identify existing acoustic mode couplings to higher precision.

7.2 Modeling the multimode coupling
We identify several sources of multimode optomechanical coupling to neighboring parax-
ial acoustic modes, despite the near-perfect orthogonality condition imposed by the simple
geometry of the system.
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Mode (q′, n,m) RAS [µW−1s−1] γ
(q′,n,m)
ac /2π g

(q′,n,m)
0 /2π [Hz]

(-6,0) 59.8 3019 139 ± 7
(-5,0) 2.2 3400 62 ± 47
(-4,0) 234.3 3349 207 ± 4
(-3,0) 8.4 3400 87 ± 47
(-2,0) 2589.6 3319 375 ± 2
(-2,1) 34.0 3400 123 ± 17
(-1,0) 0.1 3400 32 ± 62
(-1,1) 0.1 3400 28 ± 94
(-1,6) 2504 3888.6 402 ± 16
(0,0) 1.4× 106 3375.5 4580 ± 10
(0,1) 796.4 3549 289 ± 8
(0,2) 9.7 3400 88 ± 48
(0,3) 21.4 3400 109 ± 43

(+1,0) 113.3 3499 176 ± 8
(+1,1) 17.3 3400 103 ± 45
(+2,0) 177.3 3396 194 ± 4
(+2,1) 14.2 3120 99 ± 7
(+3,0) 4.6 3400 74 ± 49
(+4,0) 31.6 3470 127 ± 7
(+5,0) 0.1 3400 28 ± 52
(+6,0) 11.7 3140 94 ± 19

Table 7.1: Extracted optomechanical coupling to weakly-coupled paraxial acoustic modes.
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Figure 7.7: Extracted g0 of neighboring acoustic modes plotted against the neighboring
acoustic mode frequency relative to the main ωac in the unit of the acoustic FSR.
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Figure 7.8: Spectrum of a coarse acoustic frequency scan.

7.2.1 Non-Hermiticity
First, the open system is described by a non-Hermitian Hamiltonian for the lossy acoustic
mode. This leads to a non-zero overlap between neighboring modes.

The wave equation for the acoustic mode is given by(
∇2 − 1

v2
He

∂2

∂t2
− 2γac

v2
He

∂

∂t

)
ρ = 0 (7.17)

where ρ is the density fluctuation of He inside the cavity. The last term accounts for
the acoustic loss, which we treat as a perturbation term P̂ when solving for the wave
equation[187]. We first examine the one dimensional lossless wave equation described by(

∇2 − 1

v2
He

∂2

∂t2

)
ρ = 0 (7.18)

Assume the solution is in the form ρ = u(~r)<[eiωt], we thus have

∇2u+ k2u = 0 (7.19)

where k = ω/vHe is the eigenvalue of the hermitian Hamiltonian. Equation 7.17 becomes(
∇2 + k2

)
u+

2iωγac

v2
He

u = 0 (7.20)

To the first order of the perturbation, the corrected overlap between different modes,
〈q1,corr|q2,corr〉, is given by

〈q1,corr|q2,corr〉 =
1

k1 − k2
〈q1|(P̂ − P̂ †)|q2〉

=
1

k1 − k2

4ω2γac

v2
He
〈q1|i|q2〉

≈ 2γac

ω2 − ω1
〈q1|i|q2〉 (7.21)

Here we assume a one-dimensional Fabry-Perot cavity, such that |q1〉, |q2〉 represents the
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Figure 7.9: Multimode coupling arising from the non-Hermiticity of a lossy system.

mode with eigenvalue k1,2 = πq1,2/Lcav associated with the unperturbed Hamiltonian, and
q is the longituidinal mode number used in this chapter or the number of half-waves inside
the cavity. In the last step, we assume ω1 ≈ ω1. Plugging in the eigenmodes of the
unperturbed Hamiltonian, we have

〈q1|i|q2〉 =

∫ Lcav

0

cos (πq1z/Lcav)) sin (πq2z/Lcav)) (7.22)

To compute the overlap with the main acoustic mode where q1 = 186, we have

〈q1|i|q2〉 =

{
0 if q2 is even

2
π(m−n)

if q2 is odd
(7.23)

Note that with ω2 − ω1 = (m− n)∆ωac, we have

〈0|q′〉 ≡ 〈q1,corr|q2,corr〉 ≈
4γac

πq′2∆ωac
if q′ is odd (7.24)

where ∆ωac and γac are the known parameters of acoustic FSR and bare linewidth of
the main acoustic mode. We thus estimate the coupling arising from non-Hermiticity
to be g(0,0,0)

0 〈0|q′〉, shown by green squares in figure 7.9. Note that the index of the x-
axis is equivalent to q′. The dashed line shows the asymptotic behavior of the estimated
contribution from non-hermiticity for a continuous q′.

7.2.2 Three-dimensional overlap integral
In this section I calculate the overlap integral between the three-dimensional cavity modes.
Note the coupling is proportional to the overlap integral between the intensity of the optical
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mode and the amplitude acoustic mode. The former is not an eigenmode of the paraxial
wave equation, which is thus not guaranteed to be orthonormal to the acoustic eigenmode.
Equation 7.2 gives the orthogonal sets of Hermite-Gaussian modes in paraxial approx-
imation. It follows that the optical mode inside a Fabry-Perot cavity can be written as
[38]

uq,n,m(~r) = u0
w0

w(z)
Hn

(√2x

w(z)

)
Hm

(√2y

w(z)

)
× exp

(
− r2

w(z)2

)
× exp

(
−i
[ kr2

2R(z)
− φ(n,m)

G (z) + kz − θ(n,m)
BC

])
(7.25)

where θ(n,m)
BC is the phase at the boundary to satisfy the boundary condition. For the optical

mode with a node at the boundary, we have θ(n,m)
BC = −kz2 + φ

(n,m)
G (z2). Wavenumber k

is associated with (q, n,m) by k = πq/Lcav + φ
(n,m)
G (z), and the Guoy phase is given by

equation 7.3. Beam size w(z) is given by equation 7.4. We thus have the wave equation
of the main optical mode (93,0,0) as

u93,0,0(~r) = u0
w0

w(z)
exp
(
− r2

w(z)2

)
sin
(k(x2 + y2)

2R(z)
− φ(0,0)

