
Abstract

Progress Toward Observation of Radiation Pressure Shot

Noise

Benjamin Michael Zwickl

2011

It has been over 100 years since the �rst conclusive demonstration of radiation pressure by Lebe-

dev [1] and Nichols and Hull [2, 3]. Cavity optomechanical systems�high �nesse optical cavities

coupled to mechanical resonators�are good testing grounds for the mechanical properties of light.

The system described in this dissertation is a 7 mm long cavity coupled to a 1 mm square, 50 nm

thick silicon nitride membrane. Like many similar optomechanical systems, ranging from the Laser

Interferometer Gravitational Wave Observatory to microtoroids, this work has moved beyond de-

tecting the steady state force of light on a mirror to a rich array of dynamical e�ects. Classical

e�ects include shifts in the mechanical resonant frequency and optical damping, both of which are

demonstrated in this thesis.

The (relatively) strong coupling between the light and mechanical resonator can, in principle,

demonstrate e�ects beyond classical mechanics and classical light. This thesis represents an attempt

to directly measure random quantum �uctuations in the force of light re�ecting from a surface, an

e�ect we call the radiation pressure shot noise.

A correlation measurement scheme developed theoretically by Børkje et al. [4] was implemented.

This measurement scheme is capable of distinguishing the e�ects of the random thermal force from

the random radiation pressure shot noise. Successful suppression of thermal e�ects was demon-

strated, though unfortunately not to the level required to measure the radiation pressure shot noise.

In spite of not accomplishing this major physics goal, much was learned about this measurement

scheme and its potential for future measurements of the radiation pressure shot noise.

The dissertation begins with an overview of a variety of physical manifestations of the radiation

pressure shot noise. The relevant theoretical formalism is then developed, and the correlation scheme

is explained. Our technical accomplishments in developing the correlation measurement scheme are
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presented. The correlation measurement scheme is then used to accomplish successful suppression

of thermal e�ects consistent with the theory developed by Børkje et al. The paper concludes with

a brief look at proposed optomechanical systems that may o�er a better opportunity to observe the

radiation pressure shot noise.
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3.5 Key results from Børkje et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.6 Plots near zero detuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.6.1 Figure of merit near zero detuning . . . . . . . . . . . . . . . . . . . . . . . 87

3.7 Plots at large, �nite detuning (∆ = −3.1κ) . . . . . . . . . . . . . . . . . . . . . . . 89

3.8 Plots at half-linewidth detuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.9 E�ect of �nite measurement time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.9.1 Averaging time on resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Experimental Design 95

4.1 Mechanical resonator: Silicon nitride membrane . . . . . . . . . . . . . . . . . . . . 95

4.1.1 Mechanical loss in silicon nitride membranes . . . . . . . . . . . . . . . . . . 97

4.1.2 Optical loss in silicon nitride membranes . . . . . . . . . . . . . . . . . . . . 100

4.2 The cavity and optical mount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Optics Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.1 Stage 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.2 Stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3.3 Stage 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.4 Stage 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3.5 Stage 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

v



4.4 Vacuum systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5 Electronic signal processing and data acquisition . . . . . . . . . . . . . . . . . . . . 108

4.6 Using a heterodyne measurement to detect an arbitrary quadrature . . . . . . . . . 109

4.7 Converting the ZI-HF2 demodulator into the correlation signal . . . . . . . . . . . . 113

4.8 Reconstructing the transmitted intensity �uctuations δXφ[ω] . . . . . . . . . . . . . 114

4.9 Reconstructing the re�ected �uctuations in an arbitrary quadrature δYθL [ω] (Ideal

measurement) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.10 Reconstructing the re�ected �uctuations in an arbitrary quadrature δYθL [ω] (Actual

measurement) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.10.1 Correction #1 - Phase changes between the local oscillator and signal beams 118

4.10.2 Correction #2 - A constant phase o�set in the heterodyne phase θo�set . . . . 120

4.10.3 Correction #3 - A variation in ampli�er gain over the 2 MHz bandwidth

between the upper and lower mechanical sidebands . . . . . . . . . . . . . . 121

4.10.4 Correction #4 - An overall phase shift to re�ected heterodyne quadrature

YθL [ω]→ eiθgYθL [ω] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5 Preliminary Results and Discussion 123

5.1 Calibrating the measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1.1 Calibration of θo�set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.1.2 Calibration of β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.1.2.1 Method 1: Laser far-detuned from cavity resonance . . . . . . . . . 124

5.1.2.2 Method 2: Ratio of sidebands at zero detuning . . . . . . . . . . . 126

5.1.3 Calibration of θg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 Determining cavity decay rates κ and κL . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3 Measurement of detuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3.1 Method 1: Phase shift of the re�ected heterodyne carrier . . . . . . . . . . . 133

5.3.2 Method 2: Phase shift of the re�ected phase modulation sidebands . . . . . 134

5.3.3 Method 3: Ratio of the mechanical motion-induced sidebands . . . . . . . . 134

vi



5.3.4 Agreement of Methods 1 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4 Optomechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.5 Measurement of the critical quadrature . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.6 Suppression of the thermal contribution to the correlation . . . . . . . . . . . . . . 143

6 Future directions and conclusions 147

6.1 Optimization of optomechanical parameters . . . . . . . . . . . . . . . . . . . . . . 147

6.1.1 Relevance of the static radiation pressure bistability to the experiments in

this dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A Calculations of stressed membrane properties 154

A.1 Calculation of spring constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.2 Calculation of Kinetic Energy, E�ective Mass, and Resonant Frequency . . . . . . . 156

B Derivation of thermo-elastic dissipation limited Q 157

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

B.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.2.1 Modi�cations of argument in Norris and Photiadis . . . . . . . . . . . . . . . 158

B.2.2 Setting up the basic equations to solve . . . . . . . . . . . . . . . . . . . . . 158

B.2.3 Calculating the temperature �eld θ(~x, t) (part 1) . . . . . . . . . . . . . . . . 160

B.2.4 Calculating α � σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

B.2.5 Calculating the temperature �eld θ(~x, t) (Part 2) . . . . . . . . . . . . . . . 162

B.2.6 Computing the mean loss rate during an oscillation . . . . . . . . . . . . . . 164

B.3 Calculation of Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

B.4 Discrepancy with other calculations of QTED . . . . . . . . . . . . . . . . . . . . . . 168

Bibliography 169

vii



List of Figures

1.1 A comet's trajectory as drawn by Kepler in De Cometis Libelli Tres (1619). Note

the comet tail is always facing away from the Sun. (Used with permission from UCL

Library Services, Special Collections) . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Heisenberg's Microscope o�ers an intuitive origin for the uncertainty relationship. A

photon scatters o� of an electron and is focused by a lens onto a CCD camera. The

aperture of the lens limits the position resolution ∆x, while the uncertain direction

of the photon recoil causes an uncertainty in the photon's momentum ∆px, satisfying

∆x∆px ∼ h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Optical cavity with a movable end mirror. . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Phonon number as a function of the optical damping. For small optical damping

(e.g. low laser powers) the phonon number was chosen to be 1000. A classical

theory of laser cooling would predict the mean energy of the oscillator would decrease

inde�nitely, but the radiation pressure shot noise drives a small amount of motion

limiting the lowest achievable phonon number. The solid curve is a theoretical plot

of Eq. 1.31 with n̄th = 1000 and n̄Om = 0.1. . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Membrane-in-the-middle cavity geometry used in this dissertation. . . . . . . . . . . 22

viii



2.1 Cavity with a harmonically bound end mirror. This is the canonical system in cavity

optomechanics. The Pi refer to the input, re�ected, circulating and transmitted laser

power. The (ri, ti) pair refers to the amplitude re�ection and transmission coe�cients

for the end mirrors. The mass m, resonant frequency ωM, and damping constant γ

are given for the harmonically bound end mirror. . . . . . . . . . . . . . . . . . . . 31

2.2 Cavity with a movable end mirror. The six electric �elds are shown which are used

in the steady state derivation for the cavity equations of motion. . . . . . . . . . . . 33

2.3 Membrane-in-the-middle cavity geometry. A membrane of thickness d has amplitude

re�ection and transmission coe�cients of rd and td, respectively. (A) represents the

intracavity �eld as a standing wave �eld, showing that the membrane's interaction

with the intracavity �eld will be periodic. (B) represents all the left- and right-going

waves needed to describe the system in one dimension. . . . . . . . . . . . . . . . . 42

2.4 (A) A plot of the theoretical variation in cavity resonance frequency ωC(x) as a

function of membrane position. The di�erent curves represent di�erent membrane

re�ectivities. (B) A plot of the cavity transmission for a scan of laser frequency and

membrane position. Darker colors correspond to a higher transmission. The darkest

line represents the lowest order Gaussian cross-section cavity mode. The dashed lines

correspond to the empty cavity modes (i.e. a membrane with zero re�ectivity). . . 45

2.5 A phasor diagram of the classical input �eld ain(t) = ā0 + δx(t) + iδy(t) which is
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Chapter 1

Introduction to radiation pressure shot

noise and quantum limited measurement

1.1 History

The story of radiation pressure, the mechanical force that light exerts when it is re�ected or ab-

sorbed by an object, spans almost 400 years, starting with Johannes Kepler's guess that it causes

particles around a comet to be pushed into a tail pointing away from the sun. Today, astronomers

attempting to observe gravitational waves understand that radiation pressure sets limits on the

sensitivity of their kilometer-long gravitational wave antennae. In fact, the quantum nature of the

radiation pressure is required to explain both comet tails and quantum-limited gravitational wave

interferometers. The research described in this dissertation is an experimentalist's attempt to ob-

serve quantum �uctuations in the radiation pressure, which we call radiation pressure shot noise. I

will begin by tracing the development of these ideas from Kepler to the present day.

Classical radiation pressure

The warmth of sunlight on the skin is su�cient evidence that light carries energy, but does this

mean it also has momentum? It seemed reasonable that upon absorption or re�ection it may impart

some force, called radiation pressure. The question was, how large should this force be?
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Figure 1.1: A comet's trajectory as drawn by Kepler in De Cometis Libelli Tres (1619). Note the
comet tail is always facing away from the Sun. (Used with permission from UCL Library Services,
Special Collections)
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Certainly the force of light is smaller than a person can feel under normal circumstances. The

�rst observation of radiation pressure was described by Kepler in 1619 [5]. He noted that comets

have tails which point directly away from the sun, as shown in Fig. 1.1, and proposed that radiation

pressure was the cause.

What did theory suggest for the magnitude of the radiation pressure? Euler showed in 1746

that a longitudinal wave could impart momentum on an object in its path [6], and by 1803 the wave

theory of light seemed well established by Young's double slit experiment [7]. So it seemed plausible

that light waves could exert forces on objects. However, there was still no hint at the magnitude of

this force. It was not until 1873 that Maxwell demonstrated that radiation pressure was a direct

consequence of his equations of electricity and magnetism, and gave a precise theoretical prediction

for its magnitude [8].

Maxwell's relationship between the momentum �ux (i.e. the momentum per unit time per unit

area) ~Prad of the electromagnetic �eld and the energy �ux ~S can be written as

~Prad =
1

c
~S (1.1)

where ~S = 1
µ0

(
~E × ~B

)
and ~E and ~B are the electric and magnetic �elds, c is the speed of light,

and µ0 is the permittivity of free space. The energy �ux ~S is also called the Poynting vector, and

its magnitude is equal to the intensity I =
∣∣∣~S∣∣∣.

Einstein derived Maxwell's relationship between the intensity of light and radiation pressure

(Eq. 1.1) in his 1905 article about special relativity On the electrodynamics of moving bodies [9].

Einstein compared the �ux of electromagnetic energy in a light beam before and after it re�ects o�

a moving mirror. The di�erence in energies is attributed to work done by a radiation pressure on

the mirror.

Another simple relativistic derivation of Eq. 1.1 is illustrated by noting that for all massless

particles which travel at the speed of light, we can relate the momentum p and energy E by

p =
1

c
E (1.2)
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If instead of a single particle we have a �ux of particles, the momentum p turns into a momentum

�ux Prad, and the energy E turns into an energy �ux (intensity) I, and we get the same result as

Eq. 1.1. A third derivation, given by Bartoli in 1876, derived Maxwell's radiation pressure result

without any detailed assumptions about the electromagnetic �eld, but rather as a thermodynamic

process where radiant energy is transferred from a warm body to a cold body by moving mirrors

[10].

The momentum of light as described by Maxwell (Eq. 1.1) or Einstein (Eq. 1.2) becomes

radiation pressure when the light is absorbed or re�ected by a surface. For a perfectly absorbing

surface the re�ectivity R is zero, and all the momentum of the light is transferred to the object.

For a perfectly re�ective surface R = 1, twice the momentum of light is transferred to the object.

In general, for a re�ectivity 0 ≤ R ≤1

F =
1 +R

c
P (1.3)

where F is the force on the surface and P is the power of light incident on the surface.

For a perfect re�ector R = 1, the proportionality constant has a numerical value of 6.67× 10−9

W/m. To put this number in perspective, consider the optical force that could be produced by an

ordinary 150 Watt household light bulb. Typical incandescent light bulbs have an e�ciency of 3% or

less, meaning there is at most 5 W of visible light. If this light could be collected and collimated, it

could produce a force upon re�ection of F = 2P/c = 2×5 W/3×108 m/s ≈ 3×10−8 N. If this force

was directed in opposition to gravity it could suspend a maximum mass of about 3×10−9 kg, which

is the mass of a water droplet of about 100 µm diameter. Maxwell, in his Treatise on Electricity

and Magnetism [8], also endeavored to put this in everyday terms, writing, �the mean pressure [of

strong sunlight] on a square foot is 0.0000000882 of a pound.� Because radiation pressure is an

extremely small e�ect, it played no role in everyday experience, and was even di�cult to observe in

early laboratories.

Both before and after Maxwell's prediction, many experimental attempts were made to measure

the radiation pressure. Until 1901 all were inconclusive. Large systematic errors were commonplace

due to interactions with gas surrounding the force detectors [11, 12]. This was the case for the
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famous Crookes radiometer (a.k.a. a light mill) [13�18], which is available for sale at most scienti�c

curiosity stores.

The �rst convincing measurement of radiation pressure used a torsion pendulum suspended in

a partial vacuum. The measurements, �rst published in 1901 by Lebedev [1] and Nichols and Hull

[19], did not o�er su�cient accuracy to verify Maxwell's theoretical result (Eq. 1.1). However, by

1903 Nichols and Hull had su�ciently improved their setup to achieve a result within about twenty

percent of the theoretical prediction and within their expected error [2]. The 1901 and 1903 papers

by Nichols and Hull are very readable and o�er a more detailed history of radiation pressure for the

interested reader. Lebedev later went on to study the e�ect of radiation pressure on gases, putting

Kepler's theory of comet tails on a �rmer foundation [20].

Radiation pressure and early quantum mechanics

So far we have not considered the role of quantum mechanics in radiation pressure. In the early

1900s two important papers were published concerning the quantization of energy in light. In

1901 Planck published his work on quantization of radiation to account for the spectrum of black

body radiation [21], and in 1905 Einstein published his explanation of the photoelectric e�ect using

quantized packets of light [22]. Campbell, in 1909, realized that quantization of light implies any

source of light should have random power �uctuations [23, 24]. He assumed that quanta of light were

emitted independently by di�erent atoms at random times, like a Poisson process. When the light

is detected, there should be �uctuations about the mean power, which in modern physics parlance is

called shot noise. He estimated the magnitude of these quantum �uctuations and devised a scheme

to measure them. Unfortunately the noise in his measurement was larger than the �uctuations due

to shot noise, but he published his null result anyway [23].

One of the �rst papers clearly linking radiation pressure and quantum mechanics was published

in 1919 by Megh Nad Saha. In On Radiation-Pressure and the Quantum Theory [25], Saha argues

that a classical picture of light waves scattering o� gaseous molecules is inadequate to explain

Lebedev's observations of radiation pressure on gases. He claims classical theory would result

in a negligible momentum transferred to all the gas molecules, whereas Lebedev's data show the
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gas molecules receive a measurable push from the light. He then claims only a theory of light

where momentum comes in discrete chunks equal to hν/c would be consistent with experimental

and astronomical observations of comet tails. Saha's argument sounds like the momentum analog

of Einstein's explanation of the photoelectric e�ect. A classical prediction for the photoelectric

e�ect suggests for modest intensities it would take a very long time for light to transmit su�cient

energy to an atom to liberated an electron. In reality even the weakest beams of su�ciently short

wavelength will immediately liberate electrons from the surface. Saha claims a similar calculation

of the radiation pressure on gas molecules predicts Lebedev's observations should have required

far greater intensities than were actually used. One e�ect Saha seems to neglect is that while the

geometric cross-section for an atom is roughly the square of its diameter or σgeo ' 10−19, the cross-

section to radiation can be much higher. For example, the cross-section of an atom to radiation

resonant with the transition is σ(ω0) ' (λ/2)2 ' 10−13m, or roughly a million time larger than

the geometric cross-section. What is clear is that Saha recognized that quantum mechanics would

change the nature of radiation pressure, and he was looking for evidence of the quantization of

momentum.

The quantized momentum of light was convincingly veri�ed in 1923 by Compton in his exper-

iments scattering gamma rays o� lightweight gas atoms and molecules [26]. Now both radiation

pressure and quantum theory had �rm experimental footing.

Radiation pressure after the laser

The laser ushered in a new era of optics. Compared to earlier light sources, the laser o�ered a very

narrow linewidth, which enabled long-distance interferometry, more than one quantum in a mode,

which is essential for quantum optics, and extremely high intensities needed for nonlinear optics.

Furthermore, the theoretical description of a laser and its coherent interaction with matter required

a quantum picture that advanced the �eld of quantum optics .

With the advent of the laser, and the surprising correlations found in Hanbury Brown and Twiss

interferometry [27], noise turned from a nuisance to a property of light that could uncover quantum

features of radiation. The role of noise and statistics in understanding light is signi�cant enough
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that Roy Glauber was awarded the 2005 Nobel Prize in Physics for its theoretical description.

Radiation pressure also entered a new era. The same high intensities and narrow linewidths

which made nonlinear optics possible also enabled the observation of radiation pressure e�ects in

optical cavities [28]. In addition, the well-de�ned mode shapes imposed by laser cavities enabled

intense di�raction-limited focusing patterns useful for the manipulation and trapping of particles

through radiation pressure, a technique known as optical tweezers [29]. The laser became an enabling

device in many �elds, including the study of shot noise and radiation pressure, and in the near future

will enable the measurement of radiation pressure shot noise (RPSN).

Simple derivation of shot noise

When light of power P is incident on a photodiode, the average number of photons of frequency ω

which hit the detector in a short time dt is

N =
P

~ω
dt (1.4)

However, these photons arrive at random times which are not correlated with the arrival of any

other photon. This kind of process is called a Poisson process, and has the special relationship

between the mean value N and the standard deviation σN

σN =
√
N (1.5)

The standard deviation of power σP is

σP =
σN
dt

~ω

=

√
Pdt

~ω
~ω
dt

(1.6)

=

√
P~ω
dt
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Poisson processes are composed of many independent events and the power spectral density of

the �uctuations are white (i.e. the same for all frequencies). Only �uctuations in the power at

frequencies below the Nyquist frequency ωNyquist = 1/(2dt) contribute to the noise measured in a

time dt since the faster �uctuations average to zero. So the variance in measured power σ2
P over a

time dt is

σ2
P =

ˆ ωNyquist

−ωNyquist
SPdω (1.7)

where σP the power spectral density SP is a constant. Combining Eqs. 1.6 and 1.7 gives

P~ω
dt

=
2

2dt
SP (1.8)

We then �nally arrive at the shot noise expressed in the frequency domain as a power spectral

density

Ssn
P [ω] = ~ωP (1.9)

Because the integral in Eq. 1.7 goes from ω = −ωNyquist to ω = ωNyquist, the power spectral density

Ssn
P [ω] given in Eq. 1.9 is a double-sided PSD. All power spectral densities in this dissertation will

be given as double sided. The main goal of this derivation is to show a simple connection between

the Poissonian relationship σN =
√
N and the frequency domain result Ssn

P [ω] = ~ωP .

When light re�ects o� of a perfect mirror R = 1, there are �uctuations in the force due to

shot noise. This is called radiation pressure shot noise (RPSN). The conversion between Watts and

Newtons is 2
c
(Eq. 1.3) so

Ssn
F =

(
2

c

)2

Ssn
P (1.10)

=
4~ωP
c2

(1.11)

To put the radiation pressure shot noise in perspective, consider the more commonly discussed

random force which drives Brownian motion, often called the Langevin force. The Langevin force
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ηth(t) for a simple harmonic oscillator with equation of motion mẍ+mγẋ+kx = ηth(t) has a power

spectral density of

Sth
F [ω] = 2γmkBT (1.12)

where γ is the mechanical linewidth, m is the mass, kB is Boltzmann's constant, and T is the

temperature.

For the kinds of devices discussed in this dissertation (i.e. silicon nitride membranes at room

temperature), the ratio of the radiation pressure shot noise to the Langevin force for 1 Watt of light

is Ssn
F /S

th
F ≈ 10−9. So a hundred years after Nichols and Hull �rst measured the mean radiation

pressure, the problem remains that our force sensor is coupled to the environment, and the thermal

e�ects obscure the force of interest.

The remainder of this dissertation is organized as follows:

� The rest of Ch. 1 will discuss various manifestations of the radiation pressure shot noise and

its relation to quantum limited measurement.

� Ch. 2 introduces the basic mathematical formalism of cavity optomechanics.

� Ch. 3 describes a scheme to observe RPSN in the presence of a relatively large thermal force.

� Ch. 4 describes the experimental design.

� Ch. 5 gives some preliminary data.

1.2 Quantum limited measurement

In the history of radiation pressure, RPSN is important because it limits the ultimate precision of

optical interferometric displacement measurements. On the smallest scale, such an interferomet-

ric measurement could be the position readout from an atomic force microscope (AFM). On the

largest scale it could be a measurement of the distance between test masses kilometers apart in a

gravitational wave antenna like those used in the Laser Interferometer Gravitational-Wave Obser-

vatory (LIGO). When considering the incredibly small displacements due to gravitational waves, it
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is natural to ask what is the smallest detectable oscillation of the LIGO test masses.

Remarkably, much of the early work done on quantum limited measurement was motivated by

gravitational wave astronomy. Only kilometer long interferometers measuring at the quantum limits

are likely to have the sensitivity to see the feeble ripples in space-time emitted from distant celestial

objects like orbiting binary black holes.

A variety of noise sources limit the sensitivity of systems like an AFM or LIGO. Mechanical

vibrations of the lab, known as seismic noise, are one source of error. Electronic noise in detectors

and bit noise in analog to digital converters are examples of technical noise which comes in many

forms. Brownian motion of the mirrors in an interferometer, Johnson noise in resistive circuits, and

thermally stimulated radio frequency and microwave phonons are all kinds of thermal noise, which

result from the system being at a �nite temperature. Seismic and technical noise sources can be

reduced through improved engineering. Thermal noise can be reduced by cooling the system using

refrigerators or other cooling schemes.

There is a �nal source of noise, due to quantum mechanics, which cannot be avoided. The

mathematical structure of quantum mechanics necessitates certain limits of measurement, and a

measurement done so carefully as to bump up against one of these limits is called a quantum limited

measurement. Quantum measurement error has two sources. The �rst source of error is due to the

intrinsic uncertainty of the quantum state being measured. For example the uncertainty σA of some

observable Â for the state |ψ〉 would be

σ2
A = VarA = 〈ψ|

(
A− 〈ψ| Â |ψ〉

)2

|ψ〉 (1.13)

This is the kind of quantum uncertainty learned about in an introductory quantum mechanics

class [30]. The second source of error is due to the measurement scheme, which itself can have

quantum properties and add further noise. For an optical detection scheme, this second source

of error includes both the statistical imprecision and the measurement back action, because both

result from the quantum nature of the measurement tool, and not the object whose displacement is

being measured. This kind of error is not typically studied in an introductory quantum mechanics
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class.

1.3 Examples of quantum limited measurements

The most famous equation in quantum mechanics is the Heisenberg uncertainty equation, shown

below for the canonically conjugate variables position x and momentum px

∆x∆px ≥ ~/2 (1.14)

It is simple to write down, yet surprising because classically it is unexpected that the uncertainty

in these two variables should be related, and that they can't be made arbitrarily small at the same

time.

There are several ways to motivate or derive Heisenberg's uncertainty principle. The sophomore

physics major may see a justi�cation of the principle by starting with the general inequality for

waves: ∆x∆k ≥ 1
2
. Applying the DeBroglie relation, which says the wave number and momentum

are directly proportional (i.e. k ≡ 2π
λ

= p
~) immediately gives the uncertainty principle. The junior

physics major will see a derivation of the equation using operator algebra [30]. In all cases the

uncertainty in the measurement is determined by the state of the particle or system being observed,

and it must obey the Heisenberg uncertainty principle.

Heisenberg's microscope

Heisenberg o�ered his own intuitive understanding of the uncertainty principle in the form of a

gamma ray microscope used to locate an electron by scattering one gamma ray at a time from

the electron [31] (see Fig. 1.2). The basic idea is that while the focusing of the lens allows us

to spatially resolve the location of the electron, the scattered gamma ray has an uncertainty in

momentum because a spread of scattering angles all focus to the same point on the CCD camera.

Thus the electron has an uncertainty in its momentum after the measurement. More quantitatively,

di�raction of light of wavelength λ by the lens aperture θ means the focused light on the camera
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Figure 1.2: Heisenberg's Microscope o�ers an intuitive origin for the uncertainty relationship. A
photon scatters o� of an electron and is focused by a lens onto a CCD camera. The aperture of the
lens limits the position resolution ∆x, while the uncertain direction of the photon recoil causes an
uncertainty in the photon's momentum ∆px, satisfying ∆x∆px ∼ h.

has a spatial resolution of

∆x ≈ λ

sin θ
(1.15)

while the uncertainty in the x-component of the momentum is

∆px ≈
h

λ
sin θ (1.16)

The relative uncertainties in the position and momentum roughly satisfy the uncertainty principle

∆x∆px ≈ h (1.17)

The uncertainty principle is seen not as some intrinsic property of the electron, but of the quantum

nature of the measurement tool, which is a gamma ray photon in this example. This argument

requires no assumptions about the quantum nature of the electron.
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Interferometric displacement measurements

Very long interferometers make natural candidates for gravitational wave antennae. Interferome-

ters of any length o�er very sensitive position resolution. However, the e�ect of the gravitational

wave is in proportion to the length of the interferometer, encouraging the design of kilometer-long

interferometers such as LIGO. Even LIGO is expected to undergo extremely small length changes

on the order of 10−18 m when a gravitational wave passes by. It is necessary to �gure out if such

precise measurements can be made when considering the error imposed by quantum mechanics. The

answer was worked out by Caves [32] and others. Quantum limited measurement in gravitational

wave detectors is very important to astronomers, and also provides intuition for the role of radiation

pressure shot noise in quantum limited measurement.

Consider now a displacement measurement of a movable mirror as part of the interferometer

shown in Fig. 1.3. The powers of the incident, re�ected, and transmitted beams are Pin, Pre�, and

Ptrans respectively. As the distance between the mirrors (i.e. cavity length) changes, the transmitted

power Ptrans also changes. Any �uctuations in Ptrans will be inferred as displacements of the end

mirror. However, not all �uctuations in Ptrans are actually due to changes in the mirror's position.

Noise in the incident laser beam, such as shot noise, can also cause �uctuations in Ptrans. These

�uctuations will be observed in Ptrans independent of the mirror's motion.

If the laser has no noise other than shot noise (also called shot noise-limited), then the double-

sided power spectral density of the displacement measurement imprecision Simp
x [ω] for a on-resonance

Pound-Drever-Hall measurement is

Simp
x [ω] =

π~cλ
64PinF 2

(1.18)

where the �uctuations are assumed to be slower than the cavity linewidth (ω � κ), λ is the

laser wavelength, and F is the cavity �nesse [33]. However, shot noise also a�ects the intracavity

intensity, which creates random �uctuations in the radiation pressure on the mirror. The power

spectral density of these force �uctuations due to shot noise is derived in Sections 2.8 and 2.10. In

the case that the input laser is on resonance with the cavity and we only consider �uctuations much

13



slower than the cavity linewidth (ω � κ), then Ssn
F [ω] is given by

Ssn
F [ω] =

16~PinF 2

πcλ
(1.19)

The following relationship naturally emerges:

Simp
x Ssn

F =
~2

4
(1.20)

This formula is still the Heisenberg uncertainty relationship, but it is written in a form appropri-

ate for continuous measurements and involves power spectral densities rather than variances σx and

σpx . It is continuous because the position x is continually monitored in time. While it is su�cient

to describe a single measurement by its mean and standard deviation (and possibly higher order

moments), a continuously measured quantity calls for a continuous distribution (like the power

spectral density) to describe its uncertainty. The exact form of the Heisenberg uncertainty relation

for continuous measurements is

Simpx SF ≥
~2

4
(1.21)

(see Ref. [34] or Ch. 6 of Ref. [35] )

Again, in a manner similar to the Heisenberg microscope, we derive a formula very similar to

the Heisenberg uncertainty relation. It is not a statement about intrinsic properties of the movable

mirror, but rather about the quantum nature of the measurement process. In fact, the quantity

Simp
x does not represent the full measurement uncertainty in the mirror's position, but only the

statistical uncertainty due to shot noise. The displacement imprecision can be made arbitrarily

small by increasing the incident laser power Pin, as can be seen in Eq. 1.18 where Simp
x → 0 as

P → ∞. At �rst glance this may seem to indicate that the position measurement can be made

arbitrarily accurate, but this is not so as the next section will discuss.
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Figure 1.3: Optical cavity with a movable end mirror.

1.4 Standard quantum limits

In both the Heisenberg microscope and the optical cavity with a movable end mirror, the measure-

ment probe perturbs the momentum of the electron or end mirror, respectively. This perturbation

in momentum, also called back action, causes additional �uctuations in the displacement. As the

imprecision of the measurement Simp
x becomes very small, the back action Sback action

F becomes very

large. When both the imprecision and back action are considered as sources of error in x, we �nd

there is a minimum total measurement uncertainty, called the standard quantum limit (SQL). The

standard quantum limit of a displacement measurement of a harmonic oscillator is derived below.

A version of the standard quantum limit can also be derived for Heisenberg's microscope (see Ref.

[35]).

SQL of a harmonic oscillator

In a continuous measurement of cavity transmission as in Fig. 1.3, the full measurement error in

position has two sources (excluding technical and thermal noise). The �rst, discussed in Sec. 1.3,
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is the measurement imprecision. The second is the measurement back action,

Sback action
x [ω] = |χ[ω]|2 Sback action

F [ω] (1.22)

where

χ[ω] = m−1
(
ω2 − ω2

m − iωγ
)−1

(1.23)

≈ (2mωm)−1 (ω − ωm − iγ/2)−1 (1.24)

is the mechanical susceptibility of an end mirror with mass m, resonant frequency ωm, and mechan-

ical linewidth γ. The approximate form is for the limit of a mechanical quality factor Q� 1.

Applying the Heisenberg uncertainty principle (Eq. 1.21) gives a power spectral density for the

measurement back action force of

Sback action
F [ω] ≥ ~2

4Simp
x [ω]

. (1.25)

Combining the statistical and back action uncertainties we get a power spectral density for the total

noise in position

Stot
x [ω] = Simp

x [ω] + Sback action
x [ω] (1.26)

≥ Simp
x [ω] +

1

4m2ω2
0

(
(ω − ω0)2 + (γ/2)2) ~2

4Simp
x [ω]

(1.27)

The total error on resonance Stot
x [ωm] is minimized when

Simp
x [ωm] =

~
2mωmγ

(1.28)
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giving a minimum value for Stot
x [ωm] of

min
(
Stot
x [ωm]

)
=

~
mωmγ

(1.29)

This minimum uncertainty is the standard quantum limit

SSQL
x [ωm] =

~
mωmγ

(1.30)

Although the derivation of the SQL of a harmonic oscillator did not specify a particular mea-

surement scheme, the interferometric scheme has a particularly intuitive interpretation in terms of

the radiation pressure shot noise. For optical measurement schemes the back action error is error

caused by the radiation pressure shot noise:

Sback action
x [ω] = Ssn

x [ω]

1.5 Physical manifestations of the radiation pressure shot noise

Measurement with an imprecision below the SQL

Any measurement that can claim Simp
x < SSQL

x must be in the regime where Sperturb
x > Simp

x .

For optomechanical systems this means radiation pressure shot noise dominates the measurement

imprecision. To date, two groups have published work demonstrating that they have achieved this

regime. Teufel et al. used a nanomechanical beam as a tunable element in a microwave cavity

and read out �uctuations in the cavity resonant frequency interferometrically [36]. They have

demonstrated Simp
x ≈ 0.80SSQL

x . Anetsberger et al. have evanescently coupled silica microtoroids

to silicon nitride nanostrings and published displacement imprecisions of Simp
x ≈ 0.70SSQL

x [37] and

Simp
x ≈ 0.47SSQL

x [38]. However, in all cases the total displacement sensitivity on resonance is

dominated by thermally driven Brownian motion. In Teufel et al. the mechanical resonator with
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ωm = 2π×1.04 MHz was cooled in a dilution fridge to 130 mK, or a mean phonon number of about

2600. The measurements of Anetsberger et al. are all at room temperature, so their SiN nanostrings

with ωm ≈ 2π × 8 MHz have a phonon occupation number of 8× 105.