G (z) + kz + θ
(0,0)
BC

)
(7.26)

where k = 93π/Lcav + φ
(0,0)
G (z). Similarly, for the acoustic mode with an anti-node at

boundary, we have

ρq,n,m(~r) = ρ0
w0

w(z)
Hn

(√2x

w(z)

)
Hm

(√2y

w(z)

)
× exp

(
− r2

w(z)2

)
× cos

( kr2

2R(z)
− φ(n,m)

G (z) + kz + θ
(n,m)
BC

)
(7.27)

We compute the overlap integral between the (93, 0, 0) optical mode and neighboring
longituidinal transverse modes (q′, 0, 0) by

g
(q′0,0)
0 ∝

∫ Lcav

0

∫ 5w0

−5w0

∫ 5w0

−5w0

(u93,0,0(x, y, z))2ρq′,0,0(x, y, z)dxdydz

∝
∫ Lcav

0

∫ 5w0

−5w0

∫ 5w0

−5w0

(w0

wz

)3

exp
(
− 3r2

w(z)2

)
cos
(k(q′,0,0)r2

2R(z)
− φ(0,0)

G (z) + k(q′,0,0)z + θ
(q′,0,0)
BC

)
× sin2

(k(93,0,0)r2

2R(z)
− φ(0,0)

G (z) + k(93,0,0)z + θ
(93,0,0)
BC

)
(7.28)

where the acoustic mode corresponds to the q′+2×93 longituidinal mode. We numerically
compute the integral and scale it by the main optomechanical coupling g0 to extract g(q′0,0)

0
arising from the three-dimensional overlap between the optical and the acoustic modes.
For longituidinal acoustic modes, this is only non-zero for even q′ as shown in figure 7.10.
We further compute the corresponding coupling between the (0, 0, 0) optical mode and

130



400

300

200

100

0
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

4600
4500  Measured couplings

 Overlap integral

Figure 7.10: Multimode coupling arising from the three-dimensional overlap integral be-
tween the intensity of the optical field and the acoustic wave equation.

the transverse acoustic modes described by equation 7.26 and 7.27, which is shown to be
non-zero only for even n+m.

7.2.3 Asymmetrical boundary condition
In our previous discussions, we have assumed that both the optical and acoustic modes
share the exact same boundary conditions; this results in the unique single mode matching
condition. While the acoustic mode is strongly confined at the glass and helium interface at
the boundary due to the large acoustic impedance mismatch, the optical mode is confined
by the optical Distibuted Bragg Reflectors (DBR) coating on the fiber ends. There thus
exists some leakage into the DBR coatings, resulting in a different boundary conditions
for the optical modes.

When both modes share the same set of boundaries at the helium-glass interface,
the simplified one-dimensional waves inside the cavity are shown in figure 7.11 (top),
where the optical amplitude is given by E(z) ∝ sin (πqoptz/Lcav), the optical intensity
given by I(z) ∝ |E(z)|2 = sin2 (πqoptz/Lcav), and the density wave given by δρ(z) ∝
cos (πqacz/Lcav). The waves are plotted with qopt = 3 and qac = 6. The optical leakage
into the DBR coatings is characterized by an additional phase θmod at the boundary, such
that the optical amplitude wave is modified to

E(z) ∝ sin (
πqopt − θmod

Lcav
z + θmod/2) (7.29)

Optical intensity with this modification is plotted in figure 7.11 (bottom) with θmod = 0.3
rad.
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Figure 7.11: A simplified one-dimensional illustration of the Waves inside the cavity with
(a) the same boundary conditions (top), and (b) different boundary conditions (bottom).
The latter is plotted with a phase difference at the boundary of θmod = 0.3 rad.

We can thus calculate the mode overlap under different boundary conditions by∫ Lcav

0

δρ(z)I(z)dz ∝
∫ Lcav

0

cos (
πqacz

Lcav
) sin2 (

πqopt − θmod

Lcav
z + θmod/2)dz

∝
∫ Lcav

0

cos (
πqacz

Lcav
) cos (

2πqopt − 2θmod

Lcav
z + θmod)dz

=
1

2

∫ Lcav

0

cos (
(qac + 2qopt)π − 2θmod

Lcav
z + θmod) + cos (

(qac − 2qopt)π + 2θmod

Lcav
z − θmod) dz

=
1

2

{
Lcav

(qac + 2qopt)π − 2θmod
sin (

(qac + 2qopt)π − 2θmod

Lcav
z + θmod)|z

+
Lcav

(qac − 2qopt)π + 2θmod
sin (

(qac − 2qopt)π + 2θmod

Lcav
z − θmod)|z

}
(7.30)

Note that for the same boundary θmod = 0 case, the expression reduces to∫
δρ(z)I(z)dz ∝ 1

2

{
Lcav

(qac + 2qopt)π
sin ((qac + 2qopt)π) +

Lcav

(qac − 2qopt)π
sin ((qac − 2qopt)π)

}
=

{
1
2
Lcav if qac = 2qopt

0 if qac 6= 2qopt
(7.31)

where we use sin ((qac − 2qopt)π) → (qac − 2qopt)π as qac → 2qopt in the first case. This
recovers our mode matching condition for modes under the same boundary conditions. In
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the case where θmod 6= 0, we have

g0,mod/g0 =
1

(qac + 2qopt)π − 2θmod
sin ((qac + 2qopt)π − θmod)

+
1

(qac − 2qopt)π + 2θmod
sin ((qac − 2qopt)π + θmod)

=
1

(qac + 2qopt)π − 2θmod
sin (−θmod) cos ((qac + 2qopt)π)

+
1

(qac − 2qopt)π + 2θmod
sin (θmod) cos ((qac − 2qopt)π)

(7.32)

For odd qac − 2qopt, it follows that

g0,mod/g0 = sin (θmod)
( 1

(qac + 2qopt)π − 2θmod
− 1

(qac − 2qopt)π + 2θmod

)
→ sin (−θmod)

1

(qac − 2qopt)π + 2θmod
(7.33)

And for even qac − 2qopt, we have the same form

g0,mod/g0 → sin (θmod)
1

(qac − 2qopt)π + 2θmod
(7.34)

where we assume large qac and qopt such that 1/(qac + 2qopt)→ 0.
In figure 7.12, we show the combined coupling contribution modeled in section 7.2.1

and 7.2.2 arising from non-hermiticity and three-dimensional overlap integral by the black
hollow circles, which we denote as g(q′,n,m)

fit0 . We then fit the unaccounted for contribution
g

(q′,0,0)
meas − g(q′,0,0)

fit,0 for all even q′ to the boundary condition model in the form of equation
7.33, where θmod is the fitting parameter. The fit-extracted contribution from asymmetric
boundary condition is shown by the orange curve in figure 7.12. The model returns a
best-fit boundary phase of θmod = 0.1211 ± 0.0006 rad. And the total contributions to
the couplings from all sources modeled in this chapter are shown by the blue data points
labeled as g(q′,n,m)

fit .
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Figure 7.12: Measured couplings are fit to the asymmetric boundary condition model,
whose contribution is shown by the asymptotic yellow upper bound with a fit-extracted
boundary phase θmod = 0.1211 ± 0.0006 rad. The non-hermiticity bound is shown by the
green line, while the black points show the combined contribution from non-hermiticty
and the 3D overlap integral. Blue points show the combined contribution from all the
sources modeled in this chapter.
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Chapter 8

Summary and outlook

8.1 Summary
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Appendix A

Measurement setup

A.1 Pound-Drever-Hall locking
In this section I will talk about the implementation of the Pound-Drever-Hall (PDH) tech-
nique for laser frequency locking in our setup; in particular, it is used for locking the TL
to the LFC, the lock tone to the OMC, and the FC1 and FC2 to the lock tone, as discussed
in section 4.1. Schematic of generating the error signal of a PDH lock is shown in Figure
A.1, where the locking of the lock tone to the OMC via feedback to the MIQM is used as
an example.

The lock tone is modulated by the EOM, reflected off the OMC and detected at the
OMC PD. The EOM is driven by a local oscillator (LO) at ωLO = 43.7 MHz generated
by an arbitrary waveform generator (AWG)1. The reflected tone detected at the OMC PD
is separated via a bias-tee into a DC part, which is the DC reflected intensity from the
OMC, and a RF part. The latter is mixed down with the LO via a mixer, equivalent to
comparing the variation in cavity reflection to the variation in lock tone frequency, thus
giving information on which side of the cavity resonance the lock tone frequency is at
in order to apply correction. Prior to mixing, the RF signal is amplified and passes a
phase shifter2 manually tuned via a control voltage, in order to compensate for the phase
difference between the LO and the RF paths due to difference in their path lengths. The
mixed-down signal then passes a 10 kHz LPF such that only the small frequency mixed-
down signal of interest is preserved as the error signal.

A derivation of the error signal is given in reference [188]. In particular, the DC
reflection signal is given by

PDC(∆) ∝ |χcav(∆)|2 = 1− 4ηκ(1− ηκ)
1 + (2∆/κcav)

2 (A.1)

as shown by the dashed lines in Figure A.2, where χcav = 1 − 2ηκ/(1 − 2i∆/κcav) is the
cavity susceptibility, κcav the cavity linewidth, ηκ the cavity input coupling efficiency, and

1Kooletron signal generator counter; Model: CJDS66.
2Mini-Circuits voltage variable phase shifter; Model: TB-122B.
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Figure A.1: Electronic connections for implementing the PDH lock The error signal is
generated by comparing the frequency modulation on the lock tone (via the EOM) and the
resulted variation in the reflected intensity from the cavity as detected by the PD.

∆ the lock tone detuning from the cavity resonance.
In the case where the modulation on the lock tone is slow (i.e. locking of the lock tone

to the OMC), such that κcav ≈ ωLO, the modulation can be treated as a small perturbation
and expanded to the first order such that the error signal is described by

Perr, slow(∆) ∝ ∂PDC

∂∆
=

∆/κcav

(1 + (2∆/κcav)
2)

2 (A.2)

as shown by the solid line in Figure A.2 (left). Finally, in the case where the modulation is
fast (i.e. locking of the TL to the refernce cavity LFC, and of the signal filters FC1, FC2
to the lock tone), such that κcav � ωLO, the error signal is described by

Perr, fast(∆) ∝ =|χcav[∆]χ∗cav[∆ + ωLO]− χ∗cav[∆]χcav[∆− ωLO]| (A.3)

as shown by the solid line in Figure A.2 (right).
The error signal is sent to a commercial PID controller 3, and the feedback is either

sent to the VCO to drive the IQM, or directly to the piezo of the FCs. Note that for the
OMC lock, the feedback signal is filtered by a 1 Hz low-pass filter4, as we observe a ∼
60 Hz self-sustaining oscillation in the OMC locking feedback. The oscillation is most
likely caused by a gas column confined in some long cryogenic ”tube” subjected to a large
temperature gradient in the dilution fridge, which is a thermoacoustic phenomenon known
as the Taconis oscillation [189][190]. By adjusting the configuration of various vent ports

3New Focus PI controller; Model: LB1005.
4Stanford Research System low-pass filter; Model: SIM 965.
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Figure A.2: Error signal from a standard PDH lock where the modulation is slow (left)
compared to cavity linewidth, and fast (right). The linear steep region in the PDH read-
out around cavity resonance allows for efficient correction to lock the beam to the zero-
crossing.

of the dilution fridge dewar to the atmosphere, the oscillation could be damped to some
extent but never completely vanishes. The lock feedback is thus low-pass filtered such
that the laser frequency is stably locked to the OMC center frequency without tracking the
Taconis oscillation.

A.2 Thermal stabilization and tuning
Main optical components described in section 4.1 are either temperature stabilized to min-
imize drift in their resonant frequency and phase change, or thermally tuned with active
locking feedback.

The FCs (FC1, FC2, LFC) are temperature controlled via thermoelectric cooler ele-
ments which are driven by the current produced by a temperature controller (TC)5. The
temperature is stabilized to within 0.1 Celsius. The reference cavity LFC, which is used
to stabilize the TL output frequency, is frequency stabilized to within 15 MHz via temper-
ature control.

The IQMs are temperature stabilized by the same method. Phase shift set in the IQM’s
interferometric arms could drift over a phase of π on the scale of a day, without temperature
stabilization or feedback to its control voltages. Such deviation from operating the IQMs
in the SSBCS regime hinders our ability to lock the system for long period of time.