For comparison with our own earlier work at Yale, Thompson et al. demonstrated Simp
x ≈

0.1SSQL
x using a membrane in the middle cavity where the minimum, but Simp

x occurred during

signi�cant laser cooling while SSQL
x was determined using the bare damping membrane without

laser cooling [39].

RPSN as a limit to laser cooling of atoms and mechanical resonators

Another physical manifestation of the radiation pressure shot noise is that it sets a limit on the

lowest possible temperature achievable by laser cooling. The RPSN is a random �uctuating force,

which drives a small amount of motion, setting a lower bound on laser cooling [40�42]. More

discussion of the relation between RPSN and the limit on laser cooling can be found in Sections 1.6

and 2.9.

The steady state state phonon number of an optically damped mechanical resonator is given in

Ref. [40] as

n̄m =
γmn̄th + γoptn̄

O
m

γm + γopt
(1.31)

where γm and γopt are the intrinsic and optomechanical damping factors, n̄th is the thermal phonon

number before laser cooling, and n̄Om is the lowest achievable phonon number in the limit γopt � γm.

Once the optical damping is much larger than the intrinsic damping (γopt � γm), there is no

additional cooling. Any additional energy loss from a larger damping is matched by an increase

in radiation pressure shot noise, which drives the mechanical motion. Figure 1.4 shows a plot of

Eq. 1.31.

For an optomechanical system with a mechanical resonant frequency ωm, a cavity decay rate

of κ, and a detuning between the cavity and the cooling laser of ∆, we can express the minimum

achievable phonon number as

n̄Om = −(ωm + ∆)2 + (κ/2)2

4ωm∆
(1.32)
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Figure 1.4: Phonon number as a function of the optical damping. For small optical damping (e.g.
low laser powers) the phonon number was chosen to be 1000. A classical theory of laser cooling would
predict the mean energy of the oscillator would decrease inde�nitely, but the radiation pressure shot
noise drives a small amount of motion limiting the lowest achievable phonon number. The solid
curve is a theoretical plot of Eq. 1.31 with n̄th = 1000 and n̄Om = 0.1.

(see Ref. [40]). The role of quantum �uctuations in the momentum of light causes an analogous

limit in the laser cooling of trapped atoms [43, 44].

RPSN as a limit to linewidth of an optically driven, negatively damped

mechanical resonator

Optical damping and laser cooling occur when the laser is red-detuned relative to the cavity res-

onance. If instead the laser is blue-detuned, the damping becomes negative and the mechanical

oscillations will increase in amplitude until the response becomes nonlinear and restricts further

increases in amplitude. In this blue-detuned, negative damping regime, the mechanical resonator

oscillates with a linewidth much narrower than its natural linewidth. Radiation pressure shot noise

imposes a limit on the minimum linewidth in this negative damping regime as determined by Val-

hala [45]. For instance, in the resolved sideband limit (i.e. the mechanical resonant frequency is
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much larger than the cavity decay rate ωm � κ) the minimum linewidth is

∆ωRS =
γ

2n̄c
(n̄th + 1) (1.33)

where γ is the natural mechanical damping rate, n̄th is the thermal phonon number, and n̄c is the

number of phonons in the negative damping steady state. Equation 1.33 shows that the thermal

phonon number n̄th must be increased by one to account for the e�ect of the quantum �uctuations

of the electromagnetic �eld. In limit of zero temperature, where n̄th → 0, there is still a �nite

linewidth of γ/2n̄c due to RPSN.

Observation of RPSN heating an ultracold atomic gas

Murch et al. have reported the observation of RPSN in the collective motion of an ultracold atomic

gas trapped inside an optical cavity [46]. In this work, the optical cavity mode contains only a few

photons and is far detuned from any atomic transitions of the ultracold atoms. The RPSN in the

cavity mode provides random kicks to the ultracold gas, causing the gas to heat up and increasing

the loss rate of atoms from the trap. They refer to the process as cavity enhanced di�usive heating.

Quantum nondemolition measurement of intracavity photon number as a

measurement of RPSN

When a movable mirror is displaced by radiation pressure, the mirror's position can be used to

determine the power of the incident light. If the movable mirror is part of an optical cavity, then

the mirror's position can be used to perform a quantum nondemolition (QND) measurement of

the intracavity photon number, as �rst discussed by Jacobs et al. [47] and further developed by

Pinard et al. [48] and Heidmann et al. [49]. Matsko and Vyatchanin considered QND measurements

of an arbitrary quadrature of light using a Mach-Zendher interferometer scheme rather than the

Fabry-Perot geometry used in the other proposals [50]. Any of these measurement schemes, if

achieved, would allow for observations of the �uctuations in intracavity photon number as a direct

consequence of the radiation pressure shot noise.
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Although no one has yet made a QND measurement of intracavity photon number using op-

tomechanical coupling, Verlot et al. have experimentally demonstrated a scheme which has all the

features necessary for a QND measurement [51]. So far they have performed the measurement by

adding classical noise to the laser in order to make the classical �uctuations in radiation pressure

larger than the thermal �uctuations.

Squeezing light and changing the RPSN

Some of the earliest work done in cavity optomechanics was in relation to the quantum limited

measurement of an interferometer [32], which immediately raises the question: is it possible to

do better than the standard quantum limit? The answer is yes. Injecting cavities with squeezed

light can allow measurements below the standard quantum limit [52�55]. Also, injecting non-linear

cavities with coherent states can result in squeezing in the outgoing beams [56, 57]. Any use of

an optomechanical system to produce squeezed light would represent both a measurement of the

RPSN, and a modi�cation of the quantum statistics of the light and hence the RPSN. It should be

noted that the cavity is not essential for squeezing. Heidmann and Reynaud showed that squeezing

also occurs for light re�ected from a harmonically bound mirror [58]. However, the e�ect can be

greatly enhanced by a cavity.

The key idea is that a cavity with a movable end mirror has an intensity-dependent optical path

length, just like a Kerr crystal. The earliest optomechanical nonlinearity was measured in 1983 by

Dorsel et al. [28, 59], where they demonstrated the Kerr nonlinearity in a classical steady state (i.e.

no dynamics) regime. Such a χ(3) nonlinearity is the essential ingredient for the squeezing of light

[60] and also for the QND photon number measurements discussed above.

1.6 This dissertation in relation to previous work

Many groups are working toward the observation of quantum e�ects in engineered mechanical

systems, including the optomechanical system discussed in this dissertation. Our optomechanical

system is composed of a 50 nm-thick silicon nitride (SiN) membrane used as a mechanical resonator,
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Figure 1.5: Membrane-in-the-middle cavity geometry used in this dissertation.

which is placed in a high-�nesse optical cavity as shown in Fig. 1.5. This membrane-in-the-middle

geometry can couple the intracavity photons with membrane motion as occurs in the cavity with a

movable end mirror (see Fig. 1.3). There are a variety of other optomechanical geometries involving

microtoroids [61], microspheres [62], nanostrings [38], microfabricated cantilevers and beams [63],

and larger scale systems like LIGO. All are approaching the quantum regime. Typically the most

signi�cant obstacle is coupling to the thermal phonon bath, which sets the initial phonon number

(for our membranes nth ≈ 106 − 107 at room temperature). Cryogenic and optical cooling schemes

are then employed to reduce the phonon number. The optical cooling in particular works best for

low loss resonators because T�nal/Tintial ≈ γopt/γ in the classical picture of laser cooling, so given the

same amount of optical coupling γopt, a lower damping γ resonator, will cool to a lower �nal e�ective

temperature T�nal. Also, the best cooling is achieved in the resolved sideband limit where the cavity

damping rate is much smaller than the mechanical resonant frequency κ� ωM which motivates low

loss optical resonators, and in general the cooling improves for stronger optomechanical couplings.

Low optical loss, low mechanical loss, and large optomechanical couplings are key experimental

factors

One way to approach to the quantum regime is to �rst cool the mechanical resonator to the

quantum ground state. An optical cavity requires no cooling because even at room temperature

the cavity is in the ground state (n̄thcav =
(
ekBT/~ωcav − 1

)−1 ≈ 3 × 10−20). Once the mechanical

resonator is in the ground state, purely quantum mechanical interactions between the resonator
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and the cavity photons can occur. This can cause entanglement, superposition states, and other

quantum phenomena (see Ch. 2). For example, when O'Connell et al. cooled their piezo-electric

resonator to the ground state, they were able to observe coherent interactions between the resonator

and a qubit [64].

Although quantum e�ects are easily revealed at optical frequencies, the same is not true for

the silicon nitride membrane resonators discussed in this thesis, which have resonant frequencies

of ωm < 2π × 1 MHz. At room temperature the phonon occupation numbers are about n̄th =

kBT/~ωm ∼ 107. In order to reach the ground state, a combination of traditional cryogenics (in

this case a 3He refrigerator) and laser cooling techniques is required. My Yale colleagues, Andrew

Jayich and Jack Sankey, are actively pursuing ground state cooling in this way.

This dissertation discusses an attempted measurement of the radiation pressure shot noise at

room temperature. The feasibility of the measurement seems promising, but the details are tricky.

In the most naive theory, we could estimate the ratio of the RPSN to the thermal forces using the

expressions for Sth
F and Ssn

F given in Eqs. 1.12 and 1.19

Ssn
F

Sth
F

=
8~PinF 2Q

πkBTcλmωm
(1.34)

where the incident laser has a power Pin and wavelength λ, the cavity has a �nesse F , and the

mechanical resonator has a mass m, resonant frequency ωM, and quality factor Q. Using actual

parameters for our optomechanical system, we estimate Ssn
F /S

th
F ∼ 0.1−1. However, Eq. 1.34 ignores

a variety of factors. For example, the re�ectivity of the silicon nitride membranes is much less than

one (typically R ≈ 0.1), optomechanical nonlinearities limit the maximum input power Pin, and

the cavity �lters the shot noise which is especially for �uctuations above the cavity linewidth κ. A

more realistic estimate is

Ssn
F

Sth
F

∼ 10−5 − 10−3 (1.35)

which means distinguishing the e�ects of the RPSN from the thermally driven motion will be

di�cult.
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Physical manifestations of the RPSN in our system

Measurement imprecision below the standard quantum limit

Even achieving this modest ratio of RPSN and thermal forces (Ssn
F /S

th
F . 10−3) implies we will be in

a regime where the measurement back action dominates the measurement imprecision (due to shot

noise), as in the work of Teufel et al. [36] and Anetsberger et al. [38] where Simp
x < SSQL

x < Ssn
x . If

our detection scheme was shot noise-limited (which it is not at present - see Chs. 4 and 5), then we

would also be in a position to make a position measurement with an imprecision below the standard

quantum limit (i.e. Simp
x < SSQL

x ). For our system, a typical imprecision is closer to

(
Simp
x

)1/2 ≈ 10−15 m/
√
Hz (1.36)

while the standard quantum limit on resonance is

(
SSQL
x

)1/2
=

~
mωmγ

≈ 3× 10−16 m/
√
Hz (1.37)

The additional noise in the imprecision is due to technical noise in the laser, ine�ciencies in the

detection optics, and noise in the photodiodes and electronics.

Although Teufel et al. [36] and Anetsberger et al. [38] achieved the impressive imprecision

below the standard quantum limit (i.e. where Simp
x < SSQL

x < Ssn
x ), their measurement error was

still dominated by thermal �uctuations Ssn
x � Sth

x . Furthermore, they did not have a means to

distinguish the dominant thermal �uctuations from those caused by RPSN. We have modi�ed the

QND photon number measurement scheme of Verlot et al. [51] to instead measure unique signatures

of the RPSN due to correlations in the left and right output beams from the cavity. Although our

displacement imprecision is not below the standard quantum limit, the scheme allows the RPSN

to be distinguished from sources of technical noise and thermal noise. This correlation scheme was

�rst worked out in detail theoretically by our Yale colleague Kjetil Børkje [4]. This dissertation will

discuss the theory (Chs. 2 and 3), apparatus (Ch. 4), and preliminary results (Ch. 5) associated

with this measurement scheme.
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RPSN as a limit to laser cooling

When considering Eq. 1.31,

n̄m =
γmn̄th + γoptn̄

O
m

γm + γopt
(1.38)

we see there are two contributions to the laser-cooled phonon number. The �rst is due to thermal

noise γmn̄th/ (γm + γopt); the second is due to the radiation pressure shot noise γoptn̄
O
m/ (γm + γopt).

When attempting to reach the quantum ground state through laser cooling, the radiation pres-

sure shot noise contribution should be larger than the thermal noise (γoptn̄
O
m � γmn̄th). We also

want the minimum achievable phonon number n̄Om � 1, although this is irrelevant if the only goal

is to observe the RPSN. The criteria for observing RPSN is to maximize the ratio

γoptn̄
O
m

γmn̄th
(1.39)

which in the bad-cavity limit (i.e. ω,∆� κ) becomes

γoptn̄
O
m

γmn̄th
=

8~PinF 2Q

πkBTcλmωm
(1.40)

This ratio is the same as Ssn
F /S

th
F given in Eq. 1.34. Since for realistic parameters this ratio is

γoptn̄
O
m

γmn̄th
. 10−3 (1.41)

RPSN will not set a limit on our laser cooling.

RPSN as a limit to the linewidth in the negative damping regime

The linewidth in the negative damping, blue-detuned regime as determined by Valhala [45] is

∆ωRS =
γ

2n̄c
(n̄th + 1) (1.42)

The γ/2n̄c term which remains as n̄th → 0 is the quantum correction due to RPSN. For our room

temperature resonators with n̄th ∼ 107, this quantum correction is only one part in 107. We have
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no way to observe such a small fractional change in linewidth in our current experiment.

RPSN heating of ultracold atomic gas

There are two key di�erences between the work described in this dissertation and that of Murch

et al. in Ref. [46]. First, in Ref. [46] the atoms are ultracold, signi�cantly reducing the e�ect of

thermal forces. Second the optomechanical coupling between the atoms and photons is enormous,

and nonlinear optomechanical e�ects can be seen with just a few intracavity photons. Consequently,

the shot noise �uctuations are fractionally very large. Our membrane-in-the-middle cavity requires

about 108 intracavity photons before similar nonlinear optomechanical behavior is observed.

RPSN and QND measurement schemes

The measurement scheme described and implemented in this dissertation is similar to the scheme

Verlot et al. have developed for demonstrating a QND measurement of intracavity photon number.

However, both our membrane-in-the-middle cavity and the system of Verlot et al. [51] are domi-

nated by thermal motion, so a QND measurement of intracavity photon number is not possible.

For simplicity our scheme employs one less input beam to the cavity, which prohibits a QND mea-

surement, but does still allow for observation of the RPSN [4]. The scheme also works for non-zero

detunings, in contrast to the scheme in Verlot et al. [51] which only works for zero detuning.
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Chapter 2

Basic theory of cavity optomechanics

Chapter 1 introduced the two key concepts of radiation pressure and shot noise and showed how

together they set a limit on the accuracy of an interferometric displacement measurement, known

as the standard quantum limit. The chapter went on to discuss how the radiation pressure shot

noise can manifest itself in a variety of ways, any of which would be a conclusive observation of

the RPSN. This chapter is concerned with radiation pressure shot noise in cavity optomechanical

systems and works through their theoretical description in a much more systematic form than was

given in Ch. 1. In one sense, everything in this chapter is entirely known in the literature, so my

goals are four-fold:

1. To derive the optomechanical equations of motion from a classical perspective that would be

familiar to an undergraduate taking classical mechanics and optics at the level of Hecht [65]

or Brooker [66].

2. To summarize the quantum equations of motion and the optomechanical frequency shift and

damping of a mechanical resonator.

3. To derive from the quantum equations of motion the forms of the radiation pressure shot noise

and thermal force noise.

4. To make a useful reference table of the key variables and equations in cavity optomechanics.
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I will �rst overview many existing results and future possibilities for cavity optomechanical systems.

Then the remainder of the chapter will focus on modeling our speci�c cavity optomechanical system,

and deriving key results which are used in the remainder of the dissertation.

2.1 Overview of cavity optomechanics

Cavity optomechanics is de�ned as the study of optical resonators coupled to mechanical resonators

via radiation pressure. The �rst cavity optomechanical systems were radiation pressure-driven

interferometers that were proposed as antennae for gravitational waves [32]. Other proposals for

quantum cavity optomechanics were already mentioned in Ch. 1, such as QND photon number

measurements [47�50] and squeezing light [56, 57, 60, 67]. There are also more exotic (and di�cult)

proposals: making QND phonon number measurements in dispersively coupled systems [39, 68, 69],

entangling an optical and mechanical resonator [70�72], entangling two mechanical resonators [73�

75], and creating superposition states of a mechanical resonator [76�79].

A precondition for many of the quantum optomechanical experiments is the ability to cool the

mechanical resonator to its quantum ground state. A combination of traditional cryogenics and

optical cooling methods has enabled a number of optomechanics groups to approach the ground

state with a mean phonon number n̄ ≈ 3−30 [62, 80�82], and it is expected that these systems will

soon achieve the ground state, including our own group at Yale.

The idea that radiation pressure could be used to damp the Brownian motion of a resonator

(i.e. cool the resonator) dates back to the work of Braginsky and colleagues in the late 1960s and

early 1970s [83, 84]. In 1998, Mancini et al. developed a fully quantum model of cooling which

used active feedback on the mechanical position via radiation pressure [85]. In 1999, Cohadon et

al. experimentally demonstrated an active feedback scheme and achieved laser cooling by a factor

of 20 [86]. Modern active feedback schemes have cooled a cantilever with a 30 µm diameter mirror

to 135 mK [87] and a 3 µm microsphere to 1.5 mK [88].

Braginsky's original proposal involved passive feedback by detuning the laser from resonance in

analogy with laser cooling of atoms. The �rst non-static and passive radiation pressure e�ect on a
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mechanical resonator was observed in 2004 by Sheard et al. [89]. They were able to observe a shift

in the resonant frequency of a harmonically bound mirror, but did not observe damping. Metzger

and Karrai observed passive cooling of a microlever by a factor of 15 due to a photo-thermal force

(not radiation pressure) [90]. Our group at Yale observed a similar photo-thermal cooling e�ect in

2006 and saw cooling by a factor of six [91]. Also, in 2006 a number of groups achieved success with

passive laser cooling by radiation pressure [63, 87, 92, 93], and our Yale group joined the crowd

in 2008, demonstrating passive cooling by a factor of 4.4 × 104 from room temperature to 7 mK

[39]. As it became apparent that these cooling schemes, when combined with cryogenics, would

likely reach the ground state, it became important to work out the quantum limits on the lowest

achievable phonon number. For passive optical cooling schemes the limit is set by radiation pressure

shot noise. A number of groups developed the theory [40, 42, 94], with one key result being that

ground state cooling requires the resolved sideband limit ωM � κ where the resonant frequency ωM

is much greater than the cavity decay rate (i.e. cavity linewidth) κ. The resolved sideband limit

requirement can be relaxed in certain cases like displacement-dependent coupling of the cavity [95].

Lastly, it should be noted that optical damping or similar techniques are not necessary for ground

state cooling if the resonator has a su�ciently high resonant frequency and is in a su�ciently cold

fridge. O'Connell et al. [64] cooled a 6 GHz piezoelectric resonator in a dilution fridge to a

temperature of 0.1 K and achieved a phonon number n̄ < 0.07. Furthermore they demonstrated

coherent energy exchange between the resonator and a quantum bit. Their progress represents the

�rst engineered mechanical system in the quantum regime.

In the remainder of this chapter, I will work out the optomechanical equations of motion and

use them to derive expressions for the optically induced mechanical frequency shift and damping.

I will also derive expressions for the radiation pressure shot noise.
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2.2 The most basic model: A cavity with one harmonically

bound end mirror.

The simplest model of an optomechanical system is a Fabry-Perot cavity where one of the end-

mirrors is harmonically bound. Examples of harmonically bound mirrors include mirrors suspended

by thin �bers as in LIGO cavities or small mirrors mounted on a microfabricated cantilever [87].

Alternatively the movable mirror could be the vibrational mode of the glass substrate on which the

mirror coating is deposited [51]. A general schematic is shown in Fig. 2.1. This system encompasses

all of the essential aspects of the radiation pressure shot noise measurement scheme described in

Ch. 3.

My goal in this chapter is to derive the key equations describing the system and also to include

a number of commonly used equations as a cheat sheet which may be useful for graduate students

who comes after me. Table 2.1 gives a minimal set of parameters needed to describe the system.

They are chosen because they are simple to understand, but they are certainly not the only choice of

parameters and often are not the most handy to use in calculations. Table 2.2 summarizes a variety

of alternative parameters which are also common and relates them to the minimal set in Table 2.1.

The relationships between the cavity decay rates κi and the mirror transmission coe�cients Ti are

derived in Sec. 2.3.2, but otherwise the relationships are not explained in any more detail.

2.3 Derivation of the cavity equation of motion from the steady-

state solution

2.3.1 Derivation of the steady-state �eld amplitudes

The goal of this section is to solve for the re�ected, intracavity, and transmitted �elds of the cavity

in a way similar to an introductory optics book such as Hecht's Optics [65] or Brooker's Modern

Classical Optics [66]. Figure 2.2 shows the basic schematic for the cavity. The cavity axis is assumed

to be along the z-axis with the left mirror at z = 0. The same set of basic parameters is used to
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Pin

Pcirc

Prefl

Ptrans

cavity length L

(r1, t1) (r2, t2)

mass m
freq. ωM

damping γ

Figure 2.1: Cavity with a harmonically bound end mirror. This is the canonical system in cavity
optomechanics. The Pi refer to the input, re�ected, circulating and transmitted laser power. The
(ri, ti) pair refers to the amplitude re�ection and transmission coe�cients for the end mirrors. The
mass m, resonant frequency ωM, and damping constant γ are given for the harmonically bound end
mirror.

MECHANICAL PARAMETERS

ωM 2π×mechanical resonant frequency of mirror
γ mechanical damping rate
m mass of the resonator

OPTICAL PARAMETERS

t1 amplitude transmission coe�cient, �xed mirror
r1 amplitude re�ection coe�cient, �xed mirror
t2 amplitude transmission coe�cient, movable mirror
r2 amplitude re�ection coe�cient, movable mirror
L cavity length
Pin power incident upon the cavity
λ laser wavelength

Table 2.1: Descriptions of the basic cavity optomechanical parameters. This is a (non-unique) mini-
mal set of parameters needed to describe the system. They are chosen because they are conceptually
simple, but they are not necessarily the easiest to measure or to include in the theory.
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MECHANICAL PARAMETERS

Q
Quality factor of mechanical
resonator

Q = ωm
γ

-

OPTICAL PARAMETERS Units

ωL laser wavelength ωL = 2π c
λ

ωL = ck s−1

k laser wave-number k = 2π/λ k = ωL/c m−1

ωC
cavity resonant frequency (for the
N -th empty cavity mode)

ωC = 2π c
2L
N ωC = 2πνFSRN s−1

∆ detuning ∆ = ωL − ωC s−1

Ri power re�ectivity for mirror i Ri = |ri|2 -

Ti power transmission for mirror i Ti = |ti|2 Ti = κiτ -

Ai power absorption for mirror i Ri + Ti + Ai = 1 -

AM
absorption via additional
intracavity loss

-

F
�nesse of cavity(
F ≡ Free spectral range in Hz

Full linewidth in Hz
= νFSR

κ/2π

)
F = π|r1rr|

1−|r1r2| F = πc
Lκ

=
πcτdecay

L
-

τ cavity round trip time τ = 2L
c

s

νFSR cavity free spectral range νFSR = c
2L

= 1
τ

Hz

κ cavity decay rate (energy or power) κ = κL + κM + κR κ = τ−1
decay s−1

κL,R
cavity decay rate from left or right
end mirrors

κL,R =
TL,R
τ

s−1

κM
cavity decay rate from mirror loss
AL,R or intracavity loss AM

κM = AL+AM+AR
τ

s−1

τdecay
power cavity decay time
Ptrans(t) = Ptrans(0)e−t/τdecay

τdecay = κ−1 s

Table 2.2: Table of derived parameters and the formulas which relate them. Note: Frequencies are
listed in Hz, while angular frequencies have units of s−1.
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E1(z,t)

cavity length L

(r1, t1) (r2, t2)

E2(z,t) E4(z,t)

E3(z,t) E5(z,t)

E6(z,t)

Figure 2.2: Cavity with a movable end mirror. The six electric �elds are shown which are used in
the steady state derivation for the cavity equations of motion.

describe the cavity as is given in Table 2.1. The transmission and re�ection coe�cients establish

relationships between the amplitudes of the six left- and right-going waves shown in Fig. 2.2.

The goal of this calculation is to solve for the intracavity electric �elds E3 and E4 in terms of

the incident �elds E1 and E6. This derivation treats the electric �elds as scalars, which is valid if

all the �elds share the same linear polarization; the vector nature of the �eld can then be ignored.

The electric �elds can be expressed as traveling waves with amplitudes Ai (note Ai is di�erent

than the mirror absorption coe�cient given in Table 2.2), laser frequency ωL = 2πc/λ, and wave

number k = 2π/λ = ωL/c

Ei(t, z) = Aie
−iωLteikz for i = 1, 3, 5 (Right-going waves) (2.1)

Ei(t, z) = Aie
−iωLte−ikz for i = 2, 4, 6 (Left-going waves) (2.2)

The convention for Fourier transforms in this dissertation is that E[ω] =
´ +∞
−∞ E(t)eiωt, so an electric

�eld with time dependence E(t) ∝ e−iωt corresponds to the frequency component E[ω]. It should

also be noted that the actual electric �elds are given by the real part Re ((E(t, z)).
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The input and output �elds of an end mirror can be related by a transfer matrix like

 E3(z = 0)

E2(z = 0)

 =

 t1 r′1

r1 t′1


 E1(z = 0)

E4(z = 0)

 (2.3)

The convention is that ti and ri are coe�cients for the right-going incident waves, and t
′
i and r

′
i are

coe�cients for the left-going incident waves. For lossless mirrors, the matrix must be unitary, and

one common convention is to write it as E3(z = 0)

E2(z = 0)

 =

 t1 −r1

r1 t1


 E1(z = 0)

E4(z = 0)

 (2.4)

where t1 and r1 are both real and positive. This is the convention used in this dissertation. In the

case of lossy end mirrors, the matrix is no longer unitary, but it turns out that the form of Eq. 2.4

with all real coe�cients is still acceptable. A full analysis of the constraints in choosing the mirror

coe�cients for a lossy mirror or beam splitter is given in Ref. [96].

A similar transfer equation relating the input and output �elds at the second mirror can be

written by evaluating the �elds at z = L. Again the convention is that t2 and r2 are both real and

positive.  E5(z = L)

E4(z = L)

 =

 t2 −r2

r2 t2


 E3(z = L)

E6(z = L)

 (2.5)

The input/output relations given in Eqs. 2.4 and 2.5 for the two mirrors can be rewritten in

terms of the �eld amplitudes A1, . . . , A6. The factors of e−iωLt are common to all the terms (see

Eqs. 2.1 and 2.2 ) and cancel out. The resulting set of four equations in terms of the amplitudes
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Ai is

A2 = −r1A1 + t1A4 (2.6)

A3 = t1A1 + r1A4 (2.7)

A4e
−ikL = r2A3e

ikL + t2A6e
−ikL (2.8)

A5e
ikL = t2A3e

ikL − r2A6e
−ikL (2.9)

Solving for the intracavity �elds A3 and A4 in terms of the input �elds A1 and A6 gives

A3 =
t1A1 + r1t2A6

1− r1r2e2ikL
(2.10)

A4 =
t1r2e

2ikLA1 + t2A6

1− r1r2e2ikL
(2.11)

Similarly, the outgoing �elds A2 and A5 become

A2 = −r1A1 + t1A4 (2.12)

A5 = t2A3 − r2A6e
−2ikL (2.13)

Next we take the high-re�ectivity (i.e. high-�nesse) limit so that r1 → 1 and r2 → 1. We de�ne

the resonant cavity length L0 and wave number k0 such that e2ik0L0 = 1. Then a cavity with an

arbitrary length L and wave number k is treated as a small perturbation from resonance: L = L0+δz

and k = k0 + δk. The intracavity �elds A3and A4, which become equal in the high-�nesse limit, are

then

A3 = A4 =
t1A1 + t2A6

1− |r1r2| e2ik0δze2iδkL0
(2.14)

where the second order term eizδk ≈ 1 is omitted. Similarly, the re�ected �elds in the high-�nesse
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limit are

A2 = −A1 + t1A4 (2.15)

A5 = −A6 + t2A3 (2.16)

Finally, to be consistent with the nomenclature used later in the full quantum mechanical derivation

and throughout this dissertation, the �elds are renamed as follows:

A3 = A4 = Acav (2.17)

A1 = Ain,L (2.18)

A6 = Ain,R (2.19)

A2 = Aout,L (2.20)

A5 = Aout,R (2.21)

The �nal set of equations is then

Acav =
t1Ain,L + t2Ain,R

1− |r1r2| e2ikze2iδkL0
(2.22)

Aout,L = −Ain,L + t1Acav (2.23)

Aout,R = −Ain,R + t2Acav (2.24)

Equations 2.22, 2.23, and 2.24 are the standard steady-state solutions for Fabry-Perot cavities.

Nearly identical expressions can be found in most optics textbooks. These standard expressions

will be used to derive the cavity equations of motion in the following section.
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2.3.2 From steady-state �elds to an equation of motion

Now we take the limit where the mirror displacement from resonance length is small relative to the

wavelength z � λ (i.e kz � 1), and the frequency shift from resonance is small compared to a

free spectral range of the cavity ∆ = cδk � c/2L (i.e. δkL0 � 1). This is the standard working

condition for these cavities. Equation 2.22 then becomes

Acav =
t1Ain,L + t2Ain,R

1− |r1r2| (1 + 2ik0z + 2iδkL0)
(2.25)

Recalling that this expression is only valid in the high-�nesse limit where re�ectivities are almost

unity |r1r2| ≈ 1 and expressing the wavenumbers in terms of frequencies k = ω0/c and δk =

(ω − ω0) /c, we get

Acav =
t1Ain,L + t2Ain,R

1− |r1r2| − 2iω0

c
z − 2iω−ω0

c
L0

(2.26)

Equation 2.26 is a steady-state solution for the intracavity �eld at a particular laser drive frequency

ωL = ω. This can also be thought of as the Fourier component of the intracavity �eld Acav → Acav[ω]

given the incident laser �elds Ain,L → Ain,L[ω] and Ain,R → Ain,R[ω]. Next we solve for −iωAcav[ω]

because −iωAcav[ω]→ dAcav(t)
dt

in the Fourier transform

−iωAcav[ω] =

(
−iω0 + i

ω0

L0

z − c

2L0

(1− |r1r2|)
)
Acav[ω] +

ct1
2L0

Ain,L[ω] +
ct2
2L0

Ain,R[ω] (2.27)

In the time domain this equation becomes

dAcav(t)

dt
=

(
−iω0 + i

ω0

L0

z − c

2L0

(1− |r1r2|)
)
Acav(t) +

ct1
2L0

Ain,L(t) +
ct2
2L0

Ain,R(t) (2.28)

Now we can make several simpli�cations to Eq. 2.28. First, 2L0/c is the cavity round trip time

τ . Second, the quantities (1− |r1r2|) /τ and ti/τ can be expressed in terms of cavity decay rates

κi. From Eq. 2.28 we see the amplitude cavity decay rate (which is de�ned as κ/2) is κ
2

= 1−|r1r2|
τ

.
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The numerator can be rewritten as

1− |r1r2| = 1−
√
R1R2 (2.29)

= 1−
√

(1− T1 − A1) (1− T2 − A2) (2.30)

≈ 1−
(

1− 1

2
T1 −

1

2
A1

)(
1− 1

2
T2 −

1

2
A2

)
(2.31)

≈ 1

2
(T1 + A1 + T2 + A2) (2.32)

where it should be noted that A1 and A2 are loss terms, and not cavity �eld amplitudes. Dividing

by the cavity round trip time τ gives

1− |r1r2|
τ

=
κ

2
=
T1

2τ
+
A1

2τ
+
T2

2τ
+
A2

2τ
(2.33)

We can associate a loss term with each of the left and right end mirrors, giving κL = T1
τ

and

κR = T2
τ
. The remainder of the absorption loss from the cavity is κM = A1+A2

τ
so κ = κL +κR +κM.

The coe�cients in front of the input �elds Ain.L and Ain.R then become t1/τ =
√
κL/τ and t2/τ =√

κR/τ .