Finally, the broadband noise filter cavities for the drive lasers (BFC, RFC) are ther-
mally tuned. Thermally-controlled FCs consist of a positive temperature coefficient ther-
mistor, whose temperature is tuned by the current source flowing through, thus tuning the
cavity length. The temperature controller receives the voltage error correction from a PID
module implemented digitally, and converts it into a current to thermally tune the BFC and
the RFC6.

5Stanford Research System programmable temperautre controller; Model: PTC 10.
6BFC and RFC have a temperature response of ∼ 10 pm per Celsius. One full FSR of 12.5 GHz corre-

sponds to a temperature change of ∼ 10 Celsius.

139



Fi
gu

re
A

.3
:F

T
V

ci
rc

ui
td

es
ig

n,
w

hi
ch

ge
ne

ra
te

s
th

e
er

ro
rs

ig
na

lf
or

th
e

dr
iv

e
la

se
rb

ea
tl

oc
k.

140



A.3 FTV circuit
The electronic circuit of the frequency-to-voltage (FTV) converter used in the drive laser
beat lock setup (section 4.1.2) is shown in Figure A.3. The circuit is manufactured on a
printed circuit board and generates a frequency dependent error signal for the beat lock.
The design is derived from references [170]. The positive branch takes in the high-pass
filtered signal which follows the amplitude response of a HPF with steep cut-off frequency.
The negative branch takes in the unfiltered signal, as the circuit converts the AC signal into
a negative DC signal with the inverted diode. The combined output from the two branches
thus generates an error signal which follows the response of the HPF while having a zero-
crossing around the middle of the steep slope, that is, the cut-off frequency of the HPF.
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Appendix B

Optomechanical device properties

B.1 Extract optical cavity linewidth
To extract the linewidth and the input coupling efficiency to the optical cavity, we sweep
the laser across cavity resonance and fit to its reflection. The reflection is shown in Figure
B.1 in dashed line, which is acquired by using the setup described in section 4.1. The laser
frequency is modulated with an IQM with a 5 Hz triangular sweep. The normalized reflec-
tion is acquired by measuring PDC = Pres/Pbkg, where the background is the off-resonance
reflection signal detected. The cavity susceptibility with an input coupling efficiency of ηκ
in reflection can be written as

χcav, reflc[∆] = 1− κin

κc/2− i∆
= 1− ηκκc

κc/2− i∆
(B.1)

where ηκ = κin/κc and κin characterizes the loss through the cavity input port. The nor-
malized DC reflection of the optical cavity is thus

PDC[∆] = |χcav, reflc|2 = 1− ηκ(1− ηκ)κc2

(κc/2)2 + ∆2
(B.2)

As shown in Figure B.1, we also see an asymmetric Fano signature exhibited in the re-
flection signal. The asymmetric lineshape arises from the interference between the back
reflection and the resonant scattering [191]. Equation B.2 is thus modified to

PDC[∆] = 1− ηκ[(cosφ+ 2 sinφ(∆/κc))− ηκ]κc2

(κc/2)2 + ∆2
(B.3)

where an arbitrary phase φ is introduced as a fitting parameter to account for the asymmet-
ric lineshape.

Figure B.2 shows the best-fit of the normalized cavity reflection to equation B.2. The
fit returns a total damping rate of κc = 0.00807 ± 0.00002 second. To convert the time
sweep as shown in Figure B.2 to a frequency sweep to extract the linewidth in frequency,
we calibrate the sweep by using the pair of sidebands created by the EOM used for PDH
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Figure B.1: Sweep over the optical cavity reflection used to extract the cavity linewidth.
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Figure B.2: Fit to optical cavity reflection, accounting for the input coupling efficiency
and the asymmetric Fano shape. The fit-extracted total cavity damping rate is thus κc/2π =
47.2 ± 0.5 MHz, with an input coupling efficiency ηκ = 0.29 (κin/2π = 13.6 ± 0.2 MHz).
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Figure B.3: Calibration of frequency sweep using the PDH error signal of the signal
filter cavity, where the sidebands created by the EOM show up as two peaks and separated
by a frequency of exactly 2ωLO.
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Figure B.4: Device schematics showing the various paths through which heat could be
transported from the fiber faces to the MC.

locking as described in section A.1. The error signal of the signal filters is used for the
calibration, which has the general shape shown in Figure A.2 (right) under the condition
κFC � ωLO. We change the phase of the LO until the error signal shows the sidebands
as two peaks, which are separated by a time of ∆t and a frequency of exactly 2ωLO. We
thus obtain the time-to-frequency conversion factor of 2ωLO/∆t = 5.854×109 Hz/s here.
The fit-extracted total cavity damping rate is thus κc/2π = 47.2 ± 0.5 MHz, with an input
coupling efficiency ηκ = 0.29 (κin/2π = 13.6 ± 0.2 MHz).

B.2 Heat transport path of the device
In this section we model the heat transport path from the heated fiber in the optomechani-
cal device to the cold thermal bath of the mixing chamber (MC) of the dilution fridge. By
the law of thermal conduction, we model the heat transport by Q̇ = T k+1

MC − T
k+1
fib , where

κfib(T ) ∝ T k describes the effective thermal conductivity over the heat transfer path from
the fiber face to the large thermal bath cooled to and kept constant at TMC. We show in
section 5.3 that the effective temperature at the fiber face is consistent with such a model
where kmod = 1.09 ± 0.03. Since k = 1 for metal [140], the model suggests a predom-
inantly metallic conductance between the fiber and the MC. We will further examine the
various heat transport paths based on the geometry and setup of our device and compare
their thermal conductance with this fit-extracted value.

A simplified top view of the device schematic is shown in Figure B.4. A pair of fibers
(III) are inserted through the ferrules (II) to form the Fabry-Perot cavity. The ferrules are
epoxied on top of a slider plate (VI), while the slider is epoxied onto the larger device cell
(VII). Helium is filled through a thin capillary line (V) from a liquid He bath(VIII). The
device cell is then attached to the MC plate (IX) via a gold-plated OFHC copper1 mount.

1Oxygen-free high thermal conductivity (OFHC) copper, which is used for the device cell and the cell
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The He bath (VIII) is in a sliver sintered chamber. The chamber is in good thermal contact
with the MC and acts as a heat exchanger for the He inflow, such that we can assume the
He bath is at a constant TMC[38].