Using these new parameters, Eq. 2.28 gives a tidy cavity equation of motion:

dAcav(t)

dt
=

(
−iω0 + i

ω0

L0

z − κ

2

)
Acav(t) +

√
κL
τ
Ain,L(t) +

√
κR
τ
Ain,R(t) (2.34)

At the beginning of this analysis I wasn't explicit about the units on the �eld amplitudes, but now

I would like to de�ne them to be the positive square roots of the powers in each of the traveling

waves. So

Ain,R =
√
Pin,R (2.35)

Ain,L =
√
Pin,L (2.36)

Ain,circ =
√
Pcirc (2.37)
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Now the stored energy in the cavity Ucav can be expressed as the product of the circulating power

and the cavity round trip time Ucav = Pcircτ . It is common to rescale the intracavity �eld by a factor

of
√
τ , so that the scaled �eld acav =

√
τAcav =

√
Ucav becomes the square root of energy stored in

the cavity, while the incident �elds remain square root of powers. The advantages of this scaling

are: (1) the cavity round trip time τ drops out of the equation; (2) the intracavity �eld, which is

really a standing wave, is more naturally thought of in terms of an energy; (3) the conversion from

intracavity �eld amplitude to photon number is straightforward; (4) the incident �eld, which is a

traveling wave, is more naturally thought of as a �ow of energy (power). Using the rescaled �eld,

Eq. 2.34 becomes

dacav(t)

dt
=

(
−iω0 + i

ω0

L0

z − κ

2

)
acav(t) +

√
κLAin,L(t) +

√
κRAin,R(t) (2.38)

At this point it should be noted that Eq. 2.38 describes the response of the intracavity �eld to

a �uctuating drive signal for a �xed cavity length L0 + z. It is then somewhat surprising (but true)

that the equation of motion is still valid for a cavity with small length �uctuations z � λ/2 as a

consequence of the adiabatic theorem. The small length �uctuation requirement ensures that only

one cavity mode is being driven. We then arrive at a cavity equation of motion which only di�ers

from Eq. 2.38 by z → z(t)

dacav(t)

dt
=

(
−iω0 + i

ω0

L0

z(t)− κ

2

)
acav(t) +

√
κLAin,L(t) +

√
κRAin,R(t) (2.39)

2.3.3 Applying the cavity equation of motion to other optomechanical

systems

In general, the equation of motion given in Eq. 2.39 can be applied to other optomechanical systems,

including the membrane-in-the-middle cavities used in this dissertation research. Equation 2.39 is

of the form ȧcav(t) = (−iω − κ/2) acav(t) + . . ., which shows that the cavity resonant frequency ω

obeys

ω = ω0 −
ω0

L0

z = ω0 −
∂ω

∂z
z (2.40)
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which is valid for a cavity with a movable end mirror. For the membrane-in-the-middle cavity and

other geometries, however, ∂ω/∂z 6= ω0/L0, and we write this more generally as

ω = ω0 + Az (2.41)

where A = ∂ω/∂z. This gives the �nal, most general cavity equation of motion:

dacav(t)

dt
=
(
−iω0 − iAz(t)−

(κL
2

+
κR
2

))
acav(t) +

√
κLAin,L(t) +

√
κRAin,R(t) (2.42)

2.3.4 Note: Why a single time varying number is su�cient to describe

the intracavity �eld

The electromagnetic �eld is described by a vector at each point in space. However, inside a perfectly

re�ecting cavity, the �eld can be decomposed into a discrete set of �eld modes. In most experiments

using optical cavities, it is common to consider only one of these cavity modes, ignoring the others.

For a �nite linewidth cavity ∆λ = c
∆ν

= c
νFSR/F

= 2LF , we see that the envelope in the waveform

resulting from all the wavengths can only change on a length scale of 2LF , which is a factor of

2F longer than the cavity. This means for high-�nesse cavities the �eld amplitude is spatially very

uniform throughout the cavity, and this amplitude changes on time scales 1/κ and longer. Thus even

though the intracavity �eld in general is described by an in�nite set of values, in the high-�nesse

limit a single time varying number is su�cient.

2.4 Di�erences between the movable end mirror and the membrane-

in-the-middle geometries

While the cavity geometry with a movable end mirror is conceptually simple and is used in some

optomechanical systems (LIGO for instance), at Yale we have focused our e�orts on �xed length

cavities with thin dielectric slabs in the middle as brie�y described in Sec. 1.6 and shown in Fig. 2.3.
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This is often called a membrane-in-the-middle geometry, or alternatively, a dispersively coupled

membrane and cavity.

2.4.1 Advantages of the membrane-in-the-middle geometry

In any optomechanical system, it is desirable to minimize the optical and mechanical losses and to

maximize the optomechanical coupling. The traditional cavity geometry with a movable end mirror

requires the same optical element to be both a high-re�ectivity mirror and a low-loss resonator.

This is di�cult to achieve, particularly for micromechanical and nanomechanical systems. Low

mechanical loss is most commonly achieved in simple mechanical resonators fabricated from a

single material, but the typical re�ectivity of a single layer of dielectric is very low. High-re�ectivity

mirrors are formed by stacking many layers of alternating dielectrics which increases the mechanical

loss of the element. The membrane-in-the-middle geometry is an attempt to avoid this trade-o�

between low mechanical loss and low optical loss by using separate optical elements for the high-

re�ectivity mirrors and the low-loss resonator. For our setup, the cavity end mirrors are stationary

and are commercially available high-�nesse cavity mirrors with �nesse F ∼ 2×104. The mechanical

element is a single slab of dielectric, which in our case is a very thin (∼ 50 nm), highly stressed

silicon nitride SI3N4 membrane. It is also commercially available and has a mechanical quality

factor Q ∼ 105 − 106 at room temperature.

2.4.2 Membrane-in-the-middle: Calculation of the steady-state intracav-

ity �elds and optomechanical coupling

The one-dimensional model shown in Fig. 2.3 consists of two cavity end mirrors with amplitude

re�ectivity r and transmission t. The two cavity mirrors are assumed identical in this derivation,

though the extension to unequal mirrors is straightforward. The dielectric membrane placed between

the two end mirrors has thickness Ld and index of refraction n. The complex-valued amplitude
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Ein(x,t)

Erefl(x,t)

Etrans(x,t)

Etrans(x,t)E1(x,t)

E2(x,t) E4(x,t)

E3(x,t)

(r, t) (r, t)

(r, t) (r, t)

cavity length L
membrane pos. x

cavity length L
membrane pos. x

(A)

(B)

Ein(x,t)

Erefl(x,t)

(rd, td)

(rd, td)

Figure 2.3: Membrane-in-the-middle cavity geometry. A membrane of thickness d has amplitude
re�ection and transmission coe�cients of rd and td, respectively. (A) represents the intracavity �eld
as a standing wave �eld, showing that the membrane's interaction with the intracavity �eld will be
periodic. (B) represents all the left- and right-going waves needed to describe the system in one
dimension.
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re�ection and transmission coe�cients for the dielectric membrane can be written as

rd =
(n2 − 1) sin knLd

2in cos knLd + (n2 + 1) sin knLd
(2.43)

td =
2n

2in cos knLd + (n2 + 1) sin knLd
(2.44)

The transmitted, re�ected, and intracavity �elds can be calculated by solving a system of equations,

as was done for the movable end mirror geometry in Sec. 2.3.1. The following brief derivation follows

Jayich et al. [97]. The electric �elds of incident frequency ω = kc can be expressed as traveling

waves Ei(x, t) = Aie
±ikxe−iωt, where +ikx is for the right-going waves and −ikx is for left-going

waves. The system of equations for the �eld amplitudes Ai is

A1 = itAin + rA2e
ikL1 (2.45)

A2 = rdA1e
ikL1 + itdA4e

ikL2 (2.46)

A3 = itdA1e
ikL1 + rdA4e

ikL2 (2.47)

A4 = rA3e
ikL2 (2.48)

Are� = itA2e
ikL1 + rAin (2.49)

Atrans = itA3e
ikL2 (2.50)

where L1 and L2 are the lengths of the left and right sides of the cavity (as divided by the membrane).

Note that this uses a di�erent convention for the mirror transfer matrix where

M =

 it r

r it

 (2.51)

and arg t = arg r.

We must solve the above system of equations in Eqs. 2.45 to 2.50 to obtain the variation in

the cavity resonant frequency with membrane position. This can then be used to calculate the

optomechanical coupling, which is proportional to ∂ωC/∂x. From Ref. [97] we �nd the change in
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cavity resonant frequency as a function of membrane position x to be

ωC(x) = νFSR

[
2φr + 2 cos−1

(
|rd| cos

(
2π

λ/2
x

))]
(2.52)

where rd is the complex amplitude re�ection coe�cient of the membrane given in Eq. 2.43, φr =

arg (rd), and νFSR = c/2L is the free spectral range of the cavity. A plot of the theoretical expression

for ωC(x) is shown in Fig. 2.4A; experimental data for one of our membrane-in-the-middle cavities

is shown in Fig. 2.4B. In the experimental data plot, it is possible to see other faint cavity resonance

curves, which represent higher order transverse cavity modes.

The slope of the cavity resonance ∂ωC/∂x has a particularly simple form in the limit |rd| � 1

because cos−1 x ≈ π
2
− x in this limit, which gives

ωC(x) ≈ νFSR

[
2φr + 2

(
π

2
− |rd| cos

(
2π

λ/2
x

))]
(2.53)

Then

∂ωC
∂x
≈ νFSR

4π

λ
|rd| sin

(
4π

λ
x

)
(2.54)

Note that νFSR
4π
λ

= 2πc/λL = ωL/L, which allows us to write

∂ωC
∂x
≈ ωL

L
|rd| sin

(
4π

λ
x

)
(2.55)

where ωL is the laser frequency. Recall from Eq. 2.40that for the cavity with a movable end mirror

∂ωC
∂x

= −ωL
L

(2.56)

By comparing Eqs. 2.55 and 2.56, we see that the maximum slope for the membrane-in-the-middle

geometry is smaller by a factor of |rd| sin
(

4π
λ
x
)
. Also the slope vanishes at the node and antinode

of the �elds, so there is no linear coupling at these points.
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Figure 2.4: (A) A plot of the theoretical variation in cavity resonance frequency ωC(x) as a function
of membrane position. The di�erent curves represent di�erent membrane re�ectivities. (B) A plot
of the cavity transmission for a scan of laser frequency and membrane position. Darker colors
correspond to a higher transmission. The darkest line represents the lowest order Gaussian cross-
section cavity mode. The dashed lines correspond to the empty cavity modes (i.e. a membrane
with zero re�ectivity).
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2.4.3 Other interesting attributes of the membrane-in-the-middle geom-

etry

As far as detecting the radiation pressure shot noise is concerned, the membrane-in-the-middle

cavity geometry is identical to the movable end mirror cavity, so long as the coupling is reduced

by |rd| sin
(

4π
λ
x
)
. However, for other cavity optomechanical experiments, the membrane-in-the-

middle geometry o�ers some unique advantages. First, the linear optomechanical coupling vanishes

at the node and antinode (i.e. ∂ωC/∂x = 0). At these points the coupling is purely quadratic,

and, given a membrane of su�ciently high re�ectivity, it should be possible to do a quantum non-

demolition measurement (QND) of the membrane phonon number [39, 97]. A single uniform layer

of dielectric will never achieve the necessary re�ectivities. However, a multilayer dielectric stack or

a photonic crystal patterning of the membrane [98] could achieve the required re�ectivities for the

QND measurement.

It is possible to create substantially larger quadratic couplings near membrane positions x where

di�erent cavity spatial modes have the same frequency. In general the crossings will be avoided if

there is a small coupling between the two cavity modes. This coupling between di�erent cavity spa-

tial modes can be tuned by changing the membrane's position and tilt within the cavity. Although

solving for all the spatial modes of a cavity in three dimensions, including the e�ect of membrane

tilt, is in general a computationally di�cult problem, the problem simpli�es in the limit of a low

membrane re�ectivity. The e�ect of the membrane can be calculated as a perturbation of the empty

cavity modes as shown by Sankey et al. in Ref. [69]. Furthermore, they experimentally demon-

strate the variation of the quadratic coupling strength with membrane tilt and position, and their

results show agreement with the perturbative theory [69]. The largest observed quadratic coupling

Ref. [69] was three orders of magnitude greater than the coupling at a node or antinode. While

this quadratic coupling is still not large enough to observe single jumps in the phonon number,

it should be possible to detect the phonon shot noise for a membrane that is driven into a large

phonon number coherent state [68, 69].
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2.5 Mechanical resonator's equation of motion in the high-Q

limit

After developing the equation of motion for the cavity from a classical perspective, we will do the

same for the mechanical equation of motion. In particular, we will derive an equation of motion

for the familiar simple harmonic oscillator, which is similar in form to the quantum equations of

motion. The usual quantum equations of motion involve the time evolution of the creation and

annihilation operators ĉ(t) and ĉ†(t) rather than the displacement x̂(t) .

The starting point is the standard equation of motion for a mechanical resonator with energy

damping rate γ, resonant frequency ω0, and mass m :

mẍ+mγẋ+mω2
Mx = F (t) (2.57)

This can be rewritten as two �rst order di�erential equations

ṗ = −γp−mω2
Mx+ F (t) (2.58)

ẋ = p/m (2.59)

The complex-valued oscillator amplitude, which is a classical version of the annihilation operator,

can be de�ned as

c(t) =

√
mωM

2~

(
x+

ip

mωM

)
(2.60)

The magnitude of c(t) is proportional to the square root of the oscillator's energy |c(t)| ∝
√
E,

and the phase of c(t) is the phase of the oscillator arg c(t) = φ. So c(t) can be interpreted as the

oscillator's phasor, which is rotating in time with a frequency ωM. The time derivative of c(t) is
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then

ċ(t) =

√
mωM

2~

(
ẋ+

iṗ

mωM

)
(2.61)

=

√
mωM

2~

(
p

m
+
i (F (t)− γp−mω2

Mx)

mωM

)
(2.62)

=

√
mωM

2~

(
p

m
− iωMx−

iγp

mωM
+ i

F (t)

mωM

)
(2.63)

= −iωMc(t)− γ
√
mωM

2~

(
iγp

mωM

)
+ i

F (t)√
2~mωM

(2.64)

= −iωMc(t)−
γ

2
c(t)− γ

2
c∗(t) + i

F (t)√
2~mωM

(2.65)

So far no approximations have been made. Invoking the high-Q approximation allows us to drop

the c∗(t) term. This is because c(t) �resonates� at a frequency +ωM and the γ
2
c∗(t) term looks like a

small driving force, but with a frequency of −ωM, which is detuned from this high-Q resonance by

2ωM � γ. Finally, we get an equation of motion which looks very similar to the quantum version

derived later in Eq. 2.70.

ċ(t) = −
(
iω0 +

γ

2

)
c(t) + i

F (t)√
2~mω0

(2.66)

In the cavity optomechanical system, the force F (t) contains contributions from the thermal force,

classical radiation pressure, and radiation pressure shot noise.

2.6 Derivation of the quantum equations of motion for a cou-

pled optical cavity and mechanical resonator

The classical derivations of the equations of motion are useful because they show the similarities

between the classical and quantum coupled optical and mechanical oscillators. However, a rigorous

treatment of the radiation pressure shot noise requires a fully quantum mechanical description of

the system. This section outlines derivation of the quantum mechanical equations of motion for the

coupled cavity and mechanical oscillators. The solution to the equation of motion is then worked

out in detail. The essential change from the classical theory is that the complex-valued amplitudes
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for the cavity �eld, acav(t), and mechanical oscillator, c(t), become operators â(t) and ĉ(t). Also, the

input �elds all contain additional �uctuations from the vacuum, which cause photon and phonon

shot noise.

The Hamiltonian formalism captures the physics in a straightforward way. The full Hamiltonian

of the optomechanical system includes the mechanical energy ~ωMĉ†ĉ, the intracavity �eld energy

~ωCâ†â, the coupling between the membrane motion and the �uctuations in the intracavity �eld

~Aẑ
(
â†â−

〈
â†â
〉)

, the coupling of the cavity photons to a bath of photons outside the cavity Ĥκ,

and the coupling of the membrane phonons to a bath of phonons Ĥγ:

Ĥ = ~ωMĉ†ĉ+ ~ (ωC + Aẑ)
(
â†â−

〈
â†â
〉)

+ Ĥκ + Ĥγ (2.67)

The bath of photons outside the cavity described by Ĥκ includes a thermal bath plus some modes

which are intentionally excited out of thermal equilibrium (i.e. a laser beam incident upon the

cavity). The mechanical resonator's bath described by Ĥγ only includes a thermal bath. The

coupling constant A is the slope of the cavity resonance

A ≡ ∂ωcav
∂z

(2.68)

The mechanical resonator's position is coupled to the �uctuations in photon number
(
â†â−

〈
â†â
〉)

because z = 0 is de�ned to be the equilibrium membrane position including the spring force and

the DC radiation pressure force. Adding the constant term −~ωC
〈
â†â
〉
to the Hamiltonian does

not change the equations of motion.

The equations of motion for the intracavity �eld and mechanical resonator which result from

the Hamiltonian in Eq. 2.67 are

˙̂a = −
(κ

2
+ iωC

)
â− iAẑâ+

√
κLâin,L +

√
κRâin,R +

√
κMâin,M (2.69)

˙̂c = −
(γ

2
+ iωM

)
ĉ− iA

(
â†â−

〈
â†â
〉)

+
√
γη̂ (2.70)

The derivation is fairly straightforward, and is given in wonderful detail in the supplemental mate-
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rials of Clerk et al. [34]. The original work by Gardiner and Collett on damped quantum systems

is also still very useful [99].

The cavity decay rates out of the left and right end mirrors are related to the mirror transmission

coe�cients by κL =
√
TL/τ and κR =

√
TR/τ . The κM term accounts for the intracavity loss and

end mirror absorption. Also, the cavity input terms âin,i all contain quantum noise in addition to

any �elds which are driven by a laser. Another important thing to note is that the input �elds

are normalized so that â†in,iâin,i is the number of incident photons per second, while the intracavity

�eld is normalized so that â†â is the number photons inside the cavity. More will be said about the

input �elds once we rewrite the equations in the rotating frame in the next subsection.

The mechanical resonator is driven by the �uctuation in radiation pressure in addition to a

thermal force η̂(t). The thermal force obeys the relations

〈
η̂(t)η̂†(t′)

〉
= (nth + 1) δ (t− t′) (2.71)〈

η̂†(t)η̂(t′)
〉

= nthδ (t− t′) (2.72)

where nth =
(
e~ωM/kBT − 1

)−1
is the thermal phonon occupation number. Note that when the

thermal force η̂(t) is the only force on the membrane, the number of phonons in the mechanical

mode will be
〈
ĉ†ĉ
〉

= nth.

The notation used throughout the dissertation for the quantum description is chosen to be

consistent with Børkje et al. [4], which contains all the theoretical results for the correlation

measurement scheme which is used to detect the RPSN.

2.6.1 Linearized cavity equations of motion in the rotating frame

The next step is to rewrite the cavity equation of motion (Eq. 2.69) in terms of small �uctuations

about the drive frequency ωL (i.e. in the frame rotating at ωL). The free evolution of the intracavity

�eld (in the absence of damping, driving, or modulation by mirror motion) has the simple solution

â(t) = â(0)e−iωLt
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By rewriting the �elds in the rotating frame it means we separate the time dependence due to

the free evolution of the �eld e−iωLt from the more interesting parts due to damping, driving, and

modulation by mirror motion. We rewrite the intracavity and incident �elds in the rotating frame

as

â(t) = e−iωLt
(
ā+ d̂(t)

)
(2.73)

âin,L(t) = e−iωLt
(
ain(t) + ξ̂L(t)

)
(2.74)

âin,i(t) = e−iωLtξ̂i(t), i = R,M (2.75)

The intracavity �eld in the rotating frame is now d̂(t) shown in Eq. 2.73, where d̂(t) contains all

the time dependence of the �eld except for the free evolution e−iωLt. The left input �eld âin,L(t) in

the rotating frame in Eq. 2.74 contains two contributions. The �rst is the classical part

ain(t) = ā0 + δx(t) + iδy(t)

where

ā0 =

√
Pin
~ωL

(2.76)

is the coherent state amplitude of the incident laser and δx(t) and δy(t) are the classical phase

and amplitude modulation noise in the laser, respectively. A phasor diagram of ain(t) is shown in

Fig. 2.5.

The second contribution to the left input �eld is the vacuum noise designated by ξ̂L(t). The

middle input �eld âin,M(t) given in Eq. 2.75 represents any absorption or scattering. It is a loss we

cannot couple back into or detect (unlike end mirror transmission loss), so âin,M(t) only contains the

vacuum �uctuations ξ̂M(t). The right input âin,R(t) also only contains vacuum �uctuations ξ̂R(t)

because our RPSN measurement scheme does not require we couple light via the right side of the

cavity.

In the steady state there are no �uctuations in the intracavity �eld or membrane position, so

d̂(t) = 0 and ẑ(t) = 0, and we ignore all the drive terms except for āin. Equation 2.69 then allows
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Rea0 δx(t)

iδy(t)
ain(t)

Im

Figure 2.5: A phasor diagram of the classical input �eld ain(t) = ā0 + δx(t)+ iδy(t) which is written
in in the rotating frame. Note that ā0, δx(t), and δy(t) are always assumed to be real valued. The
�uctuations δx(t) have the same phasor orientation as the mean amplitude ā0, which implies they
are amplitude �uctuations. Similarly the �uctuations iδy(t) have a phasor orientation orthogonal
to the mean amplitude ā0, which implies they are phase �uctuations.

us to solve for the mean cavity amplitude ā in terms of the mean incident power āin :

−iωLā = −
(κ

2
+ iωC

)
ā+
√
κLāin (2.77)

or

ā = 〈â〉 =

√
κL

κ
2
− i∆

āin (2.78)

Substituting Eqs. 2.73-2.75 into the equation of motion for the cavity, Eq. 2.69, gives

− iωL
(
ā+ d̂(t)

)
+

˙̂
d(t) = −

(κ
2

+ iωC

)(
ā+ d̂(t)

)
− iAẑ

(
ā+ d̂(t)

)
+
√
κL

(
ā0 + δx(t) + iδy(t) + ξ̂L(t)

)
+
√
κRξ̂R(t) +

√
κMξ̂M(t) (2.79)

Substituting in the steady state solution in Eq. 2.77 will make some terms vanish. If we linearize
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this equation of motion, we can drop the small term ẑ(t)d̂(t) because ẑ(t)d̂(t) � ẑā. Finally, we

obtain the linearized cavity equation of motion in the rotating frame

˙̂
d = −

(κ
2
− i∆

)
d̂− iαẑ +

√
κL

(
δx+ iδy + ξ̂L

)
+
√
κRξ̂R +

√
κMξ̂M (2.80)

where α = Aā is the optomechanical coupling and ∆ = ωL − ωC is the detuning.

2.6.2 Linearized mechanical equation of motion in the rotating (optical)

frame

When considering the mechanical equation of motion given in Eq. 2.70, the only term which needs

to be evaluated in the rotating optical frame and then linearized is â†â−
〈
â†â
〉
. First note that

â†â = e+iωDt
(
ā∗ + d̂†

)
e−iωDt

(
ā+ d̂

)
(2.81)

= |ā|2 + ā∗d̂+ ād̂† + d̂†d̂ (2.82)

By de�nition, d̂(t) represents only the �uctuating part of the intracavity �eld, so
〈
d̂(t)

〉
= 0 giving

â†â−
〈
â†â
〉

= |ā|2 + ā∗d̂+ ād̂† + d̂†d̂−
〈
|ā|2 + ā∗d̂+ ād̂† + d̂†d̂

〉
(2.83)

= ā∗d̂+ ād̂† + d̂†d̂−
〈
d̂†d̂
〉

(2.84)

≈ ā∗d̂+ ād̂† (2.85)

In the last step the linearized approximation is made, and we neglect the d̂†d̂ and
〈
d̂†d̂
〉
terms. The

mechanical equation of motion is then

˙̂c = −
(γ

2
+ iωM

)
ĉ− iA

(
ā∗d̂+ ād̂†

)
+
√
γη̂

= −
(γ

2
+ iωM

)
ĉ− i

(
α∗d̂+ αd̂†

)
+
√
γη̂ (2.86)
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where α = Aā.

2.6.3 Solution to cavity linearized equation of motion in the Fourier do-

main

Expressed in Fourier space, the linearized cavity equation of motion in the rotating (optical) frame

given in Eq. 2.80 becomes

− iωd̂[ω] = −
(κ

2
− i∆

)
d̂[ω]− iαẑ[ω] +

√
κL

(
δx[ω] + iδy[ω] + ξ̂L[ω]

)
+
√
κRξ̂R[ω] +

√
κMξ̂M[ω] (2.87)

Solving for d̂[ω] gives

d̂[ω] =
1

κ
2
− i (ω + ∆)

(2.88)

×
[
−iαẑ[ω] +

√
κL

(
δx[ω] + iδy[ω] + ξ̂L[ω]

)
+
√
κRξ̂R[ω] +

√
κMξ̂M[ω]

]
= −χC[ω]

(
iαẑ[ω]− ζ̂[ω]

)
(2.89)

where we de�ne the cavity susceptibility χC[ω] to be

χC[ω] =
1

κ
2
− i (ω + ∆)

(2.90)

The ζ̂[ω] term represents the classical and quantum noise which couples into the cavity and is

de�ned by

ζ̂[ω] =
√
κL

(
δx[ω] + iδy[ω] + ξ̂L[ω]

)
+
√
κRξ̂R[ω] +

√
κMξ̂M[ω] (2.91)

2.6.4 Solution to the mechanical equation of motion in the Fourier do-

main

Expressed in Fourier space, the mechanical equation of motion given in Eq. 2.86 becomes
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−iωĉ[ω] = −
(γ

2
+ iωM

)
ĉ[ω]− i

(
α∗d̂[ω] + αd̂†[ω]

)
+
√
γη̂[ω] (2.92)

This has a solution of

ĉ[ω] =
1

γ
2
− i (ω − ωM)

[
−i
(
α∗d̂[ω] + αd̂†[ω]

)
+
√
γη̂[ω]

]
(2.93)

= χM[ω]
[
−i
(
α∗d̂[ω] + αd̂†[ω]

)
+
√
γη̂[ω]

]
(2.94)

where the mechanical susceptibility χM[ω] is de�ned as

χM[ω] ≡ 1

γ/2− i (ω − ωM)
(2.95)

Equation 2.94 gives the solution for the mechanical annihilation operator ĉ[ω], but we really

want the solution for ẑ[ω] = ĉ[ω] + ĉ†[ω]. First we take the Hermitian conjugate of the mechanical

equation of motion in the time domain given by Eq. 2.86, which gives

˙̂c† = −
(γ

2
− iωM

)
ĉ† + i

(
αd̂† + α∗d̂

)
+
√
γη̂† (2.96)

In Fourier space this equation of motion becomes

−iωĉ†[ω] = −
(γ

2
− iωM

)
ĉ†[ω] + i

(
αd̂†[ω] + α∗d̂[ω]

)
+
√
γη̂†[ω] (2.97)

Solving for ĉ†[ω] gives

ĉ†[ω] =
1

γ
2
− i (ω + ωM)

[
i
(
αd̂†[ω] + α∗d̂[ω]

)
+
√
γη̂†[ω]

]
(2.98)

= χ∗M[−ω]
[
i
(
αd̂†[ω] + α∗d̂[ω]

)
+
√
γη̂†[ω]

]
(2.99)
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Then ẑ[ω] = ĉ[ω] + ĉ†[ω] becomes

ẑ[ω] = ĉ[ω] + ĉ†[ω] (2.100)

= χM[ω]
[
−i
(
α∗d̂[ω] + αd̂†[ω]

)
+
√
γη̂[ω]

]
+χ∗M[−ω]

[
i
(
αd̂†[ω] + α∗d̂[ω]

)
+
√
γη̂†[ω]

]
(2.101)

Both terms in Eq. 2.101 contain the expression α∗d̂[ω]+αd̂†[ω]. Rewriting d̂†[ω] in terms of incident

�elds and mechanical motion via Eq. 2.88 gives

α∗d̂[ω] + αd̂†[ω] = −α∗χC[ω]
(
iαẑ[ω]− ζ̂[ω]

)
+αχ∗C[−ω]

(
iα∗ẑ[ω] + ζ̂†[ω]

)
(2.102)

= i |α|2 ẑ[ω] (−χC[ω] + χ∗C[−ω])

+
(
α∗χC[ω]ζ̂[ω] + αχ∗C[−ω]ζ̂†[ω]

)
(2.103)

Substituting this into Eq. 2.101 gives

ẑ[ω] = χM[ω]

[
|α|2 ẑ[ω] (−χC[ω] + χ∗C[−ω])

−i
(
α∗χC[ω]ζ̂[ω] + αχ∗C[−ω]ζ̂†[ω]

)
+
√
γη̂[ω]

]
+ χ∗M[−ω]

[
− |α|2 ẑ[ω] (−χC[ω] + χ∗C[−ω])

+ i
(
α∗χC[ω]ζ̂[ω] + αχ∗C[−ω]ζ̂†[ω]

)
+
√
γη̂†[ω]

]
(2.104)

Collecting the ẑ[ω] terms gives

ẑ[ω]
[
1− |α|2 (−χC[ω] + χ∗C[−ω]) (χM[ω]− χ∗M[−ω])

]
=

− i (χM[ω]− χ∗M[−ω])
(
α∗χC[ω]ζ̂[ω] + αχ∗C[−ω]ζ̂†[ω]

)
+
√
γ
(
χM[ω]η̂[ω] + χ∗M[−ω]η̂†[ω]

)
(2.105)
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Now we solve for ẑ[ω] and multiply numerator and denominator by χM[ω]−1χ∗M[−ω]−1:

ẑ[ω] =

−i (χM[−ω]−1 − χM[ω]−1)
(
α∗χC[ω]ζ̂[ω] + αχ∗C[−ω]ζ̂†[ω]

)
χM[ω]−1χ∗M[−ω]−1 − |α|2 (−χC[ω] + χ∗C[−ω]) (χM[−ω]−1 − χM[ω]−1)

+

√
γ
(
χ∗M[−ω]−1η̂[ω] + χM[ω]−1η̂†[ω]

)
χM[ω]−1χ∗M[−ω]−1 − |α|2 (−χC[ω] + χ∗C[−ω]) (χM[−ω]−1 − χM[ω]−1)

(2.106)

Noting that

χ∗M[−ω]−1 − χM[ω]−1 = (γ/2 + i (−ω − ωM))− (γ/2− i (ω − ωM)) = −2iωM (2.107)

we get a slightly simpler form for ẑ[ω]:

ẑ[ω] =

−i (−2iωM)
(
α∗χC[ω]ζ̂[ω] + αχ∗C[−ω]ζ̂†[ω]

)
χM[ω]−1χ∗M[−ω]−1 − |α|2 (−χC[ω] + χ∗C[−ω]) (−2iωM)

+

√
γ
(
χ∗M[−ω]−1η̂[ω] + χM[ω]−1η̂†[ω]

)
χM[ω]−1χ∗M[−ω]−1 − |α|2 (−χC[ω] + χ∗C[−ω]) (−2iωM)

(2.108)

Lastly, we de�ne the functions

Σ[ω] = −i |α|2 (χC[ω]− χ∗C[−ω]) (2.109)

N [ω] = χM[ω]−1χ∗M[−ω]−1 + 2ωMΣ[ω] (2.110)

which gives a nice expression for the mechanical position

ẑ[ω] =
1

N [ω]

[√
γ
(
χ∗M[−ω]−1η̂[ω] + χM[ω]−1η̂†[ω]

)
− 2ωM

(
α∗χC[ω]ζ̂[ω] + αχ∗C[−ω]ζ̂†[ω]

)]
(2.111)
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2.7 Optical resonant frequency shift and optical damping

2.7.1 E�ective susceptibility of the resonator

Having the solution for the position �uctuations ẑ[ω] in terms of the drive forces allows us to

sensibly de�ne an e�ective mechanical susceptibility χM,e�[ω], which represents changes to the bare

susceptibility χM[ω] due to an optical spring and damping caused by radiation pressure. In order

to determine this e�ective optomechanical susceptibility, we consider only the �rst term in the

expression for ẑ[ω] given above in Eq. 2.111:

1

N [ω]

√
γ
(
χ∗M[−ω]−1η̂[ω]

)
=
χ∗M[−ω]−1

N [ω]

√
γη̂[ω] (2.112)

The
√
γη̂[ω] term is the Langevin force due to being coupled to a bath of phonons. The prefactor

is then the e�ective susceptibility of the resonator, which includes the modi�cations of the resonant

frequency and damping due to radiation pressure:

χM,e�[ω] ≡ χ∗M[−ω]−1

N [ω]
(2.113)

The remainder of this section is devoted to simplifying the e�ective susceptibility χM,e�[ω] given in

Eq. 2.113 and getting explicit formulas for the optical resonant frequency shift and optical damping.

First, expand out χM,e�[ω] in terms of ω's, γ, and Σ[ω]:

χM,e�[ω] =
1

N [ω]
χ∗M[−ω]−1 (2.114)

=

(
γ
2
− i (ω + ωM)

)(
γ
2
− i (ω + ωM)

) (
γ
2
− i (ω − ωM)

)
+ 2ωMΣ[ω]

(2.115)

=
1(

γ
2
− i (ω − ωM)

)
+ 2ωMΣ[ω]/

(
γ
2
− i (ω + ωM)

) (2.116)
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The inverse of the e�ective mechanical susceptibility can be rewritten as

χ−1
M,e�[ω] =

(γ
2

+ i (−ω + ωM)
)

+ 2ωMΣ[ω]/
(γ

2
− i (ω + ωM)

)
(2.117)

= χ−1
M [ω] + 2ωMΣ[ω]χ∗M[−ω] (2.118)

In the weak coupling limit where |γopt| � κ, ωM, χM,e�[ω] is very small except near ωM. Also,

over this small range of frequencies near ωM, Σ[ω] and χ∗M[−ω] can be treated as a constants where

Σ[ω] ≈ Σ[ωM] and χ∗M[−ωM] ≈ 1/(−2iωM). Then Eq. 2.117 becomes

χ−1
M,e�[ω] =

(γ
2

+ i (−ω + ωM)
)

+ iΣ[ωM] (2.119)

We can immediately write the radiation pressure induced frequency shift δωM and optical damping

γopt as

δωM = ReΣ[ωM] (2.120)

γopt = −2ImΣ[ωM] (2.121)

The e�ective mechanical resonant frequency ω̃M and e�ective damping γ̃M are

ω̃M = ωM + δωM (2.122)

γ̃ = γ + γopt (2.123)

A plot of the resonant frequency shift δωM and damping γopt due to the radiation pressure

is given in Fig. 2.6. Both the frequency shift δωM and damping γopt depend on the detuning

∆, but the qualitative nature of this relationship depends on the ratio of the cavity linewidth κ

and the mechanical resonant frequency ωM. If κ/ωM � 1, which is called the �good-cavity� or

�resolved sideband limit,� then there are distinct sharp features at ∆ = 0,±ωM. In particular,

the damping γopt has a maximum at ∆ = −ωM, indicating that this is the detuning for optimal

laser cooling. The other extreme limit, where the cavity linewidth greatly exceeds the mechanical
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resonance frequency κ/ωM � 1, is sometimes called the �bad-cavity limit.� In the bad-cavity limit

the frequency shift and damping are both proportional to the slope of the Lorentzian line shape of

the cavity δωM, γopt ∝ ∆/

(
1 +

(
∆
κ/2

)2
)
. This bad-cavity limit is the nearly-adiabatic limit that

was �rst observed and explained theoretically by Karrai et. al. The membrane-in-the-middle cavity

used for this dissertation has a ratio of κ/ωM ≈ 1.1 (the red curve in Fig. 2.6A and 2.6B), which is

in neither the good-cavity nor the bad-cavity limit.

2.7.2 Longer expressions for the frequency shift and optical damping

Before moving on to a discussion of the radiation pressure shot noise, it is convenient to have the

optical frequency shift δωM and γopt, given by Eqs. 2.120 and 2.121, written out explicitly in terms

of κ, ωM, and ∆. Inserting the de�nitions for Σ[ω] (Eq. 2.109) and χC[ω] (Eq. 2.90) into Eq. 2.120

for δωM and Eq. 2.121 for γoptand performing some algebra gives

δωM = ReΣ[ωM] (2.124)

= Re
[
−i |α|2 (χC[ωM]− χ∗C[−ωM])

]
(2.125)

= Re

[
−i |α|2

(
1

κ
2
− i (ωM + ∆)

− 1
κ
2

+ i (−ωM + ∆)

)]
(2.126)

= Re

[
−i |α|2

(
κ
2

+ i (ωM + ∆)(
κ
2

)2
+ (ωM + ∆)2

−
κ
2
− i (−ωM + ∆)(

κ
2

)2
+ (−ωM + ∆)2

)]
(2.127)

= |α|2
(

ωM + ∆(
κ
2

)2
+ (ωM + ∆)2

+
−ωM + ∆(

κ
2

)2
+ (−ωM + ∆)2

)
(2.128)

and

γopt = −2ImΣ[ωM] (2.129)

= −2Im

[
−i |α|2

(
κ
2

+ i (ωM + ∆)(
κ
2

)2
+ (ωM + ∆)2

−
κ
2
− i (−ωM + ∆)(

κ
2

)2
+ (−ωM + ∆)2

)]
(2.130)

= 2 |α|2 κ
2

(
1(

κ
2

)2
+ (ωM + ∆)2

− 1(
κ
2

)2
+ (−ωM + ∆)2

)
(2.131)
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Figure 2.6: Plots of the radiation pressure induced changes to the mechanical resonant frequency
δωM (in subplots A and C) and damping γopt (in subplots B and D). The 3D subplots in C and
D show the transition from the resolved sideband regime κ/ωM = 0.1 to the non-resolved sideband
regime κ/ωM = 3.0. Only the cavity damping rate κ and the detuning ∆ are varied. All other
parameters are held constant. The magnitude of the optomechanical coupling which can be varied
by changing the incident power Pin and the slope ∂ωcsv/∂z acts as a vertical scaling factor for the
curves, but otherwise does not change the shape.
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The magnitude of the optomechanical coupling strength |α| is given by

|α|2 = |ā|2A2 (2.132)

=
κL |ain|2(
κ
2

)2
+ ∆2

∣∣∣∣∂ωcav∂z

∣∣∣∣2 (2.133)

=
κL

Pin
~ωL(

κ
2

)2
+ ∆2

x2
zpt

∣∣∣∣∂ωcav∂z̃

∣∣∣∣2 (2.134)

=
κL(

κ
2

)2
+ ∆2

Pin
~ωL

~
2mωM

∣∣∣∣∂ωcav∂z̃

∣∣∣∣2 (2.135)

The mean intracavity �eld ā is given in Eq. 2.78, and the coupling constant A = ∂ωcav/∂z was

de�ned in Eq. 2.68. The input �eld strength |ain|2 = Pin/~ωL is the number of photons incident on

the cavity per second and was de�ned in Eq. 2.76. The position z̃ = xzptz has been rescaled by the

zero point �uctuation displacement xzpt to convert the position back into length units, rather than

the unitless scaled position ẑ = ĉ+ ĉ†.

2.8 Derivation of the position power spectral density Sz[ω]

Calculating the position power spectral density Sz[ω] gives us an easy way to interpret equations of

the form Sz[ω] = χM,e�[ω]
(
Sth
F [ω] + Ssn

F [ω]
)
. It also allows us to pick out the force power spectral

densities for RPSN Ssn
F [ω] and the thermal force Sth

F [ω].

The solution for ẑ[ω] in Eq. 2.101 can be rewritten in terms of the e�ective susceptibility

χM,e�[ω] = χ∗M[−ω]−1/N [ω] given in Eq. 2.113:

ẑ[ω] =
1

N [ω]

[
√
γ
(
χ∗M[−ω]−1η̂[ω] + χM[ω]−1η̂†[ω]

)
−2ωM

(
α∗χC[ω]ζ̂[ω] + αχ∗C[−ω]ζ̂†[ω]

)]
(2.136)

= χM,e�[ω]
[√

γη̂[ω]− χ∗M[−ω]
(

2ωMα
∗χC[ω]ζ̂[ω]

)]
+χ∗M,e�[−ω]

[√
γη̂†[ω]− χM[ω]−1

(
2ωMαχ

∗
C[−ω]ζ̂†[ω]

)]
(2.137)

= χM,e�[ω]
[√

γη̂[ω]− iα∗χC[ω]ζ̂[ω]
]

+ χ∗M,e�[−ω]
[√

γη̂†[ω] + iαχ∗C[−ω]ζ̂†[ω]
]
(2.138)
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In the last step we used the fact that in the high-Q approximation, only frequencies near ωM are

considered, and χ∗M[−ω] and χM[ω]−1 are approximately constant near ω = +ωM:

χ∗M[−ωM] =
1

γ
2
− i (ωM + ωM)

≈ i

2ωM
(2.139)

χ∗M[−ωM] =
1

γ
2
− i (ωM + ωM)

≈ i

2ωM
(2.140)

Comparing Eq. 2.138 to ẑ[ω] = ĉ[ω] + ĉ†[ω] , we see that

ĉ[ω] = χM,e�[ω]
[√

γη̂[ω]− iα∗χC[ω]ζ̂[ω]
]

(2.141)

ĉ†[ω] = χ∗M,e�[−ω]
[√

γη̂†[ω] + iαχ∗C[−ω]ζ̂†[ω]
]

(2.142)

Next, the de�nition of the power spectral density is given by

Sz[ω] =
1

4π

ˆ ∞
−∞

dω′ 〈{ẑ[ω], ẑ[ω′]}〉 (2.143)

=
1

2π

ˆ ∞
−∞

dω′ 〈ẑ[ω]ẑ[ω′]〉 (2.144)

=
1

2π

ˆ ∞
−∞

dω′
〈(
ĉ[ω] + ĉ†[ω]

) (
ĉ[ω′] + ĉ†[ω′]

)〉
(2.145)

=
1

2π

ˆ ∞
−∞

dω′
〈
ĉ[ω]ĉ†[ω′] + ĉ†[ω]ĉ[ω′]

〉
(2.146)

The anticommutator in Eq. 2.143 becomes a factor of two because ẑ[ω] = ĉ[ω] + ĉ†[ω] is Hermitian.
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The terms 〈ĉ[ω]ĉ[ω′]〉 and
〈
ĉ†[ω]ĉ†[ω′]

〉
are both zero. The remaining terms become

1

2π

ˆ ∞
−∞

dω′
〈
ĉ[ω]ĉ†[ω′]

〉
=

1

2π

ˆ ∞
−∞

dω′

〈
χM,e�[ω]

[√
γη̂[ω]− iα∗χC[ω]ζ̂[ω]

]
×χ∗M,e�[−ω′]

[√
γη̂†[ω′] + iαχ∗C[−ω′]ζ̂†[ω′]

]〉
(2.147)

=
1

2π

ˆ ∞
−∞

dω′χM,e�[ω]χ∗M,e�[−ω′][
γ
〈
η̂[ω]η̂†[ω′]

〉
+ |α|2 χC[ω]χ∗C[−ω′]

〈
ζ̂[ω]ζ̂†[ω′]

〉]
(2.148)

=
1

2π

ˆ ∞
−∞

dω′χM,e�[ω]χ∗M,e�[−ω′][
γ (nth + 1) 2πδ (ω + ω′) + |α|2 χC[ω]χ∗C[−ω′]κ2πδ (ω + ω′)

]
(2.149)

=
1

2π
χ∗M,e�[ω]χM,e�[ω]

[
2πγ (nth + 1) + 2πκ |α|2 χC[ω]χ∗C[ω]

]
(2.150)

= |χM,e�[ω]|2
[
γ (nth + 1) + κ |α|2 |χC[ω]|2

]
(2.151)

and

1

2π

ˆ ∞
−∞

dω′
〈
ĉ†[ω]ĉ[ω′]

〉
=

1

2π

ˆ ∞
−∞

dω′

〈
χ∗M,e�[−ω]

[√
γη̂†[ω] + iαχ∗C[−ω]ζ̂†[ω′]

]
×χM,e�[ω′]

[√
γη̂[ω′]− iα∗χC[ω′]ζ̂[ω]

]〉
(2.152)

=
1

2π

ˆ ∞
−∞

dω′χ∗M,e�[−ω]χM,e�[ω′]

×
[
γ
〈
η̂†[ω]η̂[ω′]

〉
+ |α|2 χ∗C[−ω]χC[ω′]

〈
ζ̂†[ω]ζ̂[ω′]

〉]
(2.153)

=
1

2π

ˆ ∞
−∞

dω′χ∗M,e�[−ω]χM,e�[ω′]][
γ (nth) 2πδ (ω + ω′) + |α|2 χ∗C[−ω]χC[ω′]κ2πδ (ω + ω′)

]
(2.154)

=
1

2π
χ∗M,e�[−ω]χM,e�[−ω]

[
2πγnth + 2πκ |α|2 χC[−ω]χ∗C[−ω]

]
(2.155)

= |χM,e�[−ω]|2
[
γnth + κ |α|2 |χC[−ω]|2

]
(2.156)

The full expression for the power spectral density of the position �uctuations Sz[ω] due to the RPSN
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and thermal force is then

Sz[ω] = |χM,e�[ω]|2
[
γ (nth + 1) + κ |α|2 |χC[ω]|2

]
+ |χM,e�[−ω]|2

[
γnth + κ |α|2 |χC[−ω]|2

]
(2.157)

where the classical (thermal) and quantum Langevin force noise is

Sth
F [ω] = γ

(
nth +

1

2

)
(2.158)

and the radiation pressure shot noise is

Ssn
F [ω] = κ |α|2 |χC[ω]|2 (2.159)

2.9 Radiation pressure shot noise as a limit to laser cooling

The expression for Sz[ω] given in Eq. 2.157 can be used to derive the laser cooling limit due to

RPSN. First we rewrite Sz[ω] in terms of an e�ective damping and phonon number:

Sz[ω] = |χM,e�[ω]|2 [γ̃ (n̄M + 1)] + |χM,e�[−ω]|2 [γ̃n̄M] (2.160)

where γ̃ = γ + γopt is the e�ective damping constant and n̄M is the �nal phonon number. Then the

ratio of (n̄M + 1) /n̄M is found by comparing Eqs. 2.160 and 2.157

n̄M + 1

n̄M
=
γ (nth + 1) + κ |α|2 |χC[ω]|2

γnth + κ |α|2 |χC[−ω]|2
(2.161)

Solving for n̄M gives

n̄M =
γnth + κ |α|2 |χC[−ω]|2

γ + κ |α|2
[
|χC[ωM]|2 − |χC[−ωM]|2

] (2.162)

Next we note that the optical damping γopt given in Eq. 2.131 can be written as

γopt = κ |α|2
(
|χC[ωM]|2 − |χC[−ωM]|2

)
(2.163)
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which gives

n̄M =
γnth + κ |α|2 |χC[−ω]|2

γ + γopt
(2.164)

In the limit of large optical damping γopt � γ the phonon number approaches the limit

n̄M → κ |α|2 |χC[−ω]|2

γopt
(2.165)

=
κ |α|2 |χC[−ω]|2

κ |α|2
[
|χC[ω]|2 − |χC[−ω]|2

] (2.166)

=
(ωM + ∆)2 +

(
κ
2

)2

−4ωM∆
(2.167)

We de�ne this minimum phonon number to be

n̄OM =

[
(ωM + ∆)2 +

(κ
2

)2
]
/ (−4ωM∆) (2.168)

In general , n̄OM is minimized when the laser is detuned to the negative sideband ∆ = −ωM. In this

special case

n̄OM =

(
κ

4ωM

)2

(2.169)

It is clear that to make the phonon number arbitrarily small we need ωM � κ (i.e. the resolved

sideband limit), but even for κ = ωM the minimum phonon number is n̄OM = 1
16
� 1. Thus it is

seen that the limit on minimum phonon number is a result of the additional random force on the

mechanical resonator due to the RPSN, Ssn
F = κ |α|2 |χC[ω]|2.
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2.10 Ratio of the radiation pressure shot noise and thermal

force

The ratio of the radiation pressure shot noise and thermal force can now be written using the force

power spectral densities Sth
F [ω] and Ssn

F [ω] given in Eqs. 2.158 and 2.159:

Ssn
F [ω]

Sth
F [ω]

=
κ |α|2 |χC[ω]|2

γ (nth + 1)
(2.170)

where |α|2 is given in Eq. 2.135, and we have used

|χC[ω]|2 =
1

(ω + ∆)2 + (κ/2)2 (2.171)

and

nth =
[
e~ωM/kBT − 1

]−1
(2.172)

Next we consider the ratio in two special cases. The �rst case is when the laser is on resonance

(∆ = 0) and the membrane motion is slow compared to the cavity decay rate (i.e. ω � κ). This

was the intuitive limit considered in the initial discussion of the RPSN in Sec. 1.6. The second limit

is for arbitrary detuning ∆ but only considering force �uctuations near the mechanical resonant

frequency ω ≈ ωM, which is the frequency range where most of the mechanical motion occurs. This

second limit of ω ≈ ωM is the one relevant to our experimental setup, as we will see later on.

2.10.1 Special case of on resonance ∆ = 0 and slow �uctuations ω � κ

We now want to simplify Eq. 2.170 in order to recover Eq. 1.34 given in the introductory chapter:

Ssn
F

Sth
F

=
8~PinF 2Q

πkBTcλmωm
(2.173)

This requires the following list of assumptions:

1. On resonance detuning ∆ = 0, which maximizes the radiation pressure shot noise.
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2. A lossless and symmetric cavity so that κL = κR = κ/2 and κM = 0.

3. Low frequency �uctuations ω � κ.

4. A hot membrane kBT � ~ωM so that nth =
[
e~ωM/kBT − 1

]−1 ≈ kBT/~ωM � 1.

5. The end mirror is the mechanical oscillator so that
∣∣∂ωcav

∂z̃

∣∣ = ωL
L

= 2πc
λL

.

Applying assumptions 1, 2, and 3 to the de�nition of χC[ω] (Eq. 2.90) gives

|χC[0]|2 =

(
2

κ

)2

(2.174)

Applying assumptions 1, 2, and 5 to the optomechanical coupling strength α = āA gives

|α|2 =
2

κ

Pin
~ωL

~
2mωM

(ωL
L

)2

(2.175)

Then

Ssn
F [0]

Sth
F [0]

=
κ |α|2 |χC[0]|2

γ
(
nth + 1

2

) (2.176)

=
4~PinωMωL

γmωMκ2L2kBT
(2.177)

Lastly, using γ = ωM/Q, ωL = 2πc/λ, and κ = πc/LF we recover Eq. 1.34:

[
Ssn
F [0]

Sth
F [0]

]
LL,sym,∆=0

≡ 8~PinF 2Q

πkBTcλmωM
(2.178)

The subscript LL,sym,∆ = 0 refers to a lossless, symmetric, on resonance cavity.

2.10.2 Special case of ω ≈ ωM

We now want to simplify Eq. 2.170 given a less restrictive set of assumptions:

1. Arbitrary detuning ∆.

2. The cavity is not lossless and symmetric.
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3. We are only looking at low frequency �uctuations so ω ≈ ωM.

4. The membrane is hot (kBT � ~ωM) so that nth =
[
e~ωM/kBT − 1

]−1 ≈ kBT/~ωM � 1.

5.
∣∣∂ωcav

∂z̃

∣∣ = β ωL
L

where β ≤ 1 (for our membranes β ≈ 0.3).

Then Eq. 2.170 becomes

Ssn
F [ωM]

Sth
F [ωM]

=
κ |α|2 |χC[ωM]|2

γ
(
nth + 1

2

) (2.179)

= κ

(
κL(

κ
2

)2
+ ∆2

Pin
~ωL

~
2mωM

∣∣∣∣∂ωcav∂z̃

∣∣∣∣2
)(

1(
κ
2

)2
+ (∆ + ωM)2

)(
1

γ

)(
~ωM
kBT

)
(2.180)

De�ning β through the equation
∣∣∂ωcav

∂z̃

∣∣ = β ωL
L
, and using the same change of variables: γ = ωM/Q,

ωL = 2πc/λ, and κ = πc/LF gives

Ssn
F [ωM]

Sth
F [ωM]

=

 1

1 +
(

∆
κ/2

)2


 1

1 +
(

∆+ωM
κ/2

)2

( κL
κ/2

)
β2 8~PinF 2Q

πmωMcλkBT
(2.181)

which simpli�es to

Ssn
F [ωM]

Sth
F [ωM]

=

 1

1 +
(

∆
κ/2

)2


 1

1 +
(

∆+ωM
κ/2

)2

( κL
κ/2

)
β2

[
Ssn
F [0]

Sth
F [0]

]
LL,sym,∆=0

(2.182)

We see that the more relevant experimental result of the ratio of force noises near the mechanical

resonance is a scaling of Eq. 2.178 for a lossless, symmetric cavity with a movable end mirror. The

prefactor

(
1 +

(
∆
κ/2

)2
)−1

is due to the reduced coupling into the cavity for non-zero detuning. The

prefactor

(
1 +

(
∆+ωM
κ/2

)2
)−1

accounts for passive �ltering of �uctuations due to the �nite cavity

linewidth (which is a larger e�ect in the resolved sideband limit). The prefactor
(
κL
κ/2

)
accounts for

potentially non-symmetric and lossy cavities ( κL
κ/2

= 1 for lossless symmetric cavities). Lastly, the

prefactor β2 < 1 accounts for e�ects like �nite membrane re�ectivity and the position dependence

of the slope ∂ωcav/∂z.
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Figure 2.7 shows the e�ect of detuning ∆ and cavity decay rate κ on the ratio of the RPSN and

thermal force Ssn
F [ωM]/Sth

F [ωM]. The ∆ and κ dependence is given by

Ssn
F [ωM]

Sth
F [ωM]

∝

 1

1 +
(

∆
κ/2

)2


 1

1 +
(

∆+ωM
κ/2

)2

κ2 (2.183)

It might be naively supposed that an increase in �nesse is always bene�cial for improving the ratio

Ssn
F [ωM]/Sth

F [ωM] because the radiation pressure force is multiplied by the �nesse. However, this

bene�t is canceled out by the cavity �ltering of the �uctuations around ωM � κ which drives

the mechanical motion. Figure 2.7 shows that the ratio reaches a maximum when κ = ωM. Any

subsequent improvement in �nesse will cause narrower peaks in the RPSN, but will not increase the

overall magnitude. This suggests that κ ≈ ωM is a reasonable choice for the cavity optomechanical

system.

Although the RPSN at the mechanical resonant frequency ωM does not increase with �nesse once

the resolved sideband limit is reached (κ� ωM), there may be other advantages to designing a setup

for the resolved sideband regime in the future. The �rst advantage of the resolved sideband regime

is that the stronger optomechanical damping could make the membrane dynamics more stable. In

this dissertation most of the data was taken close to zero detuning which means small perturbations

in the membrane position pushed the membrane into a blue detuned optical heating regime. Optical

heating would be less likely to happen if the mean laser detuning was far from resonance (such as

∆ = −ωM for optimal cooling). Second advantage is that as the cavity linewidth becomes smaller

than the e�ective mechanical linewidth (κ < γe� = γ + γopt) the frequency spectrum of the RPSN

is no longer constant over the mechanical linewidth, which distinguishes it from the white thermal

force. The power spectral density of the membrane's motion will no longer look Lorentzian, and

this distortion could be a means to convincingly observe the RPSN.
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Figure 2.7: Ratio of RPSN to thermal force noise. The series of plots show that as κ decreases
(�nesse increases) there is no increase in the ratio beyond κ = ωM.

2.10.3 Power spectral densities in SI units

It is useful to rewrite the force and position noises in SI units for comparison with the standard

formulas for the Langevin force. The resonator position ẑ = ĉ+ ĉ† is unitless, and to return it to SI

units we should multiply it by xzpt, the zero point motion. The tilde used below denotes quantities

converted into SI units:

z̃ = xzptz =

√
~

2mω
z (2.184)

The power spectral density is like z[ω]2 so it scales by x2
zpt:

S̃z[ω] = x2
zptSz[ω] (2.185)

The mechanical susceptibility and force power spectral density scales as follows:

χ̃M[ω] =
i

2ωM
χM[ω] (2.186)
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S̃F [ω] = 2m~ωMSF [ω] (2.187)

The familiar power spectral density for the single-sided thermal force S̃th
F is then

S̃th
F [ω] = 2m~ωMSth

F (2.188)

= 2m~ωMγ
(
nth +

1

2

)
(2.189)

= 2mγkBT (2.190)

where in the last line we used the relation kBT ≈ ~ωMnth, which is a very accurate approximation

in the limit nth � 1.

2.11 Useful formulas for the noise terms η[ω] and ξi[ω]

For completeness, here are the expectation values of the correlations between the di�erent noise

sources in the Fourier domain:

〈
η̂[ω]η̂†[ω′]

〉
= (nth + 1) 2πδ (ω + ω′) (2.191)

〈
η̂†[ω]η̂[ω′]

〉
= nth2πδ (ω + ω′) (2.192)〈

ξ̂i[ω]ξ̂†i [ω
′]
〉

= (nc + 1) 2πδ (ω + ω′) (2.193)

where ncis the cavity thermal photon number nC = [e~ω/kBT − 1]−1.
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Chapter 3

Correlation scheme to measure the

radiation pressure shot noise

3.1 Introduction

Observation of the radiation pressure shot noise (RPSN), which can be equivalently thought of

as the quantum back action of an interferometric displacement measurement, is a major goal for

cavity optomechanics, and is the primary goal of this dissertation research. The shot noise in the

beam incident upon the cavity drives mechanical �uctuations in the harmonically bound mirror via

radiation pressure. One straightforward way to measure the RPSN would be to observe correlations

between the intensity �uctuations (shot noise) in the incident beam and the random �uctuations

in the displacement of the mechanical resonator. Heidmann et al. [49] describe such a scheme

using two optical beams. The strong signal beam induces �uctuations in the mechanical oscillator,

while a weaker meter beam measures the position �uctuations of the oscillator. If the beams are

both exactly on resonance, the signal beam intensity and meter beam phase quadrature will have

correlations due to RPSN alone (thermal e�ects go to zero for long averaging times).

The idea presented by Heidmann et al. was experimentally tested in the classical domain by

Verlot et al. [51], who added classical amplitude noise to the signal beam using an electro-optic

modulator. The classical amplitude modulation was essential in order to have a correlation dom-
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Figure 3.1: Radiation pressure shot noise measurement scheme developed by Børkje et al. [4]. The
scheme involves a single beam incident upon the cavity. The correlation will be calculated between
an arbitrary quadrature of the re�ected �eld YθL [ω] and the transmitted amplitude quadrature
Xφ[ω].

inated by �uctuations in the radiation pressure, and not by thermally driven Brownian motion.

Correlations due to the smaller quantum shot noise were not observed.

The scheme described in this chapter was developed by our Yale colleague Kjetil Børkje [4] and

is shown in Fig. 3.1. It is distinguished from that of Heidmann et al. in three ways. First, our

scheme only relies on one beam, and the correlations are between the re�ected and transmitted

beams. Second, the scheme works both at zero detuning and at �nite detunings. Third, a speci�c

quadrature of the re�ected beam (the quadrature angle depends on detuning) must be measured,

rather than the phase quadrature. This chapter will build on the optomechanical model given in

Ch. 2 and will review the key theoretical results of the scheme from Børkje et al. Chapter 4 will

discuss how the correlation scheme was experimentally implemented.
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3.2 Correlation scheme on resonance

3.2.1 The basic idea for classical amplitude noise input on the cavity

The basic idea behind the scheme of Heidmann et al. (see Ref. [49]) can be illustrated by considering

the e�ect of classical amplitude noise δx(t) when the incident beam is on resonance with the cavity

(∆ = 0). On resonance, the linear response of the transmitted intensity to membrane motion

vanishes, so to �rst order the transmitted beam carries no information about the membrane motion.

The re�ected phase (as measured using Pound-Drever-Hall (PDH) locking for instance [33]) is very

sensitive to the �uctuations in mirror position z(t), but is totally insensitive to the amplitude

�uctuations in the incident beam δx(t). Thus we can measure the intracavity radiation pressure

F sn(t) ∝ δItrans ∝ δx(t) and independently measure the resonator's displacement z(t) (e.g. using

the PDH error signal). Any correlations between δx(t) and z(t) are due to the radiation pressure.

Next I follow Børkje et al. and review the full quantum treatment of the correlation measurement

and its generalization to �nite detuning.

3.2.2 Expected form for the RPSN-induced correlation

I now introduce δXφ(t) ∝ δItrans(t) for the transmitted intensity quadrature (φ denotes amplitude

quadrature as opposed to some other arbitrary quadrature of the transmitted �eld). I also introduce

δYθL(t) for an arbitrary quadrature of the left-side re�ected beam. At zero detuning, the interesting

signature of �uctuations in radiation pressure comes from the real part of the correlation between

the transmitted intensity iδXφ(t) ∝ F sn(t) and the re�ected phase Yφ+π/2(t) ∝ z(t). Thermal e�ects

average to zero in this correlation because at zero detuning there is no lowest order contribution

to the transmission �uctuations δXφ(t) caused by thermally driven position �uctuations. In the
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frequency domain, the correlation can be expressed as

Re (F sn[ω]z∗[ω]) ∝ Re
(
δXφ[ω]δY ∗π/2[ω]

)
∝ Re

(
δXφ[ω]

(
−iχ∗M[ω]δX∗φ[ω]

))
∝ |δXφ[ω]|2 Re

(
−i

γ
2

+ i (ω − ωM)

)
= |δXφ[ω]|2 − (ω − ωM)(

γ
2

)2
+ (ω − ωM)2

(3.1)

where the mechanical susceptibility χM[ω] connects the position and force �uctuations

z[ω] = χM[−ω]F sn[ω] ∝ iχM[−ω]δXφ[ω] (3.2)

and Eq. 2.86 shows the origin of the imaginary i in F sn(t) ∝ iδXφ(t). Figure 3.2 is a plot of the real

part of the correlation given by Eq. 3.1. The amplitude noise δXφ[ω] is assumed to be white noise

over the narrow range of frequencies around the mechanical resonance. The correlation is seen to

be purely antisymmetric.

3.2.3 De�nition of arbitrary quadratures of transmitted and re�ected

beams

A calculation of the correlation which is useful for non-zero detuning, and which includes both

classical and quantum noise, requires that we detect arbitrary quadratures of the transmitted and

re�ected beams. The arbitrary quadratures of the transmitted and re�ected beams are a general-

ization of the expressions for the transmitted intensity. The out-going �elds from the cavity are the

sum of the part which leaks out through the end mirror and the promptly re�ected part:

âout,R(t) =
√
κRâ(t)− âin,R(t) (3.3)

âout,L(t) =
√
κLâ(t)− âin,L(t) (3.4)
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Figure 3.2: Plot of the correlation between the transmitted intensity �uctuations and re�ected
phase given in Eq. 3.1. The laser is assumed to be on resonance (∆ = 0) and only noise considered
is classical amplitude noise on the laser. The vertical axis scale is normalized to have a maximum
correlation of one.

We can rewrite these output �elds in terms of �uctuations in a rotating frame:

âout,i(t) = e−iωDt
(
āout,i + d̂out,i(t)

)
(3.5)

The �uctuations in the output �elds in the rotating frame d̂out,R(t) and d̂out,L(t) are given by

d̂out,R(t) =
√
κRd̂(t)− ξ̂R(t) (3.6)

d̂out,L(t) =
√
κLd̂(t)−

(
δx(t) + iδy(t) + ξ̂L(t)

)
(3.7)

The The cavity is only driven from the left side, so there is classical and vacuum noise in d̂out,L(t)

(Eq. 3.7), but only vacuum noise in d̂out,R(t) (Eq. 3.6).