We examine the heat transport from the fiber face (I) at Tfib to either the MC (IX) or
the He bath (VIII) (both at a constant TMC), through the following paths: (A) via the He
channel in between the fiber faces (IV) to the device cell (VII) then to the MC; (B) via
the He channel (IV) then through the narrow He capillary line (VIII) to the bath (VIII);
(C) via the ferrules to the slider, then to the cell; and (D) from the fiber faces through the
fibers (III), which are epoxied onto the device cell directly at their far ends (not shown in
the figure here).

Heat flow via path A

The heat flow via path A is illustrated in Figure B.5(a), where THe/Cu is the temperature at
the boundary between IV and VII. The device cell (VII) is made of OFHC copper (Cu) as
illustrated. In general, the rate of heat flow q̇ (per unit area) in a material of cross-section
A is given by

q̇ = Q̇/A = −κ∇T (B.4)

where∇T is the temperature gradient, and κ the thermal conductivity coefficient. Phonon
conductivity dominates the thermal conduction in insulators like helium, which is given
by [192]

κHe =
1

3
CHevHedHe

2− f
f

(B.5)

in a narrow channel of diameter dHe. The specific heat per unit volume CHe =
2π2k4B

15~3v3He
T 3

He,
and helium sound velocity vHe = 238.25 m/s [193]. In low temperature, phonons are
predominantly scattered by channel boundaries in 4He and we thus assume the fraction of
phonons undergoing scattering from the channel walls to be f = 1. We then have

κHe =
2π2k4

BdHe

45~3v2
He
T 3

He = κHe,0dHeT
3
He (B.6)

as a function of dHe and THe. The heat flow equation in section IV in Figure B.5(a) is thus
given by ∫ lIV

0

Q̇

AIV
dx =

∫ Tfib

THe/Cu

κHe,0dIVT
3dT (B.7)

Q̇
lIV

dIVAIV
=
κHe,0

4
(T 4

fib − T 4
He/Cu) (B.8)

mount to the MC [38].
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Figure B.5: Heat path A (a) Diagram of the heat flow from the fiber to the MC; (b)
Heat flow including the Kapitza resistance at He/Cu boundary; (c) Numerically solved
temperatures across heat transport path A.

where we have dIV = 0.5 mm, AIV = π (dIV/2)2 and lIV = 2.5 cm.
Similarly we find the heat flow equation in the other section (VII) in Figure B.5(a)

where the path goes through the device cell made of Cu. In metal, the electronic thermal
conductivity due to conduction electrons is dominant. Specifically for Cu at low temper-
ature, we have κCu = (RRR/0.76) T = κCu,0T , where we take the residual resistivity ratio
(RRR) of the cell to be 50 [140]. We thus have

Q̇
lVII

AVII
=
κCu,0

2
(T 2

He/Cu − T 2
MC) (B.9)

where the device cell geometry is characterized by dVII = 10 mm, AVII = π (dVII/2)2 and
lVII = 10 mm.

Note that there also exists a resistance to heat flow across the boundary between dif-
ferent materials, known as the thermal boundary or Kapitza resistance RK [194]. In par-
ticular, between a liquid helium and solid interface, a temperature step ∆TK occurs due to
the acoustic mismatch of the two materials, impeding the transmission of phonons, and is
given by ∆TK = RKQ̇. We thus modify the heat flow diagram as shown in Figure B.5(b).
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Figure B.6: Heat path B (a) Diagram of the heat flow from the fiber to the MC; (b)
Numerically solved temperatures across heat transport path B.

Since RK = RK,0T
−3.5 for T < 1 K [192], such that

Q̇ =
1

RK,0

∫ THe/Cu,1

THe/Cu,2

T 3.5dT (B.10)

Q̇
1

AIV
=

1

4.5 · 10−3
(T 4.5

He/Cu,1 − T 4.5
He/Cu,2) (B.11)

where we use the empirically determined value AIVRKT
3.5 ≈ 10−3 [m2K4.5W−1] [140].

Combining equation B.8, B.9, B.11, we numerically solve for temperatures Tfib, THe/Cu,1,
THe/Cu,2 as a function of Q̇ (Pin from 0 to 5 µW) using TMC = 24 mK determined in section
5.3, as shown in Figure B.5(c) (red, blue yellow respectively). Most of the temperature
drops occurs across the He/Cu boundary.

To compare to the fiber temperature and the effective thermal conductivity coefficient
kmod extracted from the model presented in section 5.3, we fit the numerically solved Tfib

to equation 5.23, such that

Tfib = (T kA+1
MC + βkA+1Pin)

1/(kA+1) (B.12)

where β and kA are the fitting parameters. β accounts for the amount of optical power
contributing to the absorptive heating of the fibers. The fit returns kA = 3.320 ± 0.005,
describing the overall temperature dependence of the thermal conduction over path A, and
is in between kHe = 3 and kKapitza = 3.5. This is distinct from kmod = 1.09 ± 0.03, and
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Figure B.7: Heat path C (a) Diagram of the heat flow from the fiber to the MC; (b)
Numerically solved temperatures across heat transport path C.

indicates that path A is not the main path through which heat is transported.

Heat flow via path B

The heat flow via path B is illustrated in Figure B.6(a), where THe/He is the temperature at
the boundary between the He channel and the capillary (IV and V). Modifying equation
B.7, we numerically solve for the temperatures along path B via the following equations

Q̇
lIV

dIVAIV
=
κHe,0

4
(T 4

fib − T 4
He/He) (B.13)

Q̇
lV

dVAV
=
κHe,0

4
(T 4

He/He − T 4
MC) (B.14)

where we estimate the geometry of the capillary line with dV = 1 mm, AV = π (dV/2)2

and lV = 10 cm. The results are shown in Figure B.6(b). And by fitting the numerically
solved Tfib from path B to equation B.12 we obtain kB = 3.00014± 7×10−6, agreeing with
the temperature dependence of He conductivity at low temperature as expected.

Heat flow via path C

The heat flow via path C is illustrated in Figure B.7(a), where the heat flows from the fiber
face to the ferrule (II) and slider (VI), then to the Cu cell (VII), and finally to the MC.
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Figure B.8: Heat path D (a) Diagram of the heat flow from the fiber to the MC; (b)
Numerically solved temperatures across heat transport path D.

Here we assume the ferrule and slider as a single piece made of glass with conductivity
coefficient κgl, and Tgl/Cu is the temperature at the boundary between VI and VII.

For the first portion of path C, we use the thermal conductivity of glass BK7 which has
a temperature dependence of κgl = κgl,0T

1.85, where κgl,0 = 0.02 [Wm−1K−2.85] below 1
Kelvin [140]. The heat flow equation is thus given by

Q̇
lgl

Agl
=
κgl,0

2.85
(T 2.85

fib − T 2.85
gl/Cu) (B.15)

where we take lgl = 3.5 mm andAgl = 2 mm · 2 mm. The heat flow equation in the second
portion has the same form as equation B.9, such that

Q̇
lVII

AVII
=
κCu,0

2
(T 2

gl/Cu − T 2
MC) (B.16)

We thus numerically solve for the temperatures along path C as shown in Figure B.7(b).
The temperature drop mostly occurs in the glass portion of the path, and a fitting to equa-
tion B.12 yields a conductivity coefficient kc = 1.61 ± 0.01, close to the value of BK7
glass (1.85).

Heat flow via path D

Finally for path D, we show the heat flow diagram in Figure B.8(a), where the heat is
transported via the fiber (III) directly to the Cu cell (VII). We use the thermal conductivity
of fused silica for the optical fiber which has a temperature dependence of κfib = κfib,0T

1.91,
where κfib,0 = 0.0248 [Wm−1K−2.91] below 1 Kelvin [140]. The heat flow equation is thus
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kA via heat path A 3.320 ± 0.005
kB via heat path B 3.00014 ± 7×10−6

kC via heat path C 1.61 ± 0.01
kD via heat path D 1.8482 ± 0.0001

kmod from section 5.3 model 1.09 ± 0.03
kHe 3
kCu 1

kKapitza 3.5
kfib 1.91
kglass 1.85

Table B.1: k-values of the temperature dependence of the thermal conductivity of the
device, transporting heat from the fiber faces to the cold thermal bath.

given by

Q̇
lIII
AIII

=
κfib,0

2.91
(T 2.91

fib − T 2.91
fib/Cu) (B.17)

where we take lIII = 5 cm and AIII = π(dIII/2)2 with the core of fiber having dIII = 125
µm. Combining with equation B.16, we show the numerically solved temperature along
path D in Figure B.8(b). The temperature drop mostly occurs along the fiber and the
thermal conduction is dominant by the fiber conductivity. A fit to equation B.12 yields
kD = 1.8482 ± 0.0001.

The k-values determined through various models are summarized in Table B.1. We do
not identify an exact path where the thermal conduction is dominant by metal as predicted
by the section 5.3 model with kmod. Path C going through a combination of glass and metal
is the closest approximation.

B.3 Optomechanically induced transparency/amplification
In this section, we characterize the acoustic mode and the optomechanical coupling with
the well-known technique called optomechanically induced transparency or amplification
(OMIT/A) [195]. As illustrated in Figure B.9, two optical tones (a strong control tone
and a weak probe) are sent into the cavity which produce a beat note at frequency ωac,
hence effectively driving it. The driven acoustics imprints a pair of sidebands around the
control tone, where one of them is coherent with the probe beam. As they interfere either
constructively or destructively, the amplitude of the probe tone is modified. The tones are
set up such that the probe tone is around the optical cavity resonance which can be treated
as a perturbation to the optical mode. The change in the probe tone amplitude depends on
the acoustic susceptibility and is imprinted onto the optical readout of the cavity. We thus
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directly measure the spectrum of the optical response via a heterodyne detection, which
provides a characterization of the acoustics independent of the single photon counting
measurement.

It can be shown that the optical readout with the probe beam can be described with a
modified effective cavity susceptibility 2

χc,eff[∆p] = χc[∆c + ∆p]
(
1− |g0|2ncχc[∆c + ∆p](χac,eff[∆p]− χ∗ac,eff[−∆p])

)
(B.18)

where ∆c is the detuning from the control tone to the cavity at ωc, ∆p the detuning from
the probe tone to the control tone and χac,eff the effective acoustic susceptibility derived in
equation 2.38. Note that since χc[ω] centers at zero, only the situations where ∆c and ∆p

are of opposite signs are relevant as shown in Figure B.9. And since χac,eff centers at ωac,eff,
we have

χc,eff[∆p] = χc[∆c + ∆p]

(
1−

|g0|2ncχc[∆c + ∆p]

γac,eff/2− i(∆p − ωac,eff)

)
(B.19)

for a positive ∆p (lower control tone), and

χc,eff[∆p] = χc[∆c + ∆p]

(
1 +

|g0|2ncχc[∆c + ∆p]

γac,eff/2 + i(∆p + ωac,eff)

)
(B.20)

for a negative ∆p (upper control tone) respectively. The former results in an induced
transparency or a reduced amplitude, while the latter results in an induced amplification or
an increased amplitude. The change in the cavity susceptibility feature is described by the
narrow Lorentzian of the acoustic mode characterized by γac,eff and ωac,eff, and the change
in its amplitude is proportional to the optomechanical coupling.

�� ������
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Figure B.10: Schematic for the OMIT/A measurement setup.

2A detailed derivation of the OMIT/A feature is given in [39] and [195].
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Figure B.9: Schematic for an OMIT/A measurement showing the frequencies of the
optical tones required, including a lock tone, a probe tone and a control tone, which are
produced by a phase modulator as the sidebands of the LO.