In order to motivate the expression for an arbitrary quadrature of the re�ected �eld, we �rst

calculate the �uctuations in the transmitted intensity Itrans(t) = â†out,R(t)âout,R(t) by substituting in
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Eqs. 3.5 and 3.6 for âout,R(t) and only keeping �uctuations �rst order in d̂out,R(t) to obtain δItrans(t):

δItrans(t) = κR

(
ād̂†(t) + ā∗d̂(t)

)
−
√
κR

(
āξ̂†R(t) + ā∗ξ̂R(t)

)
=
√
κR

(
ā∗d̂out,R(t) + ād̂†out,R(t)

)
(3.8)

where ā = 〈â〉 =
√
κL

κ
2
−i∆ āin is given in Eq. 2.78. Equation 3.8 can be generalized to an arbitrary

quadrature of the transmitted beam δXθR(t) and the re�ected beam δYθL(t):

δX̂θR(t) = e−iθR d̂out,R(t) + eiθR d̂†out,R(t) (3.9)

δŶθL(t) = e−iθL d̂out,L(t) + eiθL d̂†out,L(t) (3.10)

where θL and θR are the quadrature angles. Comparing the expression for δItrans(t) in Eq. 3.8 with

the arbitrary amplitude quadrature in Eq. 3.9 we see that the transmitted intensity quadrature is

θR = arg ā = arctan 2∆
κ
≡ φ. The phase φ is de�ned to be the phase shift of the intracavity beam

relative to the incident beam:

φ = arctan
2∆

κ
(3.11)

3.2.4 Transmitted intensity quadrature on resonance using the quantum

formulation

I now want to show that the two claims made in Sec. 3.2.1 about the transmitted intensity (i.e. that

δItrans[ω] is a measure of the radiation pressure �uctuations, and that δItrans[ω] doesn't contain any

signal from the Brownian motion) are consistent with a fully quantum mechanical calculation of

δItrans(t). First, we need to express δItrans(t) in terms of the solution for d̂[ω] given in Eq. 2.88:

d̂[ω] = χC[ω]
(
iαẑ[ω]− ζ̂[ω]

)
(3.12)
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Then Eq. 3.8 for δItrans[ω] becomes

δItrans[ω] =
√
κR

(
ā∗d̂out,R[ω] + ād̂†out,R[ω]

)
(3.13)

=
√
κR

(
ā∗
(√

κRd̂[ω]− ξ̂R[ω]
)

+ ā
(√

κRd̂
†[ω]− ξ̂†R[ω]

))
(3.14)

=
√
κRā

∗
(√

κRχC[ω]
(
−iαẑ[ω] + ζ̂[ω]

)
− ξ̂R[ω]

)
+
√
κRā

(√
κRχ

∗
C[−ω]

(
iα∗ẑ[ω] + ζ̂†[ω]

)
− ξ̂†R[ω]

)
(3.15)

=
√
κR
√
κR (−iā∗αχC[ω] + iāα∗χ∗C[−ω]) ẑ[ω]

+
√
κR

(√
κRā

∗χC[ω]ζ̂[ω]− ā∗ξ̂R[ω] +
√
κRāχ

∗
C[−ω]ζ̂†[ω]− ā∗ξ̂†R[ω]

)
(3.16)

When on resonance (∆ = 0) the mean intracavity �eld ā is real and equal to

ā =

√
κL

κ/2
āin (3.17)

Also, the optomechanical coupling α = āA is real. The cavity susceptibility (when ∆ = 0) simpli�es

to

χC[ω] =
1

κ
2
− iω

(3.18)

and in this special case χC[ω] = χ∗C[−ω]. Applying these simpli�cations to Eq. 3.16 gives

δItrans[ω] =
√
κR

[(√
κRāχC[ω]

(
ζ̂[ω] + ζ̂†[ω]

)
− ā

(
ξ̂R[ω] + ξ̂†R[ω]

))]
(3.19)

where the term containing
(
ζ̂[ω] + ζ̂†[ω]

)
is proportional to the intracavity intensity �uctuations

and hence the force F (t). The second term −ā
(
ξ̂R[ω] + ξ̂†R[ω]

)
is proportional to the intensity

�uctuations in the right side incident beam. Notice, as expected, the �uctuations in the membrane

position ẑ[ω] vanish on resonance so transmission contains no evidence of the thermally driven

Brownian motion.
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3.2.5 Re�ected phase quadrature on resonance using the quantum for-

mulation

I now want to show that the two claims made in Sec. 3.2.1 about the re�ected phase measurement

(i.e. δYφ+π/2(t) ∝ z(t) and δYφ+π/2(t) does not contain any information about the radiation pressure

�uctuations) are consistent with a fully quantum mechanical calculation of δYφ+π/2(t) . We need to

express δYφ+π/2(t) in terms of the solution for d̂[ω] given in Eq. 2.88:

d̂out,L(t) =
√
κRd̂(t)−

(
δx(t) + iδy(t) + ξ̂L(t)

)
(3.20)

For ∆ = 0 and θL = π/2 , we have φ = 0, and the quadrature Yπ/2[ω] will be

δYφ+π/2(t) = e−i
π
2 d̂out,L(t) + ei

π
2 d̂†out,L(t) (3.21)

= −id̂out,L(t) + id̂†out,L(t) (3.22)

= −i
[√

κLd̂(t)−
(
δx(t) + iδy(t) + ξ̂L(t)

)]
+i
[√

κLd̂
†(t)−

(
δx(t)− iδy(t) + ξ̂†L(t)

)]
(3.23)

= i
√
κL

(
−d̂(t) + d̂†(t)

)
+ 2δy(t)− iξ̂L(t) + iξ̂†L(t) (3.24)

Changing this expression into the frequency domain and substituting in the solution for d̂[ω]

(Eq. 2.88) gives

δYφ+π/2[ω] = i
√
κL

(
χC[ω]

(
iαẑ[ω]− ζ̂[ω]

)
+ χ∗C[−ω]

(
iα∗ẑ[ω] + ζ̂†[ω]

))
+2δy[ω]− iξ̂L[ω],+iξ̂†L[ω] (3.25)

= i
√
κLχC[ω]

(
2iαẑ[ω] +

(
−ζ̂[ω] + ζ̂†[ω]

))
+ 2δy[ω]− iξ̂L[ω],+iξ̂†L[ω] (3.26)

We can see that the re�ected phase quadrature contains a signal proportional to the position ẑ[ω],

the classical phase noise δy[ω], and the incident vacuum noise ξ̂L[ω] and ξ̂R[ω]. The question

naturally arises: When will the signal from the position �uctuations ẑ[ω] (which are induced by

radiation pressure �uctuations) be bigger than the shot noise contribution from ξ̂L[ω] and ξ̂R[ω]?
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These two sources of �uctuations are exactly the back action noise term (due to RPSN) and shot

noise term which are involved in the discussion of the standard quantum limit in Sec. 1.3. Since

the RPSN part is proportional to the coupling strength α ∝
√
Pin, we can rephrase this question

and ask, �At what incident power will the signal from the position �uctuations be bigger than the

shot noise contribution?� These two sources of �uctuations become equal at a particular power

Pin = PSQL when the total measurement imprecision is minimized. For input powers exceeding the

standard quantum limit power (Pin > PSQL), the RPSN term (i.e. measurement back-action) will

dominate.

3.3 Non-zero detuning correlation scheme

Two are two nice things about the zero detuning correlation scheme described in Sec. 3.2. First,

for long time averages the symmetric contribution to the thermally-driven Brownian motion does

not contribute to the real part of the correlation. Second, the antisymmetric form of the RPSN

correlation is distinct from the symmetric contribution of the Brownian motion. It is reasonable

to ask if the same advantages exist for a correlation between re�ected and transmitted beams at

non-zero detuning. The answer is: sort of. A choice of re�ected quadrature θL and transmitted

quadrature θR can always be found which makes the correlation due to Brownian motion vanish.

However, the second advantage, that the RPSN signal is purely antisymmetric, is a condition only

sometimes met. Børkje derives a �gure of merit for the �antisymmetric-ness� of the RPSN signal,

which is given below in Eq. 3.61.

3.3.1 Derivation of the critical angle θC

A short derivation of the conditions which make the thermal contribution to the correlation vanish

is given below. We start by assuming the transmitted quadrature is always the intensity quadrature

θR = φ . We then seek the re�ected quadrature θL which causes the real part of the contribution of

the Brownian motion to vanish. We de�ne this special choice of θL to be θC, the critical angle.

Assume the laser incident upon the cavity is noiseless. The only �uctuations in the transmitted
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�eld δXθR [ω] and re�ected �eld δYθL [ω] are then caused by the mechanical resonator's motion z[ω].

Also, both quadratures are proportional to the intracavity �uctuations via the end mirror coupling

constants
√
κL and

√
κR, so it is su�cient to consider the correlation between two arbitrary quadra-

tures of the intracavity �eld, rather than transmission and re�ection. An arbitrary quadrature of

the intracavity �eld is de�ned by

Zθ[ω] = e−iθd[ω] + eiθd†[ω] (3.27)

where Zφ[ω] is the intracavity amplitude �uctuation quadrature, and Zφ+π/2[ω] is the intracavity

phase quadrature. Ignoring all the input �uctuations ζ̂[ω] and only considering the e�ect of the

mechanical displacement ẑ[ω], we obtain the solutions for d̂[ω] and d̂†[ω] (from Eq. 3.12):

d[ω] = −χC[ω] (iαz[ω]) (3.28)

d†[ω] = χ∗C[−ω] (iα∗z[ω]) (3.29)

The intensity quadrature occurs at the angle φ = arg ā . Then

Zφ[ω] = e−iφd[ω] + eiφd†[ω] (3.30)

= D (−χC[ω] + χ∗C[−ω]) z[ω] (3.31)

= 2iD
−∆(

κ
2

)2 − ω2 + ∆2 − iκω
z[ω] (3.32)

where eiφ = ā
|ā| and

D = iαe−iφ = iAā
ā∗

|ā|
= iA |ā| (3.33)

A similar expression can be derived for the intracavity phase quadrature Zφ+π/2[ω]:

Zφ+π/2[ω] = e−i(φ+π/2)d[ω] + ei(φ+π/2)d†[ω] (3.34)

= D (iχC[ω] + iχ∗C[−ω]) z[ω] (3.35)

= 2iD
κ
2
− iω(

κ
2

)2 − ω2 + ∆2 − iκω
z[ω] (3.36)
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An arbitrary quadrature of the intracavity �eld at θ = φ+ θ′ is then given by

Zφ[ω] = e−i(φ+θ′)d[ω] + ei(φ+θ′)d†[ω] (3.37)

= cos θ′X[ω] + sin θ′Y [ω] (3.38)

= 2iD
−∆ cos θ′ +

(
κ
2
− iω

)
sin θ′(

κ
2

)2 − ω2 + ∆2 − iκω
z[ω] (3.39)

Lastly, the correlation between the amplitude quadrature Zφ[ω] and the arbitrary quadrature

Zφ+θ′ [ω] is

Zφ[ω]Z∗φ+θ′ [ω] =
4 |D|2 ∆∣∣∣(κ2)2 − ω2 + ∆2 − iκω

∣∣∣2
(

∆ cos θ′ −
(κ

2
+ iω

)
sin θ′

)
|z[ω]|2 (3.40)

While there is no choice of θ′ which makes the |z[ω]|2 contribution vanish, it is possible to make the

real part of the correlation vanish. Re
(
Z[ω]Z∗φ+θ′ [ω]

)
vanishes when

∆ cos θ′ − κ

2
sin θ′ = 0 (3.41)

or

θ′ = arctan
2∆

κ
= φ (3.42)

We then de�ne the critical quadrature to be this choice of quadrature that causes the thermal

contribution to the correlation to be purely imaginary:

θC = φ+ θ′ (3.43)

= 2φ (3.44)

= 2 arctan
2∆

κ
(3.45)

where θ′ is from Eq. 3.42.
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3.4 A full expression for the correlation between δX̂φ[ω] and

δŶθL[ω]

The simple expression for the correlation given in Eq. 3.40 neglects the classical and quantum noise

in the incident beams. In order to make sense of the various contributions to the correlation, it is

helpful to express the re�ected quadrature δŶθL [ω] and the transmitted quadrature δX̂φ[ω] in terms

of the mechanical displacement ẑ[ω] and the input �elds to the cavity δx[ω], δy[ω], and ξ̂i[ω]:

δŶθL [ω] = e−iθL d̂out,L[ω] + eiθL d̂†out,L[ω] (3.46)

= e−iθL
[√

κLd̂[ω]−
(
δx[ω] + iδy[ω] + ξ̂L[ω]

)]
+eiθL

[√
κLd̂

†[ω]−
(
δx[ω]− iδy[ω] + ξ̂†L[ω]

)]
(3.47)

= e−iθL
[
−
√
κLχC[ω]

(
iαẑ[ω]− ζ̂[ω]

)
− δx[ω]− iδy[ω]− ξ̂L[ω]

]
+eiθL

[√
κLχ

∗
C[−ω]

(
iα∗ẑ[ω]− ζ̂†[ω]

)
− δx[ω] + iδy[ω]− ξ̂†L[ω]

]
(3.48)

where d̂out,L[ω] comes from Eq. 3.7 and the solution for d̂[ω] is given by Eq. 3.12. The expression for

the transmitted amplitude quadrature δX̂φ is similar, except that there is no classical noise incident

on the right side of the cavity

δX̂φ[ω] = e−iφd̂out,R[ω] + eiφd̂†out,R[ω] (3.49)

= e−iθR
[
−
√
κRχC[ω]

(
iαẑ[ω]− ζ̂[ω]

)
− ξ̂R[ω]

]
+eiθR

[√
κRχ

∗
C[−ω]

(
iα∗ẑ[ω]− ζ̂†[ω]

)
− ξ̂†R[ω]

]
(3.50)

The expression for the correlation in the frequency domain [4] is then

S[ω] =
1

4π

ˆ ∞
−∞

dω′ 〈{δXθR [ω], δYθL [ω′]}〉 (3.51)
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The entire correlation can be expressed in terms of correlations between pairs of the various input

�uctuations: ξL[ω], ξM[ω], ξR[ω], δx[ω], δy[ω], and η̂[ω] and their complex conjugates. The noise

sources are assumed to be totally uncorrelated, so all of the cross-correlations vanish. For example,〈
ξ̂L[ω]ξ̂†M[ω′]

〉
= 0. The six expectation values for the self-correlations between noise sources are:

〈
ξ̂j[ω]ξ̂†j [ω

′]
〉

=
1

2π
δ(ω + ω′) for j ∈ {L, M, R} (3.52)〈

ξ̂†j [ω]ξ̂j[ω
′]
〉

= 0 for j ∈ {L, M, R} (3.53)〈
η̂[ω]η̂†[ω′]

〉
=

1

2π
(nth + 1)δ(ω + ω′) (3.54)〈

η̂†[ω]η̂[ω′]
〉

=
1

2π
nthδ(ω + ω′) (3.55)

〈δx[ω]δx[ω′]〉 =
1

2π
CXδ(ω + ω′) (3.56)

〈δy[ω]δy[ω′]〉 =
1

2π
CY δ(ω + ω′) (3.57)

Given these six self-correlations in Eqs. 3.52-3.57, we can explicitly write an expression for the

correlation S[ω] given in Eq. 3.51. However, there are many terms to be collected and made sense

of, so for tidy expressions I defer to those already published in Børkje et al. [4].

3.5 Key results from Børkje et al.

The �rst step taken by Børkje in simplifying the long expression for the integrand in Eq. 3.51

〈δXθR [ω]δYθL [ω′]〉 is to separate it into di�erent contributions according to the source of �uctuations:

〈δXθR [ω]δYθL [ω′]〉 = 〈δXθR [ω]δYθL [ω′]〉q,q + 〈δXθR [ω]δYθL [ω′]〉cl,cl + 〈δXθR [ω]δYθL [ω′]〉q,z

+ 〈δXθR [ω]δYθL [ω′]〉cl,z + 〈δXθR [ω]δYθL [ω′]〉z,z (3.58)

The label �q� refers to quantum �elds ξj[ω], �cl� refers to classical �eld δx[ω] and δy[ω], and �z�

refers to the position ẑ[ω]. A description of each of the terms in Eq. 3.58 follows:

� 〈δXθR [ω]δYθL [ω′]〉q,q is the vanishing correlation between the shot noise in the two quadratures.

This includes terms like
〈
ξ̂j[ω]ξ̂†j [ω

′]
〉
, but does not include the additional correlations resulting
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from the position being driven by radiation pressure. It is a general fact that when a coherent

state is incident upon a beam splitter, the outputs are uncorrelated. Our cavity is a just

beam splitter whose transmission-re�ection split depends on frequency. Thus the �q,q� term

vanishes for any choice of θL.

� 〈δXθR [ω]δYθL [ω′]〉q,z is the correlation between shot noise and the resulting �uctuations in

mechanical displacement ẑ[ω] due to the RPSN. Similar to the �q,q� term, it involves terms

like
〈
ξ̂j[ω]ξ̂†j [ω

′]
〉
, but they are scaled by the mechanical susceptibility and the optomechanical

coupling α. This is the term of interest which is due to the RPSN.

� 〈δXθR [ω]δYθL [ω′]〉cl,cl is the correlation between classical noise in the two quadratures and

involves terms like 〈δx[ω]δx[ω′]〉 and 〈δy[ω]δy[ω′]〉. When classical noise is incident upon a

beam splitter (like our cavity) the outputs are correlated, so this term does not vanish.

� 〈δXθR [ω]δYθL [ω′]〉cl,z is the correlation between classical laser �uctuations and the resulting

�uctuations in mechanical displacement ẑ[ω]. Similar to the �cl,cl� term, it involves terms like

〈δx[ω]δx[ω′]〉 and 〈δy[ω]δy[ω′]〉, but they are scaled by the mechanical susceptibility and the

optomechanical coupling α.

� 〈δXθR [ω]δYθL [ω′]〉z,z is the correlation between the mechanical displacement ẑ[ω] in the two

quadratures. It involves terms like 〈ẑ[ω]ẑ[ω′]〉, which are further reducible into terms due to

shot noise, classical laser noise, and thermal noise. The thermal contribution to this �z,z� term

can be very large compared to the RPSN signal contained in the �q,z� term.

The quantity which is measured in the lab is the symmetrized correlation S[ω] given in Eq. 3.51.

S[ω] can then be split up into the same terms depending on the source of the �uctuations:

S[ω] = Sq,z[ω] + Scl,cl[ω] + Scl,z[ω] + Sz,z[ω] (3.59)

Again, there would be a Sq,q[ω] term but it is identically zero in the limit of in�nite measurement

times.
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Finally, we denote the real part of the correlation by R[ω] = Re S[ω]. The same notation is

used for the sub-terms such as Rq,z[ω] = Re Sq,z[ω].

3.6 Plots near zero detuning

Figure 3.3 shows the di�erent components of the correlation R[ω] = Rq,z[ω] + Rcl,cl[ω] + Rcl,z[ω] +

Rz,z[ω] when the laser is very close to zero detuning. The plots were generated using the parameters

from our experimental system. Here is a list of key observations from Fig. 3.3:

� The real part of the correlation due to RPSN Rq,z[ω] is antisymmetric, which distinguishes it

from the classical laser noise and thermal e�ects.

� Even for a very small detuning ∆ = −2π × 1.0 Hz the contribution due to Brownian motion

in Rz,z[ω] is still an order of magnitude larger than the correlation in Rq,z[ω], which contains

the terms resulting from RPSN.

� The unwanted Brownian motion signal Rz,z[ω] is proportional to the detuning ∆. When the

detuning is changed from −0.1 Hz to −1.0 Hz, we see a factor of 10 increase in Rz,z[ω].

� The other terms, Rq,z, Rcl,z, and Rcl,cl, do not depend on the detuning ∆ to �rst order, so

remain unchanged as the detuning is changed from −0.1 Hz to −1.0 Hz.

� Rcl,cl[ω] vanishes on resonance because the transmitted intensity is proportional to the inci-

dent classical amplitude noise δx[ω], while the re�ected phase is proportional to the incident

classical phase noise δy[ω] and these two classical noises are assumed to be uncorrelated.

3.6.1 Figure of merit near zero detuning

One of the convenient results presented in Børkje et al. is a �gure of merit for the ratio of the

magnitude of the antisymmetric RPSN term Rq,z (de�ned as Pq) to the symmetric Brownian motion

term Rz,z (de�ned as M):

Pq
M

=
(κ/2)2 + ω2

M

2 (nM + 1/2)κ |∆|
(3.60)
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Figure 3.3: Theoretical plots of the various contributions to the correlation R[ω]. The detuning is
∆ = ∆0 + δ∆ where ∆0 ≈ 0, and δ∆ = −2π × 0.1 Hz for the blue curve, and δ∆ = −2π × 1.0 Hz
for the red curve. The re�ected heterodyne quadrature is θ = π/2. The frequency axis is centered
about the bare resonant frequency ωM = 2π×788 kHz and scaled by the bare mechanical linewidth
γ = 2π × 1.1 Hz. The incident power is Pin = 10µW. κ = 4.45 × 106 s−1 and κL = 0.155κ.
T = 295K. The membrane is positioned about 10 nm from a node of the intracavity �eld. The
classical amplitude and phase noise have the same magnitude as the quantum noise (CX = CY = 1,
where CX and CY are de�ned in Eqs. 3.56 and 3.57).
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For the optomechanical parameters given in Fig. 3.3, the �gure of merit formula indicates the

detuning should be ∆ ≤ 0.06 Hz in order to make the thermal correlation Rz,z as small as the

RPSN correlation Rq,z.

One important feature of this �gure of merit is that it does not depend on the laser power.

This implies the RPSN and thermal contributions scale in the same way with laser power. While

increasing the laser power changes the ratio of the forces Ssn
F [ω]/Sth

F [ω], it doesn't change the relative

magnitudes of the correlations Rq,z/Rz,z. Because the ratio of the quantum and classical contribu-

tions to the correlation Rq,z/Rz,z is independent of laser power, the choice of laser power is guided

by a number of technical considerations. One of the main advantages of higher laser power is that

the shot noise becomes larger relative to the detector dark noise. Possible disadvantages of higher

laser power include increased membrane absorption (which can lead to heating), optomechanical

bistability (which can make stably locking the laser to the cavity di�cult), and increased classi-

cal laser noise relative to shot noise. The balance of these considerations depends on properties

of the membrane (absorption coe�cient), the photodiodes (noise equivalent power), and the laser

(classical amplitude and phase noise).

3.7 Plots at large, �nite detuning (∆ = −3.1κ)

Figure 3.4 shows the di�erent components of the correlation R[ω] = Rq,z[ω] + Rcl,cl[ω] + Rcl,z[ω] +

Rz,z[ω] when the laser has a large detuning from the cavity resonance ∆ ≈ −3.1κ, and the heterodyne

quadrature angle is chosen to be very near the critical value of θC = arctan(2∆/κ). The exact value

∆ ≈ 3.1κ is arbitrary, but is representative of the case ∆ � κ, ωM. The plots were generated

using the parameters from our experimental system (given in the �gure caption), and except for

the detuning, they are the same as in Sec. 3.6. Here is a list of key observation from Fig. 3.4:

� Most importantly, the term of interest Rq,z[ω] is still antisymmetric as in the case of zero

detuning, which distinguishes it from the symmetric thermal contribution. However, the con-

tribution from the classical laser noise Rcl,z is now basically indistinguishable from the RPSN

term Rq,z. This suggests that we need a shot noise-limited laser with CX , CY � 1 (where CX
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and CY are de�ned in Eqs. 3.56 and 3.57).

� The thermal contribution Rz,z[ω] is proportional to the error in detuning δ∆, where ∆ =

∆0 + δ∆ and the critical quadrature θC = 2 arctan(2∆0/κ). When the detuning error is

increased from 0.1 Hz to 1.0 Hz, there is a 10-fold increase in Rz,z[ω].

� For the parameters used in Fig. 3.4, Rq,z[ω] ≈ Rz,z[ω] when the error in detuning is δ∆0 ≈

0.1× 2π Hz (solid blue lines).

� The other terms, Rq,z, Rcl,z, and Rcl,cl, do not depend on the detuning ∆ to �rst order, so

they remain unchanged as the error in detuning is changed from 0.1 to 1.0 Hz.

� Rcl,cl does not change with ω, and so is easy to distinguish from Rq,z.

3.8 Plots at half-linewidth detuning

Figure 3.5 shows the di�erent components of the correlation R[ω] = Rq,z[ω] + Rcl,cl[ω] + Rcl,z[ω] +

Rz,z[ω] when the laser is detuned by a half linewidth from the cavity resonance (∆ ≈ −0.5κ). The

re�ected heterodyne quadrature is chosen to be θ = θC(∆0), where ∆0 = −κ/2. The error in

detuning is δ∆ = 0.1 Hz or δ∆ = 1.0 Hz, where ∆ = ∆0 + δ∆. This regime is di�erent from

very small detuning ∆ ≈ 0 and large detuning ∆� ωM, κ in that the RPSN term Rq,z is no longer

antisymmetric, and thus it is much more di�cult to distinguish from the thermal component. Børkje

et al. derives a condition, which if met, ensures Rq,z is antisymmetric:

ωMκ∣∣(κ/2)2 + ∆2 − ω2
M

∣∣ � 1 (3.61)

For the parameters in Fig. 3.5 this is

ωMκ∣∣(κ/2)2 + ∆2 − ω2
M

∣∣ ≈ 1.5 (3.62)
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Figure 3.4: Theoretical plots of the various contributions to the correlation R[ω]. The detuning is
∆ = ∆0 + δ∆ where ∆0 ≈ −3.1κ, and δ∆ = 0.1× 2π Hz for the blue curve, and δ∆ = 1.0× 2π Hz
for the red curve. The re�ected heterodyne quadrature was θ = θC(∆0). The frequency axis is
centered about the bare resonant frequency ωM = 2π× 788 kHz and scaled by the bare mechanical
linewidth γ = 2π×1.1 Hz. The incident power is Pin = 10µW. κ = 4.45×106 s−1 and κL = 0.155κ.
T = 295K. The membrane is positioned about 10 nm from a node of the intracavity �eld. The
classical amplitude and phase noise is the same magnitude as the quantum noise (CX = CY = 1).
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Figure 3.5: Theoretical plots of the various contributions to the correlation R[ω]. The detuning is
∆ = ∆0 + δ∆ where ∆0 = −0.5κ, and δ∆ = 0.1× 2π Hz for the blue curve, and δ∆ = 1.0× 2π Hz
for the red curve. The re�ected heterodyne quadrature was θ = θC(∆0). The frequency axis is
centered about the bare resonant frequency ωM = 2π× 788 kHz and scaled by the bare mechanical
linewidth γ = 2π×1.1 Hz. The incident power is Pin = 10µW. κ = 4.45×106 s−1 and κL = 0.155κ.
T = 295K. The membrane is positioned about 10 nm from a node of the intracavity �eld. The
classical amplitude and phase noise is the same magnitude as the quantum noise (CX = CY = 1).

Thus, for ∆ ≈ −0.5κ, the criteria for having an antisymmetric Rq,z is not satis�ed, and it is no

surprise that Rq,z does not appear antisymmetric in Fig. 3.5.

3.9 E�ect of �nite measurement time

3.9.1 Averaging time on resonance

The above plots in Figs. 3.3, 3.4, and 3.5 are for an in�nite measurement time, where correlations

like 〈ξi[ω]η[ω]〉 vanish. However, any measurement in the lab takes a �nite measurement time,

and these correlations won't be zero. We must then determine how long of a measurement time is

needed.
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It is easiest to estimate the measurement time needed in the on resonance case ∆ = 0. Suppose

we want to generate a plot of Rq,z[ω] with Nres points per linewidth γ/2π (where �res� stand for

resolution), so the frequency resolution is δf = γ/2πNres. The measurement time required to

achieve this frequency resolution τmeas,1 is given by

τmeas,1 =
1

δf
=

2πNres

γ
(3.63)

This is the measurement time needed to observe Rq,z[ω] with a frequency resolution δf .

However, for a measurement at �nite temperature, the �uctuations in resonator displacement

z[ω] are mostly due to thermal force noise, rather than RPSN. Thus the �uctuations in the re-

�ected heterodyne signal Yφ+π/2[ω] due to thermally driven Brownian motion are larger than the

�uctuations caused by the RPSN by a factor of
√
Sth
F [ω]/Ssn

F [ω]. Averaging Navg data points will

improve the ratio of the signal (RPSN induced �uctuations in Yφ+π/2[ω]) to noise (thermally induced

�uctuations in Yφ+π/2[ω]) by a factor of
√
Navg giving

signal

noise
≡ G =

√
Navg

√
Ssn
F [ω]

Sth
F [ω]

(3.64)

The time required to have the frequency resolution δω = γ/Nres and a signal to noise ratio G (after

averaging) is

τmeas,2 = Navgτmeas,1 (3.65)

= τmeas,1G

√
Sth
F [ω]

Ssn
F [ω]

(3.66)

=
Nres

γ/2π
G

√
Sth
F [ω]

Ssn
F [ω]

(3.67)

For reasonable parameters like those used to generate Fig. 3.3

Sth
F [ω]/Ssn

F [ω] ≈ 5× 106 (3.68)
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where the ratio of thermal and RPSN forces is evaluated using Eq. 2.170. For a signal to noise ratio

of G = 1, a mechanical linewidth γ/2π = 1 Hz, and Nres = 10 points per linewidth, the minimum

averaging time is

τmeas,2 ' 2× 104 s (3.69)

or about six hours. This only includes additional noise in the re�ected phase quadrature due to

Brownian motion, which we expect is the largest source of noise. In situations where the technical

noise in the laser and photodiodes can be ignored, it is advantageous to increase γ by optomechanical

damping since the measurement time τmeas,2 ∝ γ−1. In practice, this will reduce the absolute scale

of the position �uctuations, and hence also reduce the �uctuations in the re�ected heterodyne signal

Yφ+π/2[ω]. The advantage of increasing γ may be lost if the heterodyne �uctuations become smaller

than dark noise in the photodiodes.

Similarly, any additional noise in the measured transmitted amplitude quadrature, such as de-

tector dark noise, will cause the averaging time τmeas,2 to increase. Noise in the transmitted intensity

measurement is discussed in more detail in Sec. 5.6 where it is presented along with measurements

of the correlation for �nite measurement times.
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Chapter 4

Experimental Design

The goal of this chapter is to describe the setup in su�cient detail that the experiment could be

reproduced.

4.1 Mechanical resonator: Silicon nitride membrane

The mechanical resonator used in our optomechanical system was a commercially available silicon

nitride (Si3N4) membrane from Norcada Inc. [100]. Silicon nitride is an amorphous insulator. The

membranes are formed by depositing a silicon nitride layer on a silicon substrate. The silicon

substrate is then etched out in a square pattern, leaving a square silicon frame with a silicon nitride

membrane stretched across it. The membrane used here was a 50 nm-thick, 1 mm square silicon

nitride membrane deposited on a 200 µm-thick, 5 mm square silicon frame.

The silicon nitride �lm is always highly stressed due to a mismatch in the atomic spacings

between the silicon substrate and the silicon nitride �lm. The degree of stress can be changed by

an order of magnitude by adjusting deposition conditions, including the ratio between silicon and

nitrogen. In this experiment we used stoichiometric silicon nitride membranes, meaning the �lm

was designed to have an exact silicon to nitrogen ratio of 3:4. Stoichiometric Si3N4 is the highest-

stress �lm commercially available (σ ≈ 900 MPa), and this high stress makes the stoichiometric

membranes more brittle and less desirable for most of their intended purposes. However, we chose

the high-stress stoichiometric membranes because they have lower optical loss than the lower-stress
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σ stress 900× 106 N/m2

tm membrane thickness 50 nm
L membrane side length 1.0 mm

ρ density 3.0× 103 kg/m3

me� e�ective mass 3.75× 10−11 kg
k1,1 spring constant 220 N/m
ω1,1 resonant frequency of the fundamental 2π × 387. kHz
κ thermal conductivity 3.2 W K−1m−1

α thermal expansion coe�cient 3× 10−6 K−1

EY Young's modulus 126× 109 N/m2

νP Poisson ratio 0.25 �

Table 4.1: Materials data for the high-stress stoichiometric silicon nitride membrane used in this
dissertation. Unless otherwise speci�ed, these will be the assumed membrane parameters for the
dissertation. Some of the parameters (κ, α, EY, and νP) are based on measurements in published
literature because they are not speci�ed by Norcada, nor were they measured by us.

membranes.

Even the �low-stress� silicon nitride membranes typically have a stress σ & 100 MPa, which is

su�ciently high that the internal elasticity provides a negligible contribution to the restoring force

compared to the stress applied by the silicon frame. As a result, the mechanical modes of the

membrane of side length L take on the particularly simple form of a tightly stretched square drum

head:

zm,n(x, y, t) = z0(t) sin(
πmx

L
) sin(

πny

L
) (4.1)

where z0(t) is the time varying amplitude of the mode, and m ≥ 1 and n ≥ 1 are integer mode

indices. The membrane's e�ective spring constant km,n, e�ective mass me�, and resonant frequency

ωm,n are derived in Appendix A. The results are quoted below. Materials parameters for silicon

nitride are given in Table 4.1.

km,n =
π2σtm

4
(m2 + n2) (4.2)

me� =
1

4
ρtmL

2 =
1

4
m (4.3)

ωm,n =

√
km,n
me�

=

√
π2σ(m2 + n2)

ρL2
(4.4)
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4.1.1 Mechanical loss in silicon nitride membranes

The intended applications of silicon nitride membranes as sample holders for transmission electron

microscopy and as x-ray vacuum windows relies on the strength of their thin �lm against static

loads. When our Yale group tested the dynamic properties of the membranes we were pleasantly

surprised to �nd mechanical quality factors of Q ∼ 106 at room temperature and Q ∼ 107 at

cryogenic temperatures [39, 101]. Figure 4.1 (from Zwickl et al. [101]) shows the decaying oscillation

amplitude of the fundamental mechanical mode for two low-stress silicon nitride membranes at room

temperature and cryogenic temperatures (300 mK).

While it was initially surprising to �nd such high quality factors in amorphous membranes, it

seems likely that the stress, which increases the energy stored in the membrane, does not increase

the mechanical loss per oscillation by the same proportion. Thus, the mechanical loss rate will be

lower for more highly stressed membranes.

For example, thermo-elastic dissipation is a loss mechanism which does not scale with the stress

[102�105]. Thermo-elastic dissipation is not proportional to strain, but rather to the strain gradient,

so the loss does not increase with the externally applied stress, though the energy does. The

quality factor when limited only by thermo-elastic dissipation, QTED, in a highly stressed membrane

becomes

QTEDm,n =

√
ρσπ3κL3 (1− ν2

P)

32(m2 + n2)3/2Tα2E2t4m
(4.5)

where L is the side length of the square membrane, tm is the membrane thickness, T is the tem-

perature, κ is the thermal conductivity, νP is the Poisson ratio of silicon nitride, α is the thermal

expansion coe�cient, EY is the Young's modulus of the membrane material, ρ is the density, and σ

is the uniform stress of the membrane. A full derivation Eq. 4.5 is given in Appendix B. Assuming

the material parameters listed in Table 4.1, Eq. 4.5 gives a room temperature, TED-limited quality

factor for the (1,1) mode of QTED1,1 ≈ 5× 1011. Since our observed mechanical quality factors have

never exceeded 107, it is clear that thermo-elastic dissipation is negligible compared to other loss

mechanisms.