The setup for the OMIT/A measurement is shown in Figure B.10. The laser (TL)
output is modulated by an IQM operating in the SSBCS regime, and the downshifted tone
is used as the LO. The lock, control and probe tones are then generated by the EOM by
sending a microwave signal to the EOM for each tone. The lock tone (ωlock/2π = 2100
MHz) is created by mixing up a 1900 MHz signal output by a signal generator (MW13)
with a 200 MHz signal output by a lock-in amplifier (LIA4). The LO is then locked with
respect to the cavity via the PDH technique. The cavity reflection is down-mixed with the
MW1 signal and sent to the LIA, which generates the feedback signal to the VCO that
outputs ωVCO. The control tone is generated by MW25 and is detuned from the cavity
by ∆c. For an OMIT measurement, we use a lower control tone and varies ∆c,l from
−ωac− 2κc to−ωac + 2κc (ωcon/2π ∼ 1785 MHz). For an OMIA measurement, we use an
upper control tone and varies ∆c,u from +ωac−2κc to +ωac + 2κc (ωcon/2π ∼ 2415 MHz).
Finally the probe tone is generated by a vector network analyzer (VNA)6 at frequency
ωp such that ∆p is around ±ωac. The PD output is then sent to the VNA to detect the
reflected signal at frequency ωp, which is the beatnote between the prompt-reflected LO
and the probe tone subject to optomechanical interaction. At each control tone detuning,
we capture a VNA sweep that is 2π·50 kHz around ωcon ∓ ωac to acquire the amplitude
and the phase information from the complex amplitude of the reflected probe tone around
the OMIT/A feature. The optical power of these tones are calibrated by monitoring the
transmission of the EOM output through the monitor cavity (MC).

An example of a VNA sweep of the reflected beatnote in an OMIT measurement is
shown in Figure B.11, where the horizontal axis is the detuning from the optical cavity

3Vaunix digital RF signal gerator LMS-402.
4Zurich UHFLI lock-in amplifier; Power: -34 dBm output.
5Vaunix digital RF signal gerator LMS-402.
6Vector network analyzer; Model: HP 8722D; Power: -23 dBm
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Figure B.11: An example of a VNA sweep in an OMIT measurement and the correspond-
ing complex Lorentzian fit.
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Figure B.12: Fit to the OMIT/A signature at various control detunings which extracts the
optomechanical coupling.

153



∆c + ∆p. Based on equation B.19 and B.20, the sweep is fit to a complex Lorentzian

ap,reflc[ω] = abkg +
aOMIT

γac,eff/2− i(ω − ωac,eff)
) (B.21)

where γac,eff, ωac,eff, a complex background abkg = Abkge
iφbkg and a complex amplitude

characterizing the OMIT/A feature aOMIT = AOMITe
iφOMIT are the fitting parameters. Fits

shown in Figure B.11 are normalized with respect to the background .
By acquiring such sweeps at different ∆c on both sides and the corresponding fit-

extracted parameters, we obtain Figure B.12 where the left (right) panel corresponds to
the OMIT (OMIA) measurement. Relative amplitudes (Arel = |2AOMIT/Abkgγac,eff|) and
phases (ψrel = φOMIT − φbkg) obtained from equation B.22 are shown as a function of ∆c.
They are fit to

arel(∆c) =
−nc(g0 + igth)

γac,eff/2

1

κc − i(∆c + ωac,eff)
(B.22)

where arel = Arele
iψrel . And the photothermal coupling gth is a term to account for an

additional driving force on the acoustic mode due to the absorptive heating on the fiber
mirror coatings, which creates fluctuation in the fiber and helium boundary 7. The fit
returns g0/2π = 4700 ± 30 Hz. The corresponding damping and spring effects are shown
in Figure B.13 with a γac/2π = 4460 Hz and ωac/2π = 315.375 MHz.

B.4 Extracted bare acoustic linewidth
The bare acoustic linewidth γac at base fridge temperature (∼ 20 mK) is extracted via
several methods presented in this work.

In section 5.4.1, γac is extracted via optemechanical parametric instability where the
acoustic rings up beyond the threshold of optomechanical amplification. We measure
γac/2π = 3250 ± 20 Hz as summarized in table B.2. During the ringdown following the
ringup stage, we measure γac/2π = 3240±10 Hz in section 5.4.2. From the time decay of
high-order phonon coherences measurements, we extract γac/2π = 3307± 8 Hz as shown
in figure 6.13.

Similarly to the acoustic ringdown measurement following parametric amplification in
section 5.4.2, we use the AOM and the setup in figure 7.1 to drive the acoustic directly
via a beat tone at ωac and measure the mechanical decay rate during its ringdown. The RF
drive applied to the AOM is switched on and off to control the drive on the acoustics. For
each pulse cycle, the AOM drive is turned on for 2 ms for the driven acoustics to reach its
steady state. It is then turned off for 6 ms during which the acoustic mode rings down. A

7See section 5.5 of [38] and section 7.3 of [39] for a full description and derivation of the photothermal
coupling. It is characterized as a purely imaginary component in the optomechanical coupling and only
exhibits in the phase information of the optical readout as shown in Figure B.12. The force modifies the
acoustic mode equations of motion only, resulting in a very small change in its self-energy and effective
mode number. It is negligible for the single photon counting experiment discussed in this work.
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Figure B.13: Dynamical backaction in the OMIT/A measurements showing the optical
damping and spring effects.

Measurement γac/2π [Hz]
Parametric instability ringup (5.4.1) 3250± 20

Acoustic ringdown (5.4.2) 3240± 10
Phonon coherences (6.3.3) 3307± 8

AOM sweep of the acoustics (B.4) 3504 ± 15
AOM ringdown (B.4) 3490 ± 10

Table B.2: Bare acoustic linewidth at base dilution fridge temperature γac extracted via
various methods.
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Figure B.14: Detected sideband count rates scattered by the acoustic state as it rings up
and rings down controlled by an AOM drive. γac is extracted from the transient during
ringdown, and fit to equation B.24 is shown in black.

1 µW probe tone is constantly sent to the cavity to measure the sideband count rate and
its dynamics during the acoustic ringup and ringdown (the measurement tone setup is the
same as shown in figure 7.2). A typical measurement averaged over> 104 cycles is shown
in figure B.14. During ring down, we have

Rdet = Rbkg +RASe
−(t−t0)γac (B.23)

where Rbkg is the steady-state count rate measured when the acoustic returns to the un-
driven thermal state, taken as the average count rate detected from pulse time t = 4 ms to
t = 6 ms, t0 = 2 ms at which the ringdown begins, and γac is a fitting parameter. The log
of the background-subtracted sideband counting rate is shown in the inset, which follows
the linear form of

ln (Rdet −Rbkg) = ln (RAS)− (t− t0)γac (B.24)

The fit to equation B.24 is shown as the dotted black line.
We repeat the ringdown measurements for various AOM drive powers. The extracted

γac are shown in figure B.15 (black), where we characterize the drive power by the param-
eter 〈nd〉/〈nth〉. 〈nd〉 is the mean phonon number of the driven state, and 〈nth〉 is the mean
phonon number of the thermal state, which are proportional to the detected sideband count
rate at steady state of the driven state.