While thermoelastic dissipation is totally negligible, one signi�cant factor in �nding low-loss
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Figure 4.1: Ring-down of the fundamental mechanical mode of silicon nitride membranes at room
temperature (green) and cryogenic temperatures (red). The membranes were 1 mm square, 50
nm-thick Norcada low-stress silicon nitride membranes with a fundamental resonant frequency of
about 130 kHz.

membranes appears to be the mounting method. We have tried clipping down membranes without

using epoxy, epoxying only a portion of the frame, and epoxying the entire frame. In general, the

results have not been consistent enough to claim that one method routinely yield better results.

Depending on the membrane and mounting method, we have found that the fundamental mode

quality factor varies over three orders of magnitude (Q1,1 ∼ 103 − 106). Typically the higher-

order modes have higher quality factors as shown in Fig. 4.2. This wide variation in quality factor

is consistent with similar work on stoichiometric silicon nitride membranes published by Wilson

et al. at Caltech [106]. Wilson et al. consistently found the highest quality factors when using

no epoxy or clamping, but letting the membrane frame rest in a concave mirror substrate. Two

undergraduate researchers in our Yale group, Sydney Schreppler and Israel Kositsky, have designed,

built, and operated a dedicated vacuum chamber with optical access to multiple membranes to help

us to characterize the high-stress membranes and to develop a repeatably good mounting scheme.
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Figure 4.2: Measured quality factor for di�erent mechanical modes of four 1 mm square, 50 nm-
thick, high-stress stoichiometric membranes used over the period of a month. The mountings
all used epoxy, but amount and location of the epoxy joint di�ered between membranes. The
measurements were made by driving the membrane and sweeping the drive across the mechanical
resonant frequency and measuring the width of the resonance peak. The estimates are relatively
crude when compared to the ring-down measurements in Fig. 4.1. The most signi�cant point is
that higher frequency mechanical modes tend to have higher quality factors.
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4.1.2 Optical loss in silicon nitride membranes

In general, silicon nitride membranes have low optical loss. Table 4.2 shows upper bounds on

absorption loss for a number of silicon nitride membranes. The loss is usually characterized using

an optical ring-down technique where a well-coupled incident laser beam is chopped very quickly (∼

10 ns), whereupon a photodiode captures the decay of the intracavity �eld by monitoring the light

leaking out through the end mirrors. In our case, the cavity ring-downs were most often monitored

using the transmitted intensity and a 150 MHz bandwidth photodiode (Thorlabs PDA10CF). The

high bandwidth is important so that the short cavity decay time τdecay ∼ 10−7 s is not distorted by

the photodiode response time.

Figure 4.4 shows a cavity ring-down at a node and an antinode. The data is �t to an exponential

of the form

Ptrans(t) = P0e
−t/τdecay (4.6)

where P0 is the power at t = 0 and τdecay is the cavity decay time. The decay time τdecay is related

to the cavity �nesse F according to

F =
πcτdecay
L

(4.7)

where c is the speed of light and L is the cavity length.

An upper bound on the absorption and scattering loss due to the membrane can be set by com-

paring the loss when the membrane is positioned at a node (minimum �eld, negligible absorption)

and at an antinode (maximum �eld and absorption). The round-trip absorption in the membrane

Amem can be expressed in two ways. The �rst way relates the round-trip fractional absorption Amem

to the �nesse at the node and antinode:

Amem =
π

Fantinode
− π

Fnode
(4.8)

The second way relates the absorption Amem to the absorption loss passing through twice the

membrane thickness:

Amem =
4πIm(n)tm

λ
(4.9)
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Fnode Fantinode Im(n) λ (nm) Reference

Low Stress (Yale) 16,800 7,100 . 1.6× 10−4 1064 Ref. [101]
High Stress (Yale) . 1.5× 10−6 1064 Ref. [69]

High Stress (Caltech) . 10−5 935 Ref. [106]
High Stress (Thesis) 57,000 29,000 . 9× 10−5 1064 See Figs. 4.3 and 4.4

Table 4.2: Comparison of upper bounds on membrane absorption for a variety of silicon nitride
membranes tested by our Yale group and by the Caltech group.

Solving for the imaginary part of the index of refraction Im(n) gives

Im(n) =
λ

4tm

(
1

Fantinode
− 1

Fnode

)
(4.10)

When Eq. 4.10 is applied to the data in Fig. 4.3, we determine a value of Im(n) . 9 × 10−5.

Table 4.2 compares this result with other estimates of optical loss in silicon nitride membranes.

While the estimate given in this thesis is smaller than the absorption of low stress silicon nitride

membranes determined in Ref. [101], it is an order of magnitude larger than the high stress ab-

sorptions determined in Refs. [69, 106]. Because the membrane comes from the same batch of high

stress membranes as used in Ref. [69], the additional loss is likely explained by contamination of

the membrane surface rather than an intrinsic property of the silicon nitride.

4.2 The cavity and optical mount

The cavity end mirrors were nominally identical. The substrates had a diameter of 0.5 inches, a

radius of curvature R = 5 cm, and thickness of 0.165 inches. Advanced Thin Films of Boulder, CO

coated the end mirrors with a low-loss, high-re�ectivity laser line coating for 1064 nm.

The cavity length was L = 7 mm, giving a beam waist w0 for the Gaussian-cross-section TEM00

mode of

w0 =

(
2R

L
− 1

)1/4(
λL

2π

)1/2

(4.11)

Using R = 5 cm, L = 7 mm, and a laser wavelength of λ = 1064 nm gives a beam waist of

w0 = 65 µm. Since our membrane is a 1 mm square, clipping of the beam should not limit the

�nesse in any way, unless the beam is positioned signi�cantly o�-center of the membrane.
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Membrane Position (µm)

λ/4 = 0.266 µm

Node

Antinode

Figure 4.3: Position dependence of cavity �nesse for a high-stress stoichiometric membrane inside
the L = 7 mm cavity. Each of the points is measured by taking an optical ring-down similar to
Fig. 4.4. The variation in �nesse from node to antinode is used to determine an upper limit on
membrane absorption of Im(n) . 9 × 10−5 using Eq. 4.10. Table 4.2 compares this result with
previous estimates of membrane absorption.

Time (s)

Node
τ = 4.2x10-7 s
Finesse = 57,000

Antinode
τ = 2.2x10-7 s
Finesse = 29,000

Figure 4.4: Cavity ring-downs at the node and antinode.
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The cavity and membrane mount is shown in Fig. 4.5. The cavity spacer was machined from

Invar, chosen for its low coe�cient of thermal expansion compared to stainless steel or aluminum.

The membrane was epoxied to a thin removable aluminum bridge which could be slid in between

the end mirrors. In order to center the membrane on the intracavity beam, the membrane has a

rough adjustment actuated by screws in the plane parallel to the membrane. Fine adjustment in the

z-direction along the cavity axis is provided by a kinematic mirror mount (modi�ed Thorlabs KS2).

The three standard 1/4�-80 adjustment screws were replaced by vacuum compatible motorized

actuators (Thorlabs Z606V), which have a minimum step size of about 50 nm and a 6 mm range.

Since the membrane should ideally be positioned with ∼ 1 nm resolution, the aluminum bridge

upon which the membrane is mounted is supported a pair of piezo-electric actuators (one on each

end of the bridge). These miniature multilayer piezo stack actuators (Physik Instrumente PICMA

PL055) have a 5 mm square base and are 2 mm thick. The piezo actuators have a 2.2 µm range

over 0− 100 V, which spans about four periods of the intracavity standing wave.

The angular alignment of the membrane is also controlled via the Thorlabs KS2 kinematic mirror

mount. Angular alignment is essential for achieving low optical loss and can also be used to tune

the optomechanical coupling as shown by Sankey et al. [69].

4.3 Optics Setup

This section will describe the optical setup. It will refer to the diagram shown in Fig. 4.6.

4.3.1 Stage 1

The laser source is an Nd:YAG laser (Innolight Prometheus) which produces about 1 Watt of 1064

nm light with a free-running linewidth of about 1 kHz. The �rst stage of optics passes the beam

through an optical isolator to protect the laser from back-re�ections. The isolated beam is then

split by a non-polarizing beam splitter, with part of the beam going to the RPSN experiment, and

part going to other experiments. Next, a half wave plate and polarizing beam splitter are employed

for controlling the laser power. Finally the beam diameter and direction are modi�ed by lenses and
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Figure 4.5: Diagram of the cavity spacer, membrane mount, and associated positioning optome-
chanics.

mirrors to couple e�ciently into a collimator (Thorlabs FiberPort). A polarization-maintaining

�ber (Thorlabs PM980-HP) takes the 1064 nm light to the second stage of optics.

4.3.2 Stage 2

The second stage begins with another collimator (Thorlabs FiberPort PAF-X-7-C), which sends out

collimated light from the �ber. The diameter of the collimator output was chosen to be as large as

possible without clipping the beam on any of the subsequent optics. The aperture is limited by the

1 mm-tall crystal in the acousto-optic modulator. The beam will later be recoupled into another

collimator without any additional lenses, so a wider beam with less divergence is desired. After

emerging from the collimator, the beam is split in two using a half-wave plate and a polarizing

beam splitter to adjust the split ratio. The re�ected beam will be the local oscillator beam for a

heterodyne detection scheme of the light re�ected from the cavity. The transmitted beam will be

the signal beam.

The signal beam passes through an electro-optic modulator (EOM, ConOptics M360-40), which

is aligned for phase modulation of the beam. The phase modulation sidebands are used for a
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Figure 4.6: Schematic of the optics from laser to cavity to photodiodes.
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Figure 4.7: Diagram of the main optical signals. The local oscillator beam (purple), the signal
beam (green), and the phase modulation sidebands of the signal beam (blue) are all incident upon
the cavity (gray, dashed line). The re�ected beam has the additional ±800 kHz modulation of the
signal beam (shown in red), which results from the membrane's Brownian motion modulating the
intracavity �eld.

Pound-Drever-Hall (PDH) detection scheme to measure the relative detuning between the laser and

cavity [33]. Next, the carrier and phase modulation sidebands are passed through an acousto-optic

modulator (AOM, NEOS 46080-1-1.06) to shift the carrier and sidebands of the beam by about 80

MHz. The zeroth order (unde�ected) beam is blocked.

The frequency-shifted, phase-modulated signal beam is recombined with the local oscillator

beam, and both beams are then recoupled into another polarization-maintaining �ber. Figure 4.7

graphically summarizes the end result of the AOM and EOM modulation which occurs in Stage 2.

4.3.3 Stage 3

The 1064 nm beam is overlapped with a 633 nm beam from a �ber-coupled stabilized HeNe laser,

and both are coupled into the cavity. The 1064 nm beam is responsible for the optomechanics

and for the very sensitive displacement measurements. The 633 nm beam detects nanometer-scale

displacements of the membrane, and the signal is used to provide feedback on the membrane position

via the piezo actuators, keeping the membrane at a �xed position in the intracavity �eld. A dichroic

beam splitter separates the 633 nm and 1064 nm reference beams which are not incident upon the
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cavity. The 633 nm reference beam monitors power �uctuations in the diode laser so they are not

confused with position �uctuation in the membrane. The 1064 nm reference photodiode (Thorlabs

PDA10CF) is used to measure the ∼ 80 MHz heterodyne beat note before entering the cavity and

to detect phase shifts between the signal and local oscillator beam in Stage 2. Such a phase shift

between the signal beam and local oscillator beam can be caused by thermal expansion of the optical

breadboard and/or vibrations the mirrors.

Lastly, the re�ected 1064 nm photodiode (Thorlabs PDA10CF) detects beat notes due to PDH

(15 MHz) and heterodyne mixing (80 MHz). A dichroic mirror is used to reject 633 nm light from

the re�ected 1064 nm photodiode. For any of the heterodyne photodiodes, care must be taken

to limit the total incident optical power to about 200 µW to maintain a linear response from the

photodiode.

Regarding mode matching to the cavity, the mirror substrates are plano-concave and act like

diverging lenses, which means the input beam needs some e�ective beam waist we� and e�ective

position z0,e�, such that after going through the diverging lens, the true intracavity beam waist and

position will be achieved. Kogelnik and Li [107] wrote the classic reference for Gaussian beams and

cavity modes, and the following equations for the e�ective beam waist and position are quoted from

them:

w0,e� =

√
λ

π

R
√
L(2R− L)

2R + L (n2 − 1)
(4.12)

z0,e� =
L

2
− nLR

2R− L (n2 − 1)
(4.13)

For our cavity with length L = 7 mm, mirror radius of curvature R = 5 cm, index of refraction for

the fused silica substrate n = 1.46, and wavelength λ = 1064 nm we obtain

we� = 63µm (4.14)

and

z0,e� = −2 mm (4.15)

Thus the deviation from the cavity mode waist of w0 = 66µm is minimal for such a short cavity.
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Note that in the limit L � R, the equation for the intracavity beam waist given in Eq. 4.11 and

the e�ective beam waist given in Eq. 4.12 become equal.

4.3.4 Stage 4

The 1064 nm and 633 nm beams enter the cavity and are modulated by the membrane motion.

Light leaks out of the cavity through the end mirrors and is detected by the re�ected heterodyne

photodiode or the transmitted intensity photodiodes.

4.3.5 Stage 5

The transmitted 633 nm beam is sensitive to large scale (> 1 nm) motion of the membrane. The

intensity of the transmitted 1064 nm beam, along with the re�ected heterodyne signal, are the two

signals needed for the correlation measurement. A camera is also used to image the cavity modes

in transmission to determine which mode the incident beam is exciting inside the cavity.

4.4 Vacuum systems

The cavity and membrane are under continuous vacuum provided by an ion pump. The internal

pressure is about 10−6 Torr.

4.5 Electronic signal processing and data acquisition

Table 4.3 summarizes the many signals that we would like to simultaneously and synchronously ac-

quire. For the correlation measurement S[ω] = Xφ[ω]Y ∗θL [ω], we must acquire the membrane position

�uctuations in the re�ected heterodyne signal (near 79.2 MHz and 80.8 MHz) and the �uctuations

in transmitted intensity near the mechanical resonance (800 kHz). The reference heterodyne beat

note at 80 MHz is needed to measure �uctuations in the phase between the local oscillator and

signal beams. The re�ected heterodyne beat note at 80 MHz is used to measure low frequency (zero

to a few kHz) detuning �uctuations. The PDH error signal (zero to a few kHz) and the 633 nm
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transmitted intensity (zero to a few kHz) can be used to characterize the membrane vibrations due

to acoustic and seismic noise.

In addition to simultaneously acquiring many channels, we also need long averaging times. The

mechanical linewidth of the membrane is about 1 Hz, necessitating measurement times much longer

than a second to resolve the mechanical resonance. To su�ciently suppress the thermal e�ects

below the RPSN-induced Rq,z[ω] term, a measurement time of an hour or longer may be needed

(see Sec. 3.9).

We used a Zurich Instruments HF2 Lock-in Ampli�er in order to synchronously capture the

narrow-bandwidth signals in Table 4.3. The ZI-HF2 has two 50 MHz bandwidth inputs, six in-

dependently controllable internal oscillators, and six internal mixers which can be combined in an

arbitrary arrangement. There are also two 100 kHz bandwidth auxiliary inputs which are not mixed

or �ltered. Because the heterodyne beat note is around 80 MHz (optimal di�raction e�ciency for

AOM), which is above the 50 MHz bandwidth of the ZI-HF2, we mix the heterodyne signals with

a 100 MHz local oscillator to shift all the heterodyne signals closer to 20 MHz, well within the

ZI-HF2's bandwidth. The 80 MHz AOM drive is created by mixing a 20 MHz ZI-HF2 output with

the same 100 MHz local oscillator. A schematic of the electronic detection scheme is shown in

Fig. 4.8. Because many of the signals are widely separated in frequency (0 kHz, 800 kHz, 19.2 MHz,

20.0 MHz, 20.8 MHz), these signals can be summed and connected to the same input on the ZI-HF2.

4.6 Using a heterodyne measurement to detect an arbitrary

quadrature

A heterodyne measurement involves the beating (mixing) of a strong, noise-free oscillation, and a

weaker oscillation containing a signal of interest. The technique can be used to measure an arbitrary

quadrature of the signal.

In an optical heterodyne measurement the two oscillations are typically laser beams, and the

mixing is accomplished by overlapping the beams on the same photodiode. The strong and noise-

free beam is called the local oscillator beam. The weaker beam containing the signal of interest is
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Figure 4.8: Electronic Detection Scheme. The portion inside the dashed rectangle in the Zurich
Instruments HF2. The diagram tracks the signals from the various photodiodes (also shown in the
optical schematic Fig. 4.6) to the �nal mixed down quadratures from the ZI-HF2. Omitted from
the diagram are a number of attenuators and ampli�ers needed for adjusting the signal strengths
to appropriate levels for mixers and the ZI-HF2 inputs.
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Input Demod. No. Sig. Freq. Input/Demod Freq.
(MHz) (MHz)

Re�ected HD Carrier 1 1 80.0 20.0
HD Mechanical USB 1 2 79.2 20.8
HD Mechanical LSB 1 3 80.8 19.2
Reference HD Carrier 2 4 80.0 20.0

Transmission Mechanical 1 5 0.8 0.8
Transmission DC 1 6 0 0

Pound-Drever-Hall Error Signal DC Aux-in 1 - - -
633 nm Transmission DC Aux-in 2 - - -

Table 4.3: Summary of the eight input signals to the ZI-HF2. The table matches what is explained
graphically in Fig. 4.8. The column �Sig. Freq.� is the frequency of the heterodyne beat note on
the photodiode. The column �Input/Demod Freq.� is the frequency of the signal at the input to the
ZI-HF2, which for the heterodyne signals involves mixing the photodiode signal with a 100 MHz
oscillator before going to the ZI-HF2. The input frequency is the same (to within 1 kHz) as the
demodulator frequency, which is why the column is labeled �Input/Demod. Freq.�

called the signal beam. When the two beams are detected on a photodiode, the photodiode output

is proportional to the square of the instantaneous electric �eld (low-passed by the photodiode's

bandwidth). The photodiode's output signal is proportional to

I(t) ∝ (ELO(t) + Esig(t))
2 (4.16)

The cross-term ELO(t)Esig(t) is the mixing process.

I now want to calculate the re�ected heterodyne mixing term VHD[ω] in terms of the local

oscillator beam ELO(t) and the re�ected signal beam d̂out,L(t). First, we express the local oscillator

with frequency ωLO and phase shift ψ as

ELO(t) = ELO cos(ωLOt− ψ) (4.17)

The local oscillator can be treated as a classical signal because shot noise in the stronger local

oscillator beam makes a negligible contribution to the heterodyne mixing term. The signal beam

Êsig can be written as

Êsig(t) = âout,L(t) + â†out,L(t) (4.18)
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In the Fourier domain Eq. 4.17 becomes

ELO[ω] = ELOπ
(
e−iψδ (ω + ωLO) + eiψδ (ω − ωLO)

)
(4.19)

Similarly, the signal beam �uctuations given by Eq. 4.18 becomes

âout,L[ω] + â†out,L[ω] =
√
κLā

(
2πδ(ω − ωD) + d̂out,L[ω − ωD]

)
(4.20)

+
√
κLā

∗
(

2πδ(ω + ωD) + d̂†out,L[ω + ωD]
)

(4.21)

Then the photodiode output VHD[ω], which results from the heterodyne beating of the local oscillator

and the signal beam, can be found via the convolution theorem:

VHD[ω] =
1

2π

ˆ ∞
−∞

dω′ELO[ω′]
(
âout,L[ω − ω′] + â†out,L[ω − ω′]

)
(4.22)

=
1

2π
ELOπe

−iψ

[
√
κLā

(
2πδ(ω + ωLO − ωD) + d̂out,L[ω + ωLO − ωD]

)
+
√
κLā

∗
(

2πδ(ω + ωLO + ωD) + d̂†out,L[ω + ωLO + ωD]
)]

+
1

2π
ELOπe

iψ

[
√
κLā

(
2πδ(ω − ωLO − ωD) + d̂out,L[ω − ωLO − ωD]

)
+
√
κLā

∗
(

2πδ(ω − ωLO + ωD) + d̂†out,L[ω − ωLO + ωD]
)]

(4.23)

The photodiode output only responds to intensity �uctuations within the photodiode bandwidth

(< 150MHz), so the frequency-summed beating terms at ωLO +ωD ≈ 2π×1015 Hz are not detected

by the photodiode.

Lastly, we de�ne the di�erence beat frequency ωB = ωD − ωLO. Then the re�ected heterodyne

mixing term becomes

VHD[ω] =
1

2π
ELOπ

[
e−iψ
√
κLā

(
2πδ(ω − ωB) + d̂out,L[ω − ωB]

)
+eiψ
√
κLā

∗
(

2πδ(ω + ωB) + d̂†out,L[ω + ωB]
)]

(4.24)
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4.7 Converting the ZI-HF2 demodulator into the correlation

signal

This section will describe how the photodiode output VHD[ω] given by Eq. 4.24 is processed and

saved to �le by the ZI-HF2 Lock-in Ampli�er. This section will also describe how the data saved

by the ZI-HF2 is converted to the arbitrary re�ected quadrature YθL [ω] and transmitted intensity

quadrature Xφ[ω]. The correlation S[ω] can then be computed as:

S[ω] = δXφ[ω]δY ∗θ [ω] (4.25)

Since we are only interested in �uctuations in a narrow bandwidth around ωM, it is natural to

shift the signal to a much lower frequency in order to reduce the sample rate of the data acquisition.

First, I want to consider how the ZI-HF2 transforms the input signal into saved data.

Let V (t) be the input signal to the ZI-HF2, and let the i-th demodulator be set to a frequency

Ωi. The input signal V (t) �rst passes into a high speed (≈ 200 MS/s) analog-to-digital converter.

The digitized signal is then multiplied by eiΩt = cos Ωt + i sin Ωt and �ltered by a low pass �lter

with a time constant τC, which gives

VX(t) =

ˆ t

−∞
e−t

′/τCV (t− t′) cos Ω(t− t′)dt′ (4.26)

VY (t) =

ˆ t

−∞
e−t

′/τCV (t− t′) sin Ω(t− t′)dt′ (4.27)

The two time traces VX(t) and VY (t) are then written to �le at a sample rate much smaller than

Ω/2π (typically about 7 kHz).

To recover the original input signal V (t) from the saved time traces VX(t) and VY (t), �rst form

the complex quantity

VZ(t) = VX(t) + iVY (t) (4.28)
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which in the Fourier domain becomes

VZ [ω] =

ˆ ∞
−∞

VZ(t)eiωtdt (4.29)

=

ˆ
e−t

′/τCV (t− t′)eiΩ(t−t′)eiωtdtdt′ (4.30)

=

ˆ
e−t

′/τCeiωt
′
V (t− t′)eiΩ(t−t′)eiω(t−t′)dtdt′ (4.31)

=

ˆ
e−t

′/τCeiωt
′
V [ω]2πδ(Ω + ω − ω′)dω′dt′ (4.32)

=

ˆ
e−t

′/τCeiωt
′
V [ω + Ω]dt′ (4.33)

=
1

1
τC
− iω

V [ω + Ω] (4.34)

Similarly, the Fourier transform of VZ∗(t) = VZ(t)− iVY (t) is

VZ∗ [ω] =
1

1
τC
− iω

V [ω − Ω] (4.35)

Ignoring the low-pass �ltering, we obtain an approximation for the Fourier transform of the original

input V [ω], which is valid within the bandwidth of the low-pass �lter:

V [ω + Ω] ≈ VZ [ω] (4.36)

and

V [ω − Ω] ≈ V ∗Z [ω] (4.37)

where V ∗Z [ω] denotes that the complex conjugation of the time trace VZ(t) = VX(t) + iVY (t) is

happens before the Fourier transform rather than VZ [ω]∗ where the complex conjugation happens

after the Fourier transform.

4.8 Reconstructing the transmitted intensity �uctuations δXφ[ω]

The following sections will use a notation consistent with the schematic for the electronic detection

scheme shown in Fig. 4.8. Demodulator 5 is used to measure �uctuations near ωM. The demodulator
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frequency Ω5 is shifted from mechanical resonance ωM by an amount δω (i.e. Ω5 = ωM + δω).

Typically the o�set δω is chosen to be about 2π × 1 kHz. Recovering the transmitted intensity

�uctuations δXφ[ω] from the demodulator outputs X5(t) and Y5(t) is straightforward because the

only role of the ZI-HF2 in this case is to shift the input signal to a lower frequency. The Fourier

transform of Z5(t) = X5(t) + iY5(t) is related to the input signal δXφ[ω] by Eq. 4.36 giving

δXφ[ω + Ω5] = Z5[ω] (4.38)

4.9 Reconstructing the re�ected �uctuations in an arbitrary

quadrature δYθL[ω] (Ideal measurement)

Next, we want to reconstruct an arbitrary quadrature of the re�ected heterodyne signal YθL [ω] =

e−iθL d̂out,L[ω]+eiθL d̂†out,L[ω] from the photodiode output VHD[ω] given in Eq. 4.24 (and copied below)

VHD[ω] =
1

2π
ELOπ

[
e−iψ
√
κLā

(
2πδ(ω − ωB) + d̂out,L[ω − ωB]

)
+eiψ
√
κLā

∗
(

2πδ(ω + ωB) + d̂†out,L[ω + ωB]
)]

(4.39)

Because the heterodyne beat note is above the input bandwidth of the ZI-HF2, we must �rst

perform an intermediate stage of mixing. The photodiode signal VHD[ω] is mixed with a 100 MHz

oscillation to bring the 80 MHz beat note down to around 20 MHz. We de�ne the di�erence

frequency ωF:

ωF/2π = 100 MHz− 80 MHz = 20 MHz (4.40)

The mixed-down version of VHD[ω] that is input to the ZI-HF2, VHD,M[ω], is

VHD,M[ω] =
1

2π
ELOπ

[
e−iψ
√
κLā

(
2πδ(ω + ωF) + d̂out,L[ω + ωF]

)
+eiψ
√
κLā

∗
(

2πδ(ω − ωM) + d̂†out,L[ω − ωF]
)]

(4.41)
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In order to capture the narrow-band mechanical motion in the heterodyne signal VHD,M[ω], we need

two of the ZI-HF2 demodulators set near the upper and lower mechanical motion sidebands (near

20.8 MHz and 19.2 MHz). We capture the upper sideband with demodulator 2 set to a frequency

Ω2 = ωF + Ω5 and capture the lower sideband with demodulator 3 set to Ω3 = ωF−Ω5. In a narrow

bandwidth (|ω| � Ω5 � Ω2) around Ω2, the mixed heterodyne signal can be written as:

VHD,M[ω + Ω2] =
1

2π
ELOπ

[
e−iψ
√
κLā

(
2πδ(ω + Ω2 + ωF) + d̂out,L[ω + Ω2 + ωF]

)
(4.42)

+eiψ
√
κLā

∗
(

2πδ(ω + Ω2 − ωF) + d̂†out,L[ω + Ω2 − ωF]
)]

(4.43)

=
1

2π
ELOπ

[
e−iψ
√
κLā

(
2πδ(ω + Ω5 + 2ωF) + d̂out,L[ω + Ω5 + 2ωF]

)
(4.44)

+eiψ
√
κLā

∗
(

2πδ(ω + Ω5) + d̂†out,L[ω + Ω5]
)]

(4.45)

≈ 1

2π
ELOπe

iψ√κLā∗d̂†out,L[ω + Ω5] (4.46)

≈ VZ2[ω] (4.47)

The simpli�cation in Eq. 4.46 occurs because of the narrow bandwidth approximation (|ω| � Ω5 �

Ω2). Equation 4.47 comes from Eq. 4.36. The key result is the relationship between d̂†out,L[ω + Ω5]

in Eq. 4.46 and VZ2[ω] in Eq. 4.47.

Similarly VHD,M[ω − Ω2] becomes

VHD,M[ω − Ω2] =
1

2π
ELOπe

−iψ√κLād̂out,L[ω − Ω5] (4.48)

= V ∗Z2[ω] (4.49)

For demodulator 3 set near the lower sideband Ω3 = ωF − Ω5 we get

VHD,M[ω + Ω3] =
1

2π
ELOπe

iψ√κLād̂†out,L[ω − Ω5] (4.50)

= VZ3[ω] (4.51)
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And similarly VHD,M[ω − Ω3] becomes

VHD,M[ω − Ω3] =
1

2π
ELOπe

−iψ√κLād̂out,L[ω + Ω5] (4.52)

= V ∗Z3[ω] (4.53)

The four equations relating the �uctuations in the output �eld d̂out,L[ω] to the ZI-HF2 demodulated

signals VZ2[ω] and VZ3[ω] can be summarized compactly by de�ning the constant C = 2eiψ

ELOā
√
κL

=

|C| e−iψL :

d̂out,L[ω − Ω5] = |C| e−iψLV ∗Z2[ω] (4.54)

d̂†out,L[ω + Ω5] = |C| eiψLVZ2[ω] (4.55)

d̂out,L[ω + Ω5] = |C| e−iψLV ∗Z3[ω] (4.56)

d̂†out,L[ω − Ω5] = |C| eiψLVZ3[ω] (4.57)

Now we can relate the arbitrary quadrature of the re�ected �eld YθL [ω] in the frequency range

around the mechanical resonant frequency ωM ≈ Ω5 to the Fourier transforms of the saved output

�les from the ZI-HF2 VZ2[ω] and VZ3[ω]:

YθL [ω + Ω5] = e−iθL d̂out,L[ω + Ω5] + eiθL d̂†out,L[ω + Ω5] (4.58)

= |C| e−i(θL+ψL)V ∗Z3[ω] + |C| ei(θL+ψL)VZ2[ω] (4.59)

Similarly for the negative frequency term around −Ω5 we obtain

YθL [ω − Ω5] = e−iθL d̂out,L[ω − Ω5] + eiθL d̂†out,L[ω − Ω5] (4.60)

= |C| e−i(θL+ψL)V ∗Z2[ω] + |C| ei(θL+ψL)VZ3[ω] (4.61)

Equations 4.59 and 4.61 are equivalent and can be related using two properties: (1) ŶθL is Hermitian
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so ŶθL [Ω] = ŶθL [−Ω]† and (2) VZ3[ω] = V ∗Z3[−ω]∗. A derivation is given below:

YθL [ω − Ω5] = YθL [−ω + Ω5]† (4.62)

=
(
|C| e−i(θL+ψL)V ∗Z3[−ω] + |C| ei(θL+ψL)VZ2[−ω]

)†
(4.63)

= |C| ei(θL+ψL)V ∗Z3[−ω]∗ + |C| e−i(θL+ψL)VZ2[−ω]∗ (4.64)

= |C| ei(θL+ψL)VZ3[ω] + |C| e−i(θL+ψL)V ∗Z2[ω] (4.65)

4.10 Reconstructing the re�ected �uctuations in an arbitrary

quadrature δYθL[ω] (Actual measurement)

The actual reconstruction of the re�ected heterodyne signal near the mechanical resonant frequency

YθL [ω+Ω5] di�ers from the ideal expression given in Eq. 4.59. This section describes the corrections

to the ideal expression.

4.10.1 Correction #1 - Phase changes between the local oscillator and

signal beams

A time varying phase shift ψ(t) between the local oscillator and signal beams will cause the het-

erodyne measurement to have a time varying heterodyne phase θL + ψ(t) + φ in Eq. 4.59. A time

varying phase shift ψ(t) can be caused by path length variations between the signal and local os-

cillators beams. These path length variations can be caused either by mechanical vibrations of the

mirrors or by thermal expansion of the aluminum breadboard on top of which the optics are located.

The other contribution to the heterodyne phase is φ = arg ā, which is the phase shift between the

incident beam and the intracavity �eld. The phase φ depends on the detuning of the incident laser

relative to the cavity resonance. If the Pound-Drever-Hall lock is working well, then the detuning

∆ is constant, and φ = arctan(2∆/κ) should also be constant.

Figure 4.9 shows �uctuations in the relative phase between the local oscillator beam and the

signal beam. The reference phase is reconstructed from the X and Y quadratures of the fourth
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demodulator of the ZI-HF2 VX4(t) and VY 4(t) using

ψref = arg (VZ4(t)) = arg (VX4(t) + iVY 4(t)) (4.66)

Similarly, the re�ected phase is computed using the X and Y quadratures of the �rst demodulator

VX1(t) and VY 1(t) :

ψre�(t) = arg (VZ1(t)) = arg (VX1(t) + iVY 1(t)) (4.67)

Several things should be noted about Fig. 4.9. First, during the 20 seconds the data was recorded,

the reference phase �uctuates by about 0.2 radians, which is equivalent to a path length �uctuation

of about 30 nm. Second, the �uctuations in the re�ected phase match the �uctuations in the

reference phase, which means the reference phase should be subtracted o�. Third, the re�ected

phase has additional phase �uctuations at higher frequencies which are caused by acoustically-

driven membrane motion in the sub-kHz frequency range.

Before the re�ected heterodyne signals VZ1(t), VZ2(t) (upper mechanical sideband), or VZ3(t)

(lower mechanical sideband) are converted into the frequency domain, the time varying reference

phase ψref(t) must be subtracted o�. The additional subscript �cor� denotes a �corrected� signal

which has the phase appropriately subtracted:

VZi,cor(t) = e−iψref(t)VZi for i = 1, 2, 3 (4.68)

Then Eq. 4.59 for YθL [ω + Ω5] becomes

YθL [ω + Ω5] = |C| e−i(θL+ψL)V ∗Z3,cor[ω] + |C| ei(θL+ψL)VZ2,cor[ω] (4.69)
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Reference

Reflected

Figure 4.9: A plot of the reference heterodyne phase and the re�ected heterodyne phase as a function
of time. The re�ected phase appears noisier because it is measuring low frequency < 3 kHz position
�uctuations of the membrane which are driven by acoustic noise.

4.10.2 Correction #2 - A constant phase o�set in the heterodyne phase

θo�set

Even after the time varying phase shift ψre�(t) is subtracted o�, there is still a DC o�set in the

heterodyne phase shift. This could be either optical or electronic in origin. There is a 80 MHz

frequency di�erence between the signal and local oscillator beams, which corresponds to a relative

phase shift of 2π every 3.75 meters of optical path length. Since there is no simple way to predict

this phase o�set, a calibration is performed by phase modulating the signal beam at the frequency of

demodulator 5, Ω5, which is very near the mechanical resonance frequency. The phase modulation of

the signal beam is created using the same electro-optic modulator used to create phase modulation

sidebands for the Pound-Drever-Hall locking scheme. If the signal beam is far o� resonance, then

the re�ected signal beam should still have pure phase modulation at Ω5. The o�set phase θo�set is

chosen to maximize the phase modulation signal Yπ/2[Ω5]:

Yπ
2
[Ω5] = |C| e−i(π/2+θo�set)V ∗Z3,cor[Ω5] + |C| ei(π/2+θo�set)VZ2,cor[Ω5] (4.70)
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4.10.3 Correction #3 - A variation in ampli�er gain over the 2 MHz

bandwidth between the upper and lower mechanical sidebands

The signals near the upper side band demodulator Ω3 = ωF + Ω5 ≈ 2π × 20.8 MHz and lower side

band demodulator Ω2 = ωF − Ω5 ≈ 2π × 19.2 MHz are separated by almost 2 MHz. Any variation

in the photodiode response or gain in any subsequent ampli�ers over this 2 MHz bandwidth will

scale the two sidebands di�erently. Thus we should calibrate this variation in gain between the

upper and lower sidebands and parametrize it by a parameter β:

Yπ
2
[Ω5] = |C| βe−i(π/2+θo�set)V ∗Z3,cor[Ω5] + |C| ei(π/2+θo�set)VZ2,cor[Ω5] (4.71)

The calibration method, calibration data, and estimated value for β are given in Sec. 5.1.2.

4.10.4 Correction #4 - An overall phase shift to re�ected heterodyne

quadrature YθL[ω]→ eiθgYθL[ω]

A global phase shift to the re�ected heterodyne quadrature YθL [ω] → eiθgYθL [ω] will cause a phase

shift in the correlation S[ω] = Xφ[ω]Y ∗θL [ω] → e−iθgS[ω]. Since the signature of the RPSN is

contained in the real part of S[ω], if this global phase shift is not accounted for then the detected

signal will be a combination of the desired real part of S[ω] and an undesired imaginary part. A

global phase shift can be caused by relative phase shifts between the internal local oscillators in

the ZI-HF2 responsible for demodulating the heterodyne carrier at Ω1, the heterodyne sidebands

demodulators at Ω2 and Ω3, and the transmitted signal at Ω5. As a result,

YθL [ω + Ω5] = e−iθg
(
|C| βe−i(θL+θo�set)V ∗Z3,cor[ω] + |C| ei(θL+θo�set)VZ2,cor[ω]

)
(4.72)

which contrasts with the uncorrected expression given in Eq. 4.59:

YθL [ω + Ω5] = |C| e−i(θL+ψL)V ∗Z3[ω] + |C| ei(θL+ψL)VZ2[ω] (4.73)
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Equation 4.72 will be used throughout the �nal chapter in all measurements involving the heterodyne

detection scheme.

The calibration method, calibration data, and estimated value for θg are given in Sec. 5.1.3.
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Chapter 5

Preliminary Results and Discussion

5.1 Calibrating the measurement scheme

As described in detail in Sec. 4.10, there are three calibration parameters which must be determined

in order to reconstruct the re�ected heterodyne quadrature and the real part of the correlation R[ω].

These three calibration parameters are:

1. θo�set, the constant phase o�set between the local oscillator and signal beams (Sec. 4.10.2).

2. β, the variation in gain over the 2 MHz bandwidth separating the upper and lower sidebands

produced by mechanical motion (Sec. 4.10.3).

3. θg, a global phase shift between the transmitted and re�ected signals (Sec. 4.10.4) caused

by relative phase shifts between the internal local oscillators in the ZI-HF2 responsible for

demodulating the heterodyne carrier at Ω1, the heterodyne sidebands demodulators at Ω2

and Ω3, and the transmitted signal at Ω5.

These calibration constants need to be determined during each data-taking run. The next three

subsections present the calibration data and estimated calibration parameters which are used in

the subsequent data analysis in this chapter. A summary of the measured calibration constants is

given in Table 5.1.
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θo�set 1.623
β 1.0020
θg 5.55
θcar -0.90986

Table 5.1: Summary of the important calibration constants. θo�set, β, and θg were described in
Sec. 5.1. The heterodyne phase (not quadrature angle) of the carrier θcar is measured by taking the
mean value of arg(Xcar + iYcar) where Xcar and Ycar are the quadratures recorded by the ZI-HF2 at
the heterodyne beat note frequency (demodulator 2).

5.1.1 Calibration of θo�set

A calibration of θo�set is performed by phase-modulating the signal beam at Ω5 (the frequency of

demodulator 5), which is very near the mechanical resonance frequency ωM. The phase modulation

of the signal beam is created using the same electro-optic modulator used to create phase modulation

sidebands for the Pound-Drever-Hall locking scheme. Figure 5.1 A shows a plot of the power spectral

density of the phase modulation signal as detected by the heterodyne measurement scheme. If there

was no phase o�set between the local oscillator and signal beams, then this pure phase modulation

signal would be maximized for a heterodyne quadrature of θ = π/2, and the heterodyne signal

would vanish at θ = 0, π, . . .. However, as Fig. 5.1 B shows, the modulation signal vanishes at

θ = 1.623, which means θo�set = 1.623.

5.1.2 Calibration of β

5.1.2.1 Method 1: Laser far-detuned from cavity resonance

In this measurement, the laser is far-detuned from resonance so both phase modulation sidebands

at Ω5 re�ect o� of the cavity with the same phase shift and amplitude. In this case, the power in

the two re�ected sidebands should be equal. If an inequality is observed, it could be from either

(a) one sideband coupling to a higher-order mode of the cavity or (b) a non-�at response of the

heterodyne measurement over the 2 MHz bandwidth spanned by the sidebands. The possibility

of a higher-order mode can be ruled out by ensuring there is no transmission through the cavity

as detected by a camera or photodiode. Second, coupling to a higher-order mode can be ruled

out by slightly adjusting the detuning so as to shift the sideband from the possible resonance

124



(A)

(B)

Phase modulation
signal vanishes at 
θ = 1.623

In
te

gr
at

ed
 P

S
D

 (
a.

u.
)

(Hz)

(V
2
/H
z)

Figure 5.1: (A) The power in the upper and lower sidebands. The frequency is the deviation from
the sideband frequency, so that the USB and LSB overlap for easy comparison. In this case the
integrated power is the same to about 0.4 percent, meaning β = 1.002. (B) Integrated power (at
the modulation frequency) in a quadrature of the re�ected �eld as the quadrature angle is varied.
The USB and LSB data whose PSDs are shown in (A) have been used to reconstruct an arbitrary
quadrature of the re�ected �eld.
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and looking for a change in the sidebands. Third, the higher-order modes should be of reduced

signi�cance for an input laser which is geometrically well-coupled to the TEM00 cavity mode. Since

coupling to higher-order modes can be ruled out for a variety of reasons, any remaining inequality in

sideband amplitude is assumed to be caused by a non-uniform frequency response in the heterodyne

measurement. I parametrize this non-ideality as

β =

√
PUSB
PLSB

(5.1)

where PUSB and PLSB are the powers in the upper and lower sidebands, respectively. For the far-

detuned calibration data shown in Fig. 5.1 A β = 1.0025. The ratio of the powers is computed by

integrating the upper and lower sideband power spectral densities over a very narrow bandwidth

(±2 Hz) around the modulation frequency.

5.1.2.2 Method 2: Ratio of sidebands at zero detuning

Just as in the far-detuned case, it is also true that the re�ected phase modulation sidebands should

have equal amplitudes at zero detuning. However, zero detuning requires locking the laser, which

is prone to o�sets in the error signal, o�ering a slightly less accurate method of estimating β. We

can tell which data sets are closest to zero detuning in a few di�erent ways, but one good option

is to choose data sets which minimize the membrane Brownian motion observed in the transmitted

intensity. At zero detuning there should be no signal in the transmission due to membrane motion

to lowest order. Figure 5.2 shows the integrated Brownian motion for a number of data sets taken

at di�erent detunings. The phase modulation ratio is de�ned in the same way as β, i.e.
√

PUSB
PLSB

.

Table 5.2 shows the estimated values of β for the three data sets closest to zero detuning and

they are all within one percent of the estimates given from the far-detuned data. These values are

consistent with a red-detuning of 0.005κ to 0.025κ. Because the the far-detuned calibration method

does not rely of having the laser locked precisely at zero detuning, I will use β = 1.0025 for the

remaining analysis in the dissertation.
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Data set β

50 0.990
51 0.995
55 0.997

Table 5.2: Calibration constant β estimated from the ratio of powers in re�ected phase modulation
sidebands. Data sets 50, 51, and 55 represent the three data sets closest to zero detuning.

Closest to 
zero detuning

Data set

(a
.u

)

Figure 5.2: Plot showing the variation of the integrated Brownian motion signal in transmission,
for a series of data sets taken at di�erent detunings. The data sets closest to zero detuning should
correspond to the smallest Brownian motion signal.
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5.1.3 Calibration of θg

A global phase shift of the re�ected heterodyne quadrature YθL [ω] → eiθgYθL [ω] will occur due to

the arbitrary (but constant) phase shifts of the ZI-HF2's internal oscillators that are demodulating

the heterodyne carrier and sidebands. The phase shift eiθg will cause a phase shift in the correlation

S[ω] = Xφ[ω]Y ∗θL [ω]→ e−iθgS[ω]. However, by using one data set at zero detuning, we can calibrate

this phase. According to Børkje et al. [4], for small detunings, the ratio of the real and imaginary

parts of the correlation have a simple relation:

Re (Sz,z [ω])

Im (Sz,z [ω])
≡ R

(th)
1 [ω]

I
(th)
1 [ω]

=
κ

2ωM
≈ 0.45 (5.2)

where the cavity decay rate κ ≈ 4.45 × 106 s−1 as determined in Sec. 5.2, and ωM ≈ 2π × 785 kHz

is the resonant frequency of the membrane's (2,2) mode. The result is valid as the detuning goes

to zero, because even though Sz,z[ω] → 0, the ratio of the real and imaginary parts obeys Eq. 5.2.

Also, the ratio given in Eq. 5.2 is independent of ω, meaning the real and imaginary parts of the

correlation can be integrated over ω and ratio will still be κ/2ωM.

We can estimate the ratio of thermal contributions in Eq. 5.2 as

Re (Sz,z [ω])

Im (Sz,z [ω])
≈ ReS [ω]

ImS [ω]
≡ R[ω]

I[ω]
≈ κ

2ωM
(5.3)

because the thermal contribution to the correlation is much larger than the contribution from either

classical or quantum radiation pressure noise. Then we need to �nd the choice of θg which yields

the ratio

R
(th)
1 [ω]

I
(th)
1 [ω]

≈ R[ω]

I[ω]
≈ 0.45 (5.4)

Once θg is calibrated for a data set near zero detuning, the same θg is used in all subsequent data

analysis at all detunings.

Figure 5.3 shows a plot of the ratio of the integrated real and imaginary parts of the correlation

as a function of the heterodyne quadrature angle. The integration was a taken over a bandwidth

of about ±100Hz from the mechanical resonant frequency. Since the data set was not exactly at
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Figure 5.3: Ratio of real and imaginary parts of the correlation integrated over frequencies near
the mechanical resonant frequency. The data set is near zero detuning (∆ = −0.03κ). When the
detuning is not exactly zero, the ratio depends on the heterodyne angle. The optimal �t gives a
calibration of θg = 5.566. A value of θg = 5.55, determined from an earlier analysis, is used in all
subsequent analysis of correlation data for all detunings. Both estimates of θg are consistent with
a 2% uncertainty in κ.

zero detuning, there is some heterodyne angle dependence of the ratio. The best �t curve gives a

value of θg = 5.566. A value of θg = 5.55, determined by a more primitive analysis, is used in all

subsequent analysis. In the future, only the method described here and shown in Fig. .5.3 should

be used because it gives a more precise determination of θg. Both values of θg are consistent with

a 2% uncertainty in κ.

5.2 Determining cavity decay rates κ and κL

The overall cavity decay rate κ and the decay rate out of the left end mirror κL must both be

known in order to compare any observed optomechanical e�ects with theory. In general, κ can

depend sensitively on position due a variety of mechanisms such as scattering or absorption of
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the membrane. For the optomechanical cavity discussed in this work, κ varied by a factor of two

between the node and antinode as seen in Figs. 4.3 and 4.4. Also large κ gradients ∂κ/∂x can occur

near avoided crossings of di�erent transverse modes as was shown by Sankey et al. [69]. Because

of the position dependence of the cavity decay rates, it is important to measure κ and κL any time

the membrane is repositioned.

In Figs. 4.3 and 4.4, the cavity decay rate κ was determined by a ring-down measurement.

However, the ring-down measurement doesn't give any information about κL. Instead, we used

heterodyne detection to simultaneously measure the total cavity decay rate κ and the transmission

decay through the left end mirror κL by sweeping the laser through the cavity resonance and

measuring the variation in the re�ected phase and amplitude as a function of detuning.

Sweeping the laser through resonance, but over an uncertain range in detunings, is su�cient

to determine the ratio κL/κ, but the detuning range must be calibrated to measure κ and κL

independently. This is accomplished by using phase modulation sidebands at a known modulation

frequency as yardsticks for the detuning sweep. The complex re�ection coe�cient r can be derived

from the steady state solution of the cavity equation of motion given in Eq. 2.69. The complex

re�ection coe�cient r is given by

r(∆) =

κL
κ/2

+ i ∆
κ/2
− 1

1− i ∆
κ/2

(5.5)

The data is shown in Figs. 5.4 and 5.5. The �ts (solid lines) follow Eq. 5.5, where κ and κL are

�t parameters, and the laser detuning ∆ is assumed to be linearly varying in time, i.e. ∆(t) = at+b,

where a and b are also �t parameters. The phase modulation frequency was 1 MHz. The membrane

position was very near the cavity node and should represent the highest �nesse achievable in our

cavity. Ten sweeps of the cavity resonance gave �t values of κ = (4.45 ± .03) × 106 s−1 and

κL/κ = 0.155± .002.

5.3 Measurement of detuning

The detuning between the cavity and the laser is controlled through a Pound-Drever-Hall (PDH)

locking scheme. The PDH error signal can also be used as an estimate of detuning. However,
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Figure 5.4: Plot of the cavity's complex-valued re�ection coe�cient as a function of laser frequency,
r[ωlaser]. The data is shown for just one sweep of the carrier laser frequency through the cavity's
resonance. The three colors represent the carrier (blue) and two phase modulation sidebands (red
and green). The theoretical re�ection coe�cient for the case of a lossless, symmetric cavity is shown
for comparison (black solid line).
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Blue shows the carrier, which is the largest signal with best signal-to-noise ratio. Red and green
are the phase modulation sidebands at ±1MHz from the carrier.
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because the PDH error signal scales with the incident laser power Pin, it is inconvenient to use the

error signal as a measure of non-zero detunings. The commonly cited advantage, that PDH locking

is insensitive to power �uctuations in the laser, occurs because the PDH error signal is exactly zero

at ∆ = 0 for any laser power Pin.

In this section I discuss three alternative ways to measure the detuning, none of which depend

on Pin. The �rst two methods require that the cavity decay rates κ and κL are already determined

using the methods described in Sec. 5.2.

5.3.1 Method 1: Phase shift of the re�ected heterodyne carrier

A measurement of the phase shift of the re�ected heterodyne signal carrier αcarrier is su�cient to

determine the detuning. The phase shift αcarrier is given by

αcarrier = arctan

(
∆κL

κ
2

(
κL − κ

2

)
−∆2

)
(5.6)

Inverting to �nd the detuning ∆ gives

∆ =
−κL cotαcarrier ±

√
(κL cotαcarrier)

2 + 4κ
2

(
κL − κ

2

)
2

(5.7)

Note that Eq. 5.7 only depends on the phase measurement and is insensitive to the overall optical

power being used.

Figure 5.6 shows the measured phase shift of the re�ected signal beam carrier αcarrier as a

function of detuning. Using κL = 0.132κ (green dashed curve) provided the best �t to the data ,

but is about 15 percent smaller than the κL measured in Sec. 5.2. A future experiment should be

directed at determining whether the di�erence in κL is real and is the result of some e�ect like a

position dependent cavity decay rate, or if instead, it represents an error in the re�ected phase shift

determined via the heterodyne measurement.
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Figure 5.6: Plot of the phase shift of the re�ected signal beam measured using the heterodyne
detection. The measured data (blue dots) agrees best with the red theory curve using parameters
κ = 4.45×106 s−1 and κL = 0.132κ. The green theory curve uses κ = 4.45×106 s−1 and κL = 0.155κ,
which were determined from the data shown in Figs. 5.4 and 5.5.

5.3.2 Method 2: Phase shift of the re�ected phase modulation sidebands

In principle, the phase shift of the re�ected phase modulation sidebands could be used to determine

the detuning in the same way as the carrier. However, the signal-to-noise ratio for the sidebands

is worse than the carrier for two reasons. First, the power in the sidebands Ps is typically much

smaller than the power in the carrier Pc (Ps < 0.05Pc). Second, the re�ected phase shift changes

most sensitively with detuning near zero (∂αcarrier/∂∆ is largest near ∆ = 0). The phase modula-

tion frequency is very near ωm = 2π × 784 kHz, and for typical cavity parameters the sensitivity

∂αcarrier/∂∆ at ∆ ≈ ωm is ten times smaller than the sensitivity at zero detuning. The reduced

signal-to-noise ratio in the re�ected sidebands relative to the carrier is easily seen in Fig. 5.5.

5.3.3 Method 3: Ratio of the mechanical motion-induced sidebands

A third method uses the ratio of the powers of the sidebands induced by mechanical motion (Brow-

nian motion). One advantage of this scheme is that it only relies on the power in the two sidebands
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and is independent of phase shifts. It depends on the calibration factor β and on the cavity decay

rate κ, but does not depend on the phase calibration or κL. The theoretical expression for the ratio

of the powers in the upper and lower sidebands is given by the ratio of two Lorentzians of width κ.

The upper sideband is detuned by ∆ + Ω, and the lower sideband is detuned by ∆− Ω. The ratio

of the sidebands RSBis then

RSB =
PUSB
PLSB

=
(∆− Ω)2 +

(
κ
2

)2

(∆ + Ω)2 +
(
κ
2

)2 (5.8)

Inverting and solving for the detuning ∆ in terms of the ratio of sidebands RSB gives

∆ =

−ωM(RSB + 1)±
√
ω2
M(RSB + 1)2 − (RSB − 1)2

(
ω2
M +

(
κ
2

)2
)

RSB − 1
(5.9)

5.3.4 Agreement of Methods 1 and 3

Figure 5.7 shows a plot of the detuning as estimated by methods 1 and 3. The phase shift of the

heterodyne carrier depends only on the carrier, and the ratio of the sidebands depends only on the

sidebands and not on the carrier. Thus the methods give two independent ways of measuring the

detuning. However, method 1, which uses the ratio of sidebands produced by mechanical motion,

does not require the sophisticated calibration procedure required for the heterodyne measurement,

so I believe it is the simpler and more reliable method. Throughout the remainder of the dissertation

all detuning estimates are given using method 3 (i.e., the ratio of sidebands).

Also, though using κL = 0.132κ produced better agreement between the two detuning estimates

as shown in Fig. 5.7 this is 15% smaller than the earlier estimate of κL = 0.155κ based on the swept

data in Fig. 5.5. However, the swept data set had a detuning range of −3κ < ∆ < 3κ, whereas

the data in Fig. 5.7 shows the locked detuning range was much smaller (about−0.3κ < ∆ < 0.2κ).

Because the swept method o�ers a more complete set of �table data and is simpler to analyze, the

left end mirror decay rate will be assumed to be κL = 0.155κ.
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Figure 5.7: Comparison of the detuning as estimated by the ratio of the power in the upper and
lower mechanical motion-induced sidebands (x-axis) and as estimated by the carrier heterodyne
phase shift αcarrier (y-axis).

5.4 Optomechanics

The optically-induced shift in mechanical resonant frequency and damping was derived in Sec. 2.7.

The results for δωM and γopt are given in Eqs. 2.128 and 2.131 and repeated here for convenience:

δωM = |α|2
(

ωM + ∆(
κ
2

)2
+ (ωM + ∆)2

+
−ωM + ∆(

κ
2

)2
+ (−ωM + ∆)2

)
(5.10)

γopt = 2 |α|2 κ
2

(
1(

κ
2

)2
+ (ωM + ∆)2

− 1(
κ
2

)2
+ (−ωM + ∆)2

)
(5.11)

The optomechanical coupling strength |α|2 is given in Eq. 2.135 and repeated here:

|α|2 =
κL(

κ
2

)2
+ ∆2

Pin
~ωL

~
2mωM

∣∣∣∣∂ωcav∂z̃

∣∣∣∣2 (5.12)
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The slope is given in Eq. 2.55 and repeated here:

∂ωC
∂z̃
≈ ωL

L
|rd| sin

(
4π

λ
z̃

)

The parameters are straight-forward to determine experimentally except for the displacement

of the membrane relative to a cavity node z̃ which determines the slope
∣∣∂ωcav

∂z̃

∣∣. The cavity decay

rates κ = 4.45×106 s−1 and κL = 0.155κ were determined in Sec. 5.2. The detuning ∆ is estimated

using the simpler (compared to the heterodyne measurement) ratio of sidebands on the signal

beam induced by the Brownian motion of the membrane as described in Sec. 5.3.3. The power

incident on the cavity was measured to be Pin ≈ 1 × 10−5W. The mechanical resonant frequency

is ωM/2π = 784 kHz. The laser wavelength, as mentioned elsewhere, was λ = 1064 nm. The cavity

length was L = 7 mm. The approximate amplitude re�ectivity for the membrane was |rd| ≈ 0.27.

We estimated that the membrane was between 5 nm and 15 nm from the node, and the value of

z̃ which created the best overlap with the data shown in Fig. 5.10 was 12 nm. We chose to keep

the membrane close to a node as a way to reduce our sensitivity to audio frequency mechanical

vibration of the membrane's in-situ alignment system. The slope |∂ωC/∂z̃| is over an order of

magnitude smaller at z̃ = 12 nm compared to the maximum slope at z̃ = 266 nm allowing the PDH

feedback to keep the laser locked to the cavity more cleanly and for longer times.

The resonant frequencies and linewidths were determined by �tting the membrane's Brownian

motion as measured by the re�ected heterodyne measurement. Three such power spectral densities

are shown in Fig. 5.8 along with their �ts.

One di�culty in comparing the optomechanical theory with the measured data is that the

resonant frequency of the membrane drifted up about 14 Hz over an hour, which, if the drift is

assumed to be uniform, amounts to 0.26 Hz per minute. Figure 5.9 shows a plot of the resonant

frequency as a function of time. The drift did not signi�cantly a�ect the measurement of mechanical

linewidth because each data set only represented 20 seconds of data, or an estimated frequency drift

of about 0.08 Hz. However, the frequency drift during the hour of measurements did exceed the

expected optomechanical induced frequency shift. Figure 5.10 shows a plot of the uncorrected
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Figure 5.8: Power spectral densities of the Brownian motion of the membrane for three detunings.
As the detuning becomes increasingly negative, the linewidth increases and the resonant frequency
shifts due to optical damping and the optical frequency shift.

resonant frequency shift and the resonant frequency shift with a uniform 0.26 Hz/minute drift

subtracted. The �t to theory improves substantially.

A mechanism for the frequency drift is unclear. During the months the membrane was under

vacuum the resonant frequency decreased by at least 5 kHz. Such a decrease, if due to mass change

alone, would correspond to adding about 7 atomic layers of water (a 2 nm thick layer). However, it

seems surprising that pumping longer would end up with more mass deposited on the membrane.

Also, the short term drift in Fig. 5.9 shows an increase in resonant frequency, which is the opposite

of the long term drift. The short term drift is consistent with the laser heating and vaporizing a

small amount of the depositions from the membrane surface, though no causal relationship can be

inferred from this limited amount of data. In the future it would be good to test this hypothesis by

observing how the drift rate changes as a function of incident laser power.
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Lost Lock

Uniform drift model

Close to zero detuning

Close to zero 
detuning

Figure 5.9: Resonant frequency drift of the membrane over an hour of measurements. Two data
sets near zero detuning (meaning the optomechanical frequency shift was also zero) were chosen as
the two points to de�ne the uniform drift estimate (green dashed line). The laser became unlocked
from the cavity at times labeled �Lost Lock.�

without
compensating
for drift

with
compensating
for drift

theory theory

Figure 5.10: Measured optical damping and frequency shift as a function detuning. The theory
curve has one free parameter, the distance of the membrane from a node of the intracavity �eld,
which was di�cult to determined experimentally. This parameter essentially sets the strength of
the optomechanical coupling, and the best �t value was 12 nm. A value between 5 and 15 nm
was expected. There was a drift in the resonant frequency during the measurement. The green
frequency drift data has had a uniform drift subtracted, as is detailed in Fig. 5.9.
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5.5 Measurement of the critical quadrature

The correlation measurement scheme predicted by Børkje et al. in Ref. [4] makes a simple prediction

that the real part of the correlation caused by thermally-induced Brownian motion Rz,z[ω] will

vanish if the re�ected heterodyne quadrature angle is chosen to have a particular value, known as

the �critical quadrature� θC, given by

θC = 2 arctan
2∆

κ
(5.13)

Similarly, the imaginary part of the thermal correlation Rz,z[ω] will vanish at a quadrature angle

θ = arctan
2∆

κ
(5.14)

The angle in Eq. 5.14 that causes the imaginary part of the correlation ImSz,z[ω] to vanish is included

for comparison with experimental data. However, the imaginary part of the RPSN-induced correla-

tion ImSq,z[ω] is not antisymmetric, so even though ImSz,z[ω] vanishes, this heterodyne quadrature

is less useful for observing the RPSN.

Both angles in Eqs. 5.13 and 5.14 depend only on the detuning ∆ and the total cavity decay

rate κ, which means they are insensitive to many parameters such as laser input power, membrane

position (as long as κ remains constant), and optomechanical e�ects.

Since our measurements are all in the regime where the thermal contributions are much larger

than any e�ect from classical or quantum radiation pressure noise, we have R[ω] ≈ Rz,z[ω]. At the

critical quadrature we should see the real part of the measured correlation get signi�cantly smaller.

Figure 5.11 shows the real part of the correlation for di�erent quadrature angles. The curve labeled

θ = θC signi�cantly reduces the correlation. At an angle θ = θC ± π/2 the thermal contribution

to the correlation Rz,z[ω] attains a maximum value. These heterodyne quadrature angles which

minimize ReS[ω] and ImS[ω] can be empirically determined and compared against the theoretical

predictions in Eqs. 5.13 and 5.14, respectively.

Figure 5.12 shows a plot of the empirically determined values of the heterodyne quadrature angles
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Figure 5.11: Measured real part of the correlation R[ω] = ReS[ω] for di�erent heterodyne quadra-
tures. When the heterodyne quadrature angle is chosen to be the critical quadrature, the real part
of the correlation is substantially reduced. The resonant frequency fm = 783.723 kHz.
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Figure 5.12: Plot of the measured critical quadrature as a function of detuning. The theoretical
prediction that θC = arctan(2∆/κ) is plotted as the blue dashed line. The blue circle data points
represent the heterodyne quadratures which minimized the real part of the correlation R[ω]. A
similar relationship can be measured for the imaginary part of the correlation, and the theory
(dashed line) and data (circles) is plotted in red.

which minimize the real part R[ω] and imaginary part of the correlation ImS[ω] for many di�erent

detunings. The dashed lines show the theoretical predictions given by Eqs. 5.13 and 5.14. The

agreement is good, which con�rms the e�ectiveness of the calibration scheme and experimentally

measures the critical quadrature predicted by Børkje et al. in Ref. [4].

However, the entire purpose for measuring the correlation using this particular critical quadra-

ture is that the thermal noise can be suppressed enough to observe the interesting quantum cor-

relation. The next section will present data showing the degree to which the thermal contribution

was suppressed and discuss whether this seems reasonable. The averaging time required to observe

the desired RPSN-induced Rq,z[ω] correlation will also be discussed.
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5.6 Suppression of the thermal contribution to the correlation

Now we want to quantify the degree of suppression of the thermal contribution to the correlation

Rz,z[ω]. Figure 5.13 A shows the desired Rq,z[ω] contribution, which has a magnitude of ∼ 0.1.

Figure 5.13 C shows the observed suppression of the thermal contribution which still shows �uctu-

ations with magnitude ∼ 104. Figure 5.13 B shows R[ω] at θ = θC + π/2, which is the quadrature

angle creating largest thermally-induced correlation and is used to calibrate the correlation data to

the same scale as theory.

This factor of 105 between the desired Rq,z[ω] term and the observed correlation at critical

quadrature in Fig. 5.13 C has two contributions. The �rst, due to thermally driven Brownian

motion detected by the re�ected quadrature, was described in Sec. 3.9. There it was argued that,

prior to averaging, the amplitude of �uctuations in the correlation should be a factor of

√
Sth
F [ω]

Ssn
F [ω]

≈ 2000 (5.15)

larger than the desired Rq,z[ω] contribution (though for an in�nite measurement time these �uctu-

ation average to zero). The second source of noise is in the measurement of transmitted intensity.

In Sec. 3.9 it was assumed that the transmitted amplitude quadrature Xφ[ω] measurement was shot

noise- limited. However, as Fig. 5.14 shows, the actual noise �oor of the transmission photodetector

is a factor of 5×104 larger than the predicted shot noise. The speci�ed detector dark noise is about

2×103 larger than shot noise, implying more noise is added between the photodiode output and the

ZI-HF2, possibly during the summing of the transmission signal with the heterodyne signal. This

additional dark noise causes �uctuations in R[ω] which are an additional factor of
√

5× 104 ≈ 220

greater than the desired Rq,z[ω] contribution. When combined, the expected size of these unaver-

aged �uctuations would be about 2000× 220 ≈ 4× 105 larger than the desired Rq,z[ω] , which is in

close agreement with Fig. 5.13.

In Sec. 3.9 it was calculated that an averaging time of nine hours would be needed to achieve a

signal-to-noise ratio of unity assuming the membrane temperature was T = 300 K and the photodi-

odes were shot noise-limited. The additional noise caused by the non-shot noise-limited transmission
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detection system photodiode causes an increase in the averaging time by a factor of
√

5× 104 ≈ 220,

so the measurement shown in Fig. 5.13 would take about 1200 hours to achieve a signal to noise of

unity.