With the AOM drive, we also directly acquire the count rate spectrum of the driven
acoustic mode. As the AOM drive is swept around ωac, an example of the count rate
spectrum is shown in figure B.16, where the AOM drive frequency ωd is stepped in 100 Hz
intervals, and a 0.1 µW probe at a constant detuning of −ωac (from the cavity resonance)
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Figure B.15: Fit-extracted bare γac at various AOM drive powers from (1) the counting
spectrum (red) given by equation B.25 and (2) the ringdown (black) given by equation
B.24 of an AOM driven acoustic state.
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Figure B.16: Counting spectrum of an AOM driven acoustic state. Black line shows the fit
to a Lorenztian where γac is the fitting parameter.

is used to read out the cavity response. Since the cavity damping rate κc � γac, the change
in cavity susceptibility is negligible across the linewidth of the acoustics and the spectrum
of the acoustic mode can be fit to the simple Lorentzian form

Rdet = Rbkg +
RAS

1 + 2((ωAOM − ωac)/γac)2
(B.25)

whereRbkg, Rbkg and γac are the fitting parameters. The AOM frequency sweep is repeated
at various AOM drive powers, and the corresponding extracted γac are summarized in
figure B.15 (red).

157



Appendix C

Phonon coherence

C.1 Poisson distributed background photons
We derive and demonstrate in chapter 6 that for a thermal state, the coherence functions
show the anti-bunching signature at zero time delay such that g(l)(0) = l!. On the other
hand, for a coherent state, a Poisson photon distribution is expected such that the photon
arrivals are uncorrelated with a stable average rate of arrival as discussed in chapter 2.3.
We show here that the laser source indeed has a g(2)(0) = 1 corresponding to a Poissonian
distribution, as opposed to that of a thermal state. We use this conclusion in section 6.2.2
for subtracting background counts from the measurement of phonon coherences of a ther-
mal state, where we assume the background photons are uncorrelated with each other and
〈ξ̂†(0)ξ̂†(τ)ξ̂(τ)ξ̂(0)〉 = 〈ξ̂†ξ̂〉2.

In figure C.1, we show the measurement of the photon coherences of our drive laser
source g(2)

laser. The time delay histogram is fit to the A + Be−γτ form, which returns a
g(2)(0) = 1 + B/A = 1.011 ± 0.006. This is in agreement with the expected form for a
coherent source. In comparison, the coherence of a thermal acoustic state is shown, where
the background subtraction is done with the premise that the arrivals of background photon
counts are uncorrelated with each other. For a coherent source, we thus have random
photons where g(2)(τ1) = g(2)(τ2) for any τ1 and τ2. The photon counts are Poisson
distributed such that g(2)(0) = 1. For a thermal state, we have anti-bunching photons
where g(2)(τ1) > g(2)(τ2) for any τ1 < τ2. The counts are super-Poisson distributed such
that g(2)(0) > 1.

C.2 Sources of false counts
The sideband photon correlations are computed with proper background subtraction as in-
troduced in section 6.2.2, where the presence of a stable flux of uncorrelated background
photons is corrected for, including SPD dark counts, leakage from the environment, and
photon leakage through the filter cavities. In this section, I will briefly discuss the addi-
tional filtering done on the detected photon counts during the analysis, which we recognize
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Figure C.1: g(2) of a coherent laser source is shown with g(2)(0) = 1.011±0.006, agreeing
with that of a Poisson distribution. The coherence of a thermal acoustic state is shown in
comparison with g(2) = 2, where the background subtraction is done with the premise that
the arrivals of background photon counts are uncorrelated with each other.

Figure C.2: Afterpulsing in g(2)
laser, where a sharp feature is detected at τap ≈ 24 ns. The

delay histogram is binned by 2 ns step. g(τ)
laser decays back to 1 for τ > 50 ns.

as the false counts registered by the SNSPDs arising from SNSPD afterpulses and rapid
bursts.

Afterpulsing is a well-known source of false counts registered by a SNSPD. It is the
reflection of the electrical signal generated by real photon counts or dark photon counts
(random and independent detection events registered falsely with no photon source). When
a single photon is absorbed and breaks superconductivity of the nanowire, a voltage pulse
is generated and then amplified in the readout circuit to be detected. An afterpulse is
generated by the reflection of the amplified voltage from the circuit, and is likely to occur
at some fixed time (∼ 100 ns) following a detection event [196] [197].

We observe the phenomenon of afterpulsing from the measurement of coherence func-
tion of a coherent laser source. g(2)

laser(τ) is shown with a fine bin size of 2 ns to examine
its behavior at small time delay on the ∼ 100 ns scale in figure C.2. A sharp feature is ob-
served at around τap ≈ 24 ns, which decays back to g(2)

laser(τ) = 1 for τ > 50 ns as expected
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for a coherent source. We speculate this feature is mostly likely due to the afterpulsing
effect, which occurs at τap after a real or dark photon detection event for our SNSPDs and
readout circuit.

To filter out such afterpulsing events, we simply remove any photon detection events
50 ns within each other. This does not compromise our measurement result as the smallest
time delay used in this work is τ = 0+ → 1µs.

We observe another main source of false counts which are the rapid bursts of photon
detection that occur at abnormally high rate for short duration (10-100 µs). We develop a
criteria to determine whether the count rate is abnormal. We measure the mean count rate
during an experiment to beR. The probability of detecting k photons in some time interval
∆t can be described by some model P (k, λ = R∆t). Suppose there are N number of ∆t
intervals in an experiment, the expected number of intervals during which k photons are
detected is thus NP (k, λ). We thus determine the counts detected in one time interval to
be abnormal if k > kthreshold where NP (kthreshold, λ) < 10−1. The threshold means that we
expect to get fewer than 0.1 such time intervals during which we detect more than kthreshold

of photons.
For a thermal acoustic state, we assume the statistical model of photon detection to be

Pth](k, λ = R∆t) = λk/(1 + λ)k+1. We discard the entire 90 ms hold period if during
which there exists any time intervals that receive more than kthreshold of photons which we
consider as an abonormal rapid burst. A more detailed description of the choice of the
statistical model and the filtering process is presented in the work [198].
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