There are multiple approaches to using the correlation measurement scheme of the RPSN in a

more reasonable time. First, the detectors should be shot noise-limited. This can be accomplished

by using photodiodes with a lower noise equivalent power and/or increasing the amount of power

landing on the photodiode. In the current setup, the optical power can be increased by removing

the beam splitter (for mode imaging) before the photodiode and by increasing the power incident

upon the cavity. Also, a heterodyne or homodyne detection scheme could be used in transmission to

scale up the shot noise �uctuations by the local oscillator signal. Second, the ratio of the RPSN and

thermal forces can be made more favorable through changing many parameters in the setup. For

example, one straightforward way is to make the system colder. The averaging time is proportional

to
√
Sth
FF/S

sn
FF ∝

√
T . By lowering the temperature from 300 K to 300 mK, which is achievable in

a 3He refrigerator, the averaging time is reduced by a factor of 32. Chapter 6 will explore in more

detail a variety of changes to the optomechanical system which could increase the RPSN e�ects

relative to the thermal e�ects. Third, if a resonator with a larger mechanical linewidth (γ → aγ)

is used, then the measurement time required to resolve the mechanical line shape decreases by this

same factor (Tmeas → Tmeas/a). This e�ect is particularly signi�cant when the optical damping is

used to increase the linewidth of the mechanical resonator (which avoids increasing the thermal

Langevin force), but is also helpful for smaller membranes such as for the proposed �ber cavity

optomechanical systems (ωM/2π = 3− 100MHz) described in Ch. 6.
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Figure 5.13: (A) The theoretically expected pro�le of the real part of the correlation R[ω] at the
critical quadrature for a detuning of ∆ ≈ −0.037κ. (B) The dashed line is a plot of the theoretical
expectation for the real part of the correlation at θC + π/2 in the limit of an in�nite measurement
time. This is the quadrature that maximizes the correlation due to Brownian motion, and is used
to calibrate the scale of the measured correlation data (shown in red). (C) Measured real part of
the correlation R[ω] at critical quadrature θC. The vertical axis is in the same units as the top plot,
showing that there are still �uctuations about 104 times larger than the desired quantum signal.
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Figure 5.14: Plot of the Brownian motion in transmission. The dark noise of the transmitted
detector is a factor of 5× 104 larger than the estimated shot noise for a power of 800 nW incident
upon the detector. The dark noise was measured using an unlocked and far-detuned data set with
no transmission. The speci�ed photodiode dark noise is 4 × 10−15 V2/Hz. The total dark noise
in the transmission detection scheme was a factor of 30 larger than the speci�ed dark noise of the
photodiode indicating additional noise was added after the photodiode. The detuning for the locked
near-resonance transmission data (blue and dashed green) was ∆ = −0.037κ.
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Chapter 6

Future directions and conclusions

6.1 Optimization of optomechanical parameters

Chapter 5 concluded with the sobering thought that the cavity optomechanical system used in

this dissertation would require a measurement time of 700 hours in order to detect the correlation

signature of RPSN with a signal-to-noise ratio of unity. In this section I describe how the system

could be modi�ed to perform the measurement in a more reasonable time. The ratio of RPSN and

thermal forces given by Eq. 2.181 (copied below for convenience) is our guide:

Ssn
F [ωM]

Sth
F [ωM]

=

 1

1 +
(

∆
κ/2

)2


 1

1 +
(

∆+ωM
κ/2

)2

( κL
κ/2

)
β2 8~PinF 2Q

πmωMcλkBT
(6.1)

Writing the cavity decay rate κ as

κ =
πc

LF
(6.2)

and writing the left end-mirror coupling e�ciency ηe� as

ηe� =
κL
κ/2

(6.3)
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we get

Ssn
F [ωM]

Sth
F [ωM]

=

(
πc

2LF

)4((
πc

2LF

)2
+ ∆2

)((
πc

2LF

)2
+ (∆ + ωM)2

)ηe�β2 4~PinF 2ωLQ

π2c2mωMkBT
(6.4)

One immediate consideration is that the ratio in Eq. 6.4 is proportional to the incident laser power

Pin. One reasonable upper limit for the laser power is the power at which the optomechanical

system has a static bistability, meaning there are multiple steady state solutions of the membrane's

unstretched position as a function of the laser power. The onset of bistability occurs when the

maximum DC optical spring constant is equal to the spring constant of the lowest order mechanical

mode k0. The maximum DC spring constant is given by

k
(max)
opt =

3
√

3ηe�F
2β2ωLPin

2π2c2
(6.5)

Then the optomechanical bistability occurs when k
(max)
opt = k0 ≡ mω2

M,0, where k0 is the spring

constant of the lowest order mechanical mode with resonant frequency ωM,0. Solving for the incident

power PBS
in at which the bistability condition is met (called the bistability power) we get

PBS
in

=
2π2c2mω2

M,0

3
√

3ηe�F 2β2ωL
(6.6)

Substituting PBS
in from Eq. 6.6 into Eq. 6.4 gives

Ssn
F [ωM]

Sth
F [ωM]

=

(
πc

2LF

)4((
πc

2LF

)2
+ ∆2

)((
πc

2LF

)2
+ (∆ + ωM)2

) 8~Q
3
√

3kBT

ω2
M,0

ωM
(6.7)

This is a useful �gure of merit for comparing systems and can be used to estimate the measurement

time required to resolve the RPSN signature in the correlation measurement as in Sec. 3.9. The

�gure of merit no longer depends on the optomechanical coupling parameter β, assuming the power

can always be increased up to the bistability power PBS
in .
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6.1.1 Relevance of the static radiation pressure bistability to the exper-

iments in this dissertation

For a 50-nm thick membrane displaced 12 nm from the node (as in Ch. 5), the factor β is

β =
∂ωcav
∂z̃
× L

ωcav
≈ 0.02 (6.8)

The bistability power given by Eq. 6.6 for the optomechanical parameters in this thesis is PBS
in =

400mW, which is 4 × 104 times higher than the 10 µW of incident optical power actually used in

the experiments. Had the membrane been at a position of largest optomechanical couping ∂ωcav/∂z̃

(halfway between a node and antinode) the bistability power would have only been PBS
in = 1.7mW.

Because the estimated power at the onset of bistability is about a hundred times larger than

the actual incident power, the primary obstacle to locking is almost certainly large mechanical

vibrations of the membrane in the audio frequency range which is caused by the membrane's in-situ

tilt-translation mount. Occasionally these vibrations move the membrane to a position of blue-

detuning, which causes anti-damping and creates large oscillations of the membrane. These large

oscillations cause the laser to lose lock with the cavity. The fact that an occasional blue detuning

is the primary cause of the laser unlocking suggests a signi�cant advantage to locking at large red-

detunings. Section 3.7 showed that the regime of large red-detuning (∆� κ, ωM) also o�ers a good

(antisymmetric) signature of the RPSN using the correlation measurement scheme.

Table 6.1 shows the e�ect of making successive improvements to the system used for the mea-

surements in Ch. 5, but without changing optomechanical parameters. The measurement time at

room temperature can be reduced to three minutes if the following three changes are made: (1) the

incident power is increased to the bistability limit, (2) the optomechanical coupling is maximized

(as it is halfway between a node and antinode), and (3) the detectors are shot noise-limited.

If the membrane optomechanical parameters are also allowed to vary and the incident power is

pushed to the bistability threshold, then Eq. 6.7 gives us some idea of how to optimize parameters.
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First note that the �rst factor resulting from cavity �ltering is always less than one:

(
πc

2LF

)4((
πc

2LF

)2
+ ∆2

)((
πc

2LF

)2
+ (∆ + ωM)2

) ≤ 1 (6.9)

and the upper limit of one is reached when ∆, ωM � κ = πc/LF . Second, note that in this limit,

the only remaining optomechanical parameter which is easily varied is ωM (the mechanical quality

factor Q is not easy to vary). The ratio of RPSN and thermal forces is then proportional to ωM:

Ssn
F [ωM]

Sth
F [ωM]

∝ ωM (6.10)

The measurement would be improved by using membranes with higher resonant frequency as long

as ωM � κ. The cavity decay rate κ can be kept large by using shorter cavities or decreasing the

�nesse. Decreasing the �nesse, however, has the potentially undesirable consequence of requiring

larger incident laser powers to accomplish the same optomechanical e�ect. The Stage 1 �ber cavity

in Table 6.2, under development by Nathan Flowers-Jacobs and Jack Harris, is an example of a

cavity which has moved towards higher ωM, and shorter cavity lengths. The Stage 1 �ber cavity

should be able to achieve a ratio SSN
F [ωM]/Sth

F [ωM] ≈ 1 for 1 mW of incident power. The Stage 1

�ber cavity system should be able to observe directly the e�ects of RPSN as an additional random

force on the membrane of comparable size to the thermal Langevin force.

6.2 Conclusion

It has been over 100 years since the �rst conclusive demonstration of radiation pressure by Lebedev

[1] and Nichols and Hull [2, 3]. The past decade has seen the development of a variety of tabletop-

scale optomechanical systems which o�er a test bed for the mechanical properties of light. In these

recent optomechanical systems, light is not only causing a steady state de�ection of a mirror, but

is creating a rich array of dynamical e�ects such as the shifts in mechanical resonant frequency and

the optical damping as were demonstrated in this thesis.

During these same 100 years we have also learned much more about the (quantum) nature
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Transmission
photodiode

Mirror
e�-
ciency

η =
2κL
κ

T (K) Pin
(µW)

Displace-
ment
from
node
(nm)

SSNF [ωM]

SthF [ωM]
Measure-
ment

time for
S/N =

1

Thesis data current 0.3 300 10 12 2×
10−7

1200
hours

Thesis + optimal
detectors

shot noise-
limited

0.3 300 10 12 2×
10−7

6 hours

Thesis + optimal
detectors + more
optomechanical

coupling

shot noise-
limited

0.3 300 10 24 10−6 3 hours

Thesis + optimal
detectors + max
optomechanical

coupling

shot noise-
limited

0.3 300 10 266 4×
10−5

25 min.

Thesis + optimal
detectors + max
optomechanical
coupling + max
incident power

shot noise-
limited

1.0 300 500 266 6×
10−3

2 min

Thesis + optimal
detectors + max
optomechanical
coupling + max
incident power +

cryogenics

shot noise-
limited

1.0 0.3 500 266 6 10 sec
(a)

Table 6.1: A comparison of the measurement time required to observe the RPSN signature Rq,z[ω]
with a signal-to-noise ratio of unity. The comparison shows the e�ect of successive improvements to
the measurement while keeping the cavity and membrane parameters the same. All setups assume
�nesse F = 30000, cavity length L = 0.007m, mechanical quality factor Q = 8 × 105, mechanical
resonant frequency ωM/2π = 784 kHz, the membrane dimensions are 1mm×1mm×50 nm, and the
detuning is ∆ = 0. Notes : (a) For the cryogenic setup, the 10 second measurement time is set by
the time required to resolve the resonance. No averaging is required since the signal-to-noise ratio
already exceeds unity.
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Transmiss-
ion

photo-
diode

Finesse Cavity
Length
L

(mm)

ωM
2π

(MHz)
Q Mem-

brane
side
(µm)

Mem-
brane
thick-
ness
(nm)

Pin
(W)

SSNF [ωM]

SthF [ωM]

at
PBS
in

Meas.
time
for

S/N =
1

Thesis current 30000 7 0.8 8×
105

1000 50 10−5 2×
10−7

1200
hours

Thesis +
optimal
detectors

shot
noise-
limited

30000 7 0.8 8×
105

1000 50 10−5 2×
10−7

6
hours

Stage 1
�ber
cavity

shot
noise-
limited

30000 0.4 3.0 106 100 200 10−3 1.3 3 sec.
(a)

Stage 2
�ber
cavity

shot
noise-
limited

2000 0.2 100 106 10 200 10−1 1.7 0.1
sec.
(a)

Table 6.2: A comparison of the measurement time required to observe the RPSN signature Rq,z[ω]
with a signal-to-noise ratio of unity. The comparison shows the improvement which can be achieved
by signi�cantly reducing the physical dimensions of the cavity and membrane. The parameters are
based on current and future designs for �ber cavities in development by my Harris Lab colleagues
Nathan Flowers-Jacobs and Scott Hoch. All devices are assumed to be at room temperature T =
294 K and at zero detuning ∆ = 0. Notes: (a) For the �ber cavities, the measurement time is set
by the time required to resolve the resonance. No averaging is required since the signal-to-noise
ratio already exceeds unity.
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of light. This thesis was an attempt to observe radiation pressure shot noise�an e�ect which

is simultaneously quantum (photon statistics) and mechanical (via radiation pressure). Cavity

optomechanical systems o�er a promising route towards observing the RPSN. Though the system

described in this thesis was unsuccessful in observing the RPSN, the path to observation is well-

de�ned. Continuing work in the Harris Lab by Nathan Flowers-Jacobs and Scott Hoch on �ber

cavity optomechanical systems will o�er a direct observation of the RPSN and much more. These

�ber cavity systems should enable the production of squeezed light. Also, many groups (including

the Harris Lab) are rapidly approaching the ground state of a mechanical resonator, and it is

expected that one of these groups using laser cooling will observe RPSN as the limit to their lowest

achievable phonon number. In short, conclusive observation of the RPSN is just around the corner.

So what did we learn from all this? As a technical accomplishment it was the �rst optical

heterodyne measurement employed by our lab. The correlation measurement scheme was one of

the most sophisticated optomechanical measurement schemes implemented in our lab. The Zurich

Instruments HF-2 lock-in was found to be a versatile and indispensable device for implementing the

correlation measurement scheme, and has now become an integrated part of all the optomechanical

projects in the lab.

As a con�rmation of theory, basic predictions of optical spring and damping agreed with our

data. More importantly, in agreement with the predictions of Børkje et al. [4], we minimized

the e�ect of thermally driven motion in the correlation measurement using the critical heterodyne

quadrature of the re�ected beam. Although the suppression of thermal e�ects wasn't su�cient

to observe the RPSN, the discrepancy was consistent with the �nite averaging time and with the

additional noise in the non-shot noise-limited detectors. Achieving shot noise-limited detection and

locking the laser with larger optomechanical couplings (higher powers and larger ∂ωcav/∂z̃) could

reduce the required measurement time from hundreds of hours to about 10 minutes. Although these

improvements are possible, they will not be pursued because there are more exciting physics goals

awaiting the �ber cavity system and the cryogenic system. If all goes well, my Harris lab colleagues

will soon be creating squeezed light via the �ber cavity and cooling a membrane near the ground

state in the cryogenic system.
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Appendix A

Calculations of stressed membrane

properties

Notes to calculate the spring constant of a square stressed membrane of

� side length L

� thickness t

� stress σ

A.1 Calculation of spring constant

For a membrane under a high stress, the Young's modulus of the material contributes little to the

restoring force, and the mechanical eigenmodes become very simple:

zm,n(x, y, t) = z0(t) sin(
πmx

L
) sin(

πny

L
) (A.1)

The modes in Eq. A.1 are the two dimensional versions of the vibrational modes of a string under

tension studied in introductory college physics. The derivation of the mode shapes can proceed in

a similar way as for a vibrating string under tension.
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The work done to stretch a membrane by an amount ∆A is just E = σt∆A. For a membrane

mode shape z(x, y), the area becomes

∆A =

L̂

0

dx

L̂

0

dy

√1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

− 1

 (A.2)

which for small amplitudes of motion we can assume the partial derivatives of z are small, and

the expression simpli�es to

∆A =
1

2

L̂

0

dx

L̂

0

dy

((
∂z

∂x

)2

+

(
∂z

∂y

)2
)

(A.3)

Plugging in the de�nition of zm,n(x, y) gives

∆A =
π2

8
(m2 + n2)z0(t)2 (A.4)

Potential energy is then

U = σt∆A =
π2σtm

8
(m2 + n2)z0(t)2 (A.5)

De�ning the spring constant so that U = 1
2
km,nz

2
0 , we get

km,n =
π2σtm

4
(m2 + n2) (A.6)

Assuming σ= 125 MPa, tm = 50 nm, m = n = 1, we get k = 30 N/m. In practice σis a �t

parameter that is chosen to predict agree with the spectum of measured resonant frequencies. I

forget what Norcada claims typical error bars on stress are, but they might be as large as a 50%.
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A.2 Calculation of Kinetic Energy, E�ective Mass, and Res-

onant Frequency

The time dependent solution will look like

zm,n(x, y, t) = z0(t) sin(
πmx

L
) sin(

πny

L
) (A.7)

The kinetic energy is then

T =
1

2

L̂

0

dx

L̂

0

dyρtm

(
dzm,n(x, y, t)

dt

)2

(A.8)

=
1

2

L̂

0

dx

L̂

0

dyρtm

(
dz0(t)

dt

)2

sin2(
πmx

L
) sin2(

πny

L
) (A.9)

=
1

2
ρtmż0(t)2

(
L

2

)2

(A.10)

=
1

2
me�ż0(t)2 (A.11)

where me� = 1
4
ρtmL

2 = 1
4
m is the e�ective mass, and is one quarter of the actual mass of the

membrane. So the full expression for the energy is

E = T + U (A.12)

=
1

2
me�ż0(t)2 +

1

2
km,nz

2
0 (A.13)

Then the resonant frequency is

ωm,n =

√
km,n
me�

(A.14)

=

√
π2σtm(m2 + n2)/4

ρtmL2/4
(A.15)

=

√
π2σ(m2 + n2)

ρL2
(A.16)
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Appendix B

Derivation of thermo-elastic dissipation

limited Q

B.1 Introduction

One of the few forms of damping which is calculable from �rst principles is thermo-elastic dissipation

(TED). As a material is strained there is a change in temperature related by the thermal expansion

coe�cient α. If there is a bending strain as is the case for oscillating beams and membranes then

there is a strain gradient across the thickness of the beam which sets up a thermal gradient in the

beam. As for any thermal gradient, there will be a heat �ow from the warmer side to the cooler

side. Any energy which is transported as a heat conducting from warm to cooler is an irreversible

change. This irreversible heat transfer is a conversion of mechanical energy into heat. The goal

of this calculation is to �nd a formula for QTED, the thermo-elastic dissipation limited mechanical

quality factor.

157



B.2 Derivation

B.2.1 Modi�cations of argument in Norris and Photiadis

This derivation is a hybrid of the QTED derivations given by Norris and Photiadis [105] and original

theory by Zener [102, 103]. Norris and Photiadis have very clear formalism for deriving QTED based

on general thermodynamic principles for continuous media. The results are very general, but a little

longer computationally (at least for me). Zener's derivation is more direct, but less general. Since I

only wanted QTED for a particular known vibrational mode, Zener's approach gave a quicker route

to the �nal result. Here are some general simpli�cations used in this derivation compared to Norris

and Photiadis.

1. The medium is assumed to be isotropic (as it is for amorphous silicon nitride) so all the material

constants like the thermal expansion coe�cient α, the thermal conductivityK, Poisson's ratio

ν, and Young's Modulus EY are all assumed to be scalars or if they are treated as tensors, they

have the simple form such as a diagonal matrix with identical values (e.g.,α = αdiag(1, 1, 1)).

2. The energy of the oscillator undergoing oscillations of amplitude A0 is assumed to have the

simple form for a membrane under tension given in Eq. B.2. Norris and Photiadis assume

there is no externally applied stress so the energy given by Norris and Photiadis is Norris and

Photiadis Eq. 4.3.

3. I take the limit that the thermal relaxation time τr goes to zero which recovers the Kircho�

theory of heat di�usion (which I believe is used by Zener also). I am not sure how to estimate

τr. I don't think it is related to the thermal conductivity.

B.2.2 Setting up the basic equations to solve

This derivation is based heavily on formalism in Norris and Photiadis [105]. Refer to Table B.1 for

a list of the symbols used because they may be di�erent than in the rest of the dissertation.
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σ(~x, t) stress tensor
e(~x, t) strain tensor
θ(~x, t) temperature deviation from equilibrium
α thermal expansion coe�.

ε(~x, t) energy loss per unit volume
K thermal conductivity tensor

Table B.1: List of symbols used in QTED derivation. The list is consistent with notation in Norris
and Photiadis [105].

ρ density 3× 103 kg/m3

σext external stress 897× 106 N/m2

L side length 10−3 m
ν Poisson's ratio 0.25 -
θa Average temperature 294 K
α thermal expansion coe� 3× 10−6 K−1

EY Young's Modulus 126× 109 N/m2

K Thermal conductivity 3.2 W/m K
h Membrane thickness 50× 10−9 m
Cp heat capacity at constant stress 2.1× 106 J/m3/K

Table B.2: List of material parameters used in derivation

In order to calculate the mechanical quality factor QTED we need to calculate the quantity

Q =
ωME

¯̇E
(B.1)

where ωM is the resonant frequency of a mechanical mode, E is the energy of the mechanical mode,

and ¯̇E is the mean energy loss during one oscillation. In general Ė oscillates with the membrane

motion which is why the mean over a period must be taken. The resonant frequency ωM and energy

E of the (m,n) vibrational mode for a square membrane under tension is given in Appendix A as

E =
π2σexth

8
(m2 + n2)A2

0 (B.2)

where h is the membrane thickness, σext is the externally applied stress, and A0 is the amplitude of

oscillation. The resonant frequency ωm,n of that same mode is

ωm,n =

√
π2σext(m2 + n2)

ρL2
(B.3)
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where ρ is the density, and the side length of the square membrane is L. The only remaining thing

to calculate is the mean energy loss over an oscillation cycle ¯̇E.

Because the loss mechanism in thermoelastic dissipation depends on strain gradients which occur

where there is bending, the energy loss is greatest at points where there is the most curvature in

the mode shape (antinodes) and zero at the positions of least curvature (nodes). This means the

energy loss per cycle is not spatially uniform. There is more energy lost near the antinodes, so we

need to �rst calculate ¯̇ε, the energy loss per unit volume time-averaged over an oscillation . ¯̇ε is then

integrated over the volume of the membrane to give ¯̇E. The basic thermodynamics of thermoelastic

dissipation is nicely reviewed in Norris and Photiadis, so I will not review it. The energy loss density

averaged over an oscillation cycle is given by Norris and Photiadis Eq. 3.9:

¯̇ε = −θ(~x, t)α � σ̇(~x, t) (B.4)

B.2.3 Calculating the temperature �eld θ(~x, t) (part 1)

The temperature �eld is calculated from the stress σ via the equation of motion for θ(t) which is

given by Norris and Photiadis Eq. 2.11

Cpθ̇ −∇ � (K∇θ) = −θaα � σ̇ (B.5)

We try a separable series solution to of the form (given by Norris and Photiadis Eq. 3.5)

θ(~x, t) =
∞∑
n=0

θn(t)φn(~x) (B.6)

where θn(t)and φn(~x) satisfy an equations of motion (given by Norris and Photiadis Eq. 3.6 and 3.7)

1

Cp
div(K∇φn) +

1

τ−1
n

φn = 0 (B.7)

θ̇n +
1

τn
θn = − θa

Cp
〈φn,α � σ̇〉 (B.8)
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where 〈f, g〉 =
´
dV f(~x)g(~x).

B.2.4 Calculating α � σ

For an isotropic medium the thermal expansion coe�cient tensor is given by

α = α


1 0 0

0 1 0

0 0 1

 (B.9)

and the Poisson ratio ν and Young's modulus EY are regarded as scalars. The product α � σ

(basically given by Norris and Photiadis Eq 4.1) is

α � σ = α (σxx + σyy) (B.10)

=
z

1− ν2
[(1 + ν)Eα(κxx + κyy)] (B.11)

=
z

1− ν
Eα(κxx + κyy) (B.12)

where the curvature tensor κij (Norris and Photiadis Eq. 4.2) is

κij =
∂2w(x, y)

∂xi∂xj
(B.13)

The mechanical modes of an externally stressed membrane are given by

z(t)wm,n(x, y) = z(t) sin
mπx

L
sin

nπy

L
(B.14)

so

κxx = −∂
2wm,n
∂x2

= z(t)
(mπ
L

)2

sin
mπx

L
sin

nπy

L
(B.15)

κyy = −∂
2wm,n
∂y2

= z(t)
(nπ
L

)2

sin
mπx

L
sin

nπy

L
(B.16)
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and the time derivatives (which are needed later for calculating θ(~x, t)) are

κ̇xx = ż(t)
(mπ
L

)2

sin
mπx

L
sin

nπy

L
(B.17)

κ̇yy = ż(t)
(nπ
L

)2

sin
mπx

L
sin

nπy

L
(B.18)

and the quantity α � σ̇is

α � σ̇ =
z

1− ν
Eα(κ̇xx + κ̇yy) (B.19)

=
z

1− ν
Eαż(t)

(π
L

)2

sin
mπx

L
sin

nπy

L
(m2 + n2) (B.20)

B.2.5 Calculating the temperature �eld θ(~x, t) (Part 2)

The temperature �eld must satisfy Eq. B.5:

Cpθ̇ −∇ � (K∇θ) = −θaα � σ̇ (B.21)

= −θa
z

1− ν
Eα(κ̇xx + κ̇yy) (B.22)

= −θa
z

1− ν
Eαż(t)

(π
L

)2

sin
mπx

L
sin

nπy

L
(m2 + n2) (B.23)

In the thin plate limit the heat �ow in transverse directions can be ignored (discussed in more detail

in Ref. [105]) so the left hand side of the equation simpli�es to Cpθ̇ −K ∂2θ
∂z2

so

Cpθ̇ −K
∂2θ

∂z2
= −θa

z

1− ν
Eαż(t)

(π
L

)2

sin
mπx

L
sin

nπy

L
(m2 + n2) (B.24)

Now assume that the membrane motion is oscillatory so the amplitude of motion z(t) has the form

z(t) = A0 sin(ωm,nt) (B.25)

162



Substituting z(t) = A0 sin(ωm,nt) into the equation of motion for θgiven in Eq. B.24 gives

Cpθ̇ −K
∂2θ

∂z2
= −θa

z

1− ν
EαA0ωm,n cos(ωm,nt)×

(π
L

)2

sin
mπx

L
sin

nπy

L
(m2 + n2) (B.26)

Try the separable solutions of the form

θ(~x, t) =
∞∑
i=0

θi(t)φi(~x) (B.27)

=
∞∑
i=0

θi(t)

(
2

h

)1/2

sin(2i+ 1)
πz

h
(B.28)

The spatial part of the temperature �eld

φi(~x) =

(
2

h

)1/2

sin(2i+ 1)
πz

h
(B.29)

is anti-symmetric because the symmetric solutions don't create any damping (recall the damping

is proportional to the inner product of the (symmetric) stress �eld and the temperature �eld in

Eq. B.8). Also, the solution for φi(~x) given in Eq. B.28 was chosen so that θ(~x, t) would satisfy the

appropriate boundary conditions, which according to Zener [102] is that the temperature �eld must

satisfy

∂θ

∂z
= 0 at z = ±h

2

Substituting the solution in Eq. B.28 into Eq. B.26 gives

∞∑
i=0

Cpθ̇i(t)

(
2

h

)1/2

sin(2i+ 1)
πz

h
−Kθi(t)

(
(2i+ 1)π

h

)2(
2

h

)1/2

sin(2i+ 1)
πz

h

= −θa
z

1− ν
EαA0ωm,n cos(ωm,nt)×

(π
L

)2

sin
mπx

L
sin

nπy

L
(m2 + n2) (B.30)

Multiply the equation by sin (2i+1)πz
h

and integrate over z, and also dividing the equation by Cp

gives an equation of motion for the θi

θ̇i(t)

(
2

h

)1/2

+Dθi(t)

(
2

h

)1/2(
(2i+ 1)π

h

)2

= −Γm,nzi cos(ωm,nt) sin
mπx

L
sin

nπy

L
(B.31)
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where the di�usion constant D is

D =
K

Cp
(B.32)

and the constant Γm,n is given by

Γm,n =
(m2 + n2)π2θaEαA0ωm,n

Cp(1− ν)L2
(B.33)

and zi is given by

zi =
2

h

ˆ h
2

−h
2

dz z sin
(2i+ 1)πz

h
(B.34)

Equation B.31 has an oscillatory drive at frequency ωm,n, so we try an oscillatory solution and �nd

it to be

θi(t) = Re

(h
2

)1/2 −ziΓm,n sin πx
L

sin πy
L

iωm,n +D
(

(2i+1)π
h

)2 e
iωm,nt

 (B.35)

B.2.6 Computing the mean loss rate during an oscillation

The energy loss per unit volume is again given by Eq. B.4 and copied here

¯̇ε = −θ(t)ασ̇(t) (B.36)

The product ασ̇(t) can be written as

ασ̇(t) =
z

1− ν
EY αA0ωm,n cosωm,nt

(π
L

)2

sin
mπx

L
sin

nπy

L
(m2 + n2) (B.37)

=
Cp
θa
zΓm,n sin

mπx

L
sin

nπy

L
cosωm,nt (B.38)

= Re
[
χ1e

iωm,nt
]

(B.39)

where

χ1 =
Cp
θa

Γm,nz sin
mπx

L
sin

nπy

L
(B.40)
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The temperature �eld θ(~x, t) can be written as

θ(t) =
∞∑
i=0

θi(t)

(
2

h

)1/2

sin(2i+ 1)
πz

h
(B.41)

= θ0(t)

(
2

h

)1/2

sin
πz

h
(B.42)

= Re

[
−z0Γm,n sin πx

L
sin πy

L
sin πz

h

iωm,n +D
(
π
h

)2 eiωm,nt

]
(B.43)

= Re
[
χ2e

iωm,nt
]

(B.44)

where θi comes from Eq. B.35and we de�ne χ2 as,

χ2 = −
z0Γm,n sin mπx

L
sin nπy

L
sin πz

h

iωm,n +D
(
π
h

)2 (B.45)

The decision to only keep the i = 0 term is justi�ed later.

Then the energy density loss rate becomes

¯̇ε = −θ(t)ασ̇(t) (B.46)

= −Re [χ2eiωm,nt]Re [χ1eiωm,nt] (B.47)

=
1

2
Re [χ∗1χ2] (B.48)

=
1

2
Re

[
Cp
θa
z
(

Γm,n sin
mπx

L
sin

nπy

L

)2

z0

− sin πz
h

iωm,n +D
(
π
h

)2

]
(B.49)

=
1

2
Re

Cp
θa
z
(

Γm,n sin
mπx

L
sin

nπy

L

)2

z0

− sin πz
h

(
−iωm,n +D

(
π
h

)2
)

ω2
m,n +D2

(
π
h

)4

 (B.50)

= − 1

2

Cp
θa
z
(

Γm,n sin
mπx

L
sin

nπy

L

)2

z0

D
(
π
h

)2
sin πz

h

ω2
m,n +D2

(
π
h

)4 (B.51)

If we plug in numerical values for silicon nitride given in Table B.2 we see that D(π/h)2 ≈ 6×109 �

ωm,n ∼ 106 − 107. (This is the limit that allowed also justi�es keeping only the θ0 term.) In this
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limit, Eq. B.51 simpli�es to become

¯̇ε = −1

2

Cp
θa
z
(

Γm,n sin
mπx

L
sin

nπy

L

)2

z0

sin πz
h

D
(
π
h

)2

The energy loss density is integrated over the volume of the membrane to give the mean energy loss

rate over a cycle

¯̇E =

ˆ h/2

−h/2
dz

ˆ L

0

dx

ˆ L

0

dy¯̇ε = −1

2

CpΓ
2
m,nh

2z0

π2θaD

ˆ L

0

sin2 mπx

L
dx

ˆ L

0

sin2 nπy

L
dy

ˆ h/2

−h/2
z sin

πz

h
dz

(B.52)

where from the de�nition of zi given in Eq. B.34 we calculate z0 as

ˆ h/2

−h/2
z sin

πz

h
dz =

z0h

2
(B.53)

and the integrals ˆ L

0

sin2 nπy

L
dy =

ˆ L

0

sin2 mπx

L
dx =

L

2
(B.54)

Finally, we get that the mean energy loss rate over a cycle ¯̇E is

¯̇E = −1

2

CpΓ
2
m,nh

2z0

π2θaD

z0h

2

(
L

2

)2

(B.55)

B.3 Calculation of Q

We now have all three factors needed to calculate Q: the resonant frequency ωm,n, the energy loss

rate ¯̇E, and the oscillator's energyE.

Q =
ωm,n

¯̇E

E
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where ¯̇E is given by Eq. B.55 and E is given by Eq. B.2 and ωm,n is given by Eq. B.3. Substituting

these into the equation for Q gives

Q =
π

L

√
σext(m2 + n2)

ρ

16π2θaD

CpΓ2
m,nh

3z2
0L

2

π2σexth

8
(m2 + n2)A2 (B.56)

=
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1
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(B.57)

=
π5θaσ

3/2
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3/2
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2L3

K

Cp

(
Cp(1− ν)L2

(m2 + n2)π2θaEαA0ωm,n

)2

(B.58)

=
πσ

3/2
extL(1− ν)2K

2ρ1/2θaz2
0h

2(m2 + n2)1/2E2α2

1

ω2
m,n

(B.59)

=
ρ1/2σ

1/2
extL

3(1− ν)2K

2πθaz2
0h

2(m2 + n2)3/2E2α2
(B.60)

Now use the de�nition of z0 given in Eq. B.34 we can compute z0 as

z0 =
2

h

ˆ h
2

−h
2

dz z sin
πz

h
(B.61)

=
4h

π2
(B.62)

Substitute z0 = 4h/π2 into Eq. B.60 gives the �nal result:

QTED =
ρ1/2σ

1/2
extL

3(1− ν)2K

2πθah2(m2 + n2)3/2E2α2

π4

16h2

=
π3ρ1/2σ

1/2
extL

3(1− ν)2K

32θah4(m2 + n2)3/2E2α2

Substituting in the numerical values for our 1 mm square 50 nm-thick membrane given in Table B.2,

a quality factor of

Q ≈ 5× 1011

167



B.4 Discrepancy with other calculations of QTED

The prediction that the membranes used in this dissertation have a quality factor Q ∼ 1011 is

in disagreement with a published prediction given in Ref. [106]of Q ∼ 108. The di�erence arises

because Ref. [106] uses the �nal result from Norris and Photiadis Eqs. 4.16-4.19, which assumes the

thin plates have no external stress. In the case of no external stress the energy of the thin plate is

given by Norris and Photiadis Eq. 4.3, rather than Eq. B.2 which I use as the energy of a membrane

under tension.
